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2 Establishing a Numerical Modeling Framework
3 for Hydrologic Engineering Analyses of
4 Extreme Storm Events1

5 Xiaodong Chen, S.M.ASCE1; Faisal Hossain, A.M.ASCE2; and L. Ruby Leung3

6 Abstract: In this study, a numerical modeling framework for simulating extreme storm events was established using the weather research
7 and forecasting (WRF) model. Such a framework is necessary for the derivation of engineering parameters such as probable maximum
8 precipitation that are the cornerstone of large water-management infrastructure design. Here, this framework was built based on a heavy
9 storm that occurred in Nashville, Tennessee (USA), in 2010, and verified using two other extreme storms. To achieve the optimal setup,

10 several combinations of model resolutions, initial/boundary conditions (IC/BC), cloud microphysics, and cumulus parameterization schemes
11 were evaluated using multiple metrics of precipitation characteristics. The evaluation suggests that WRF is most sensitive to the IC/BC option.
12 Simulation generally benefits from finer resolutions up to 5 km. At the 15 km level, NCEP2 IC/BC produces better results, whereas NAM IC/
13 BC performs best at the 5 km level. The recommended model configuration from this study is: NAM or NCEP2 IC/BC (depending on data
14 availability), 15 km or 15 km–5 km nested grids, Morrison microphysics, and Kain-Fritsch cumulus schemes. Validation of the optimal
15 framework suggests that these options are good starting choices for modeling extreme events similar to the test cases. This optimal framework
16 is proposed in response to emerging engineering demands of extreme storm event forecasting and analyses for design, operations, and risk
17 assessment of large water infrastructures. DOI: 10.1061/(ASCE)HE.1943-5584.0001523. © 2017 American Society of Civil Engineers.
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19 Introduction2

20 Intense3 storms, or extreme rainfall events, as they will be called
21 hereafter, pose challenges to infrastructure management and design
22 and trigger other catastrophic events such as floods, landslides, and
23 dam failures (Casagli et al. 2006; Cong et al. 2006; Evans et al.
24 2000). They are also the cornerstone of engineering design and risk
25 assessment of large infrastructures such as dams, levees, and power
26 plants (Stratz and Hossain 2014). Therefore, it is of great societal
27 interest to physically predict and understand the occurrence and
28 magnitude of such extreme events for both design and operation
29 of engineering infrastructures.
30 In current engineering practice, the safety of hazardous infra-
31 structures (where lives are at stake with infrastructure failure) is
32 achieved through designs based on probable maximum precipita-
33 tion (PMP). PMP is defined as the theoretical greatest depth of pre-
34 cipitation for a given duration that is physically possible over a
35 particular drainage area (Huschke 1959). It depicts the precipitation
36 potential of an already intense storm that is maximized to an upper
37 bound using some basic engineering assumptions (Kunkel
38 et al. 2013; Stratz and Hossain 2014). The National Oceanic

39and Atmospheric Administration (NOAA) has created a database
40of such intense storms in the United States from approximately
411900–1990 that were maximized to PMPs and publicly released
42as hydrometeorological reports (HMRs) for the engineering infra-
43structure community (U.S. Department of Commerce 1999 4). For
44engineering practices outside the United States, the World
45Meteorological Organization (WMO) has outlined several ap-
46proaches that can be used (WMO 1986). In general, these are
47local methods (maximization of local storms), transposition
48methods (storm transposition from same climatological regions),
49generalized methods (based on some provided PMP distribution
50maps), and statistical methods such as the one proposed in
51Hershfield (1965).
52PMP is generally expressed mathematically as:
53P × wpðmaximumÞ=wpðstormÞ, where P = the observed rainfall accumu-
54lation; wpðmaximumÞ = the highest observed precipitable water from
55historical records; and wpðstormÞ = the storm precipitable water. This
56approach is often criticized as being insufficiently physical because
57it assumes a linear relationship between precipitation and the water-
58holding capacity of the atmosphere (Abbs 1999; Kunkel et al.
592013). Also, it heavily relies on historical observation data. For
60very early extreme events used in PMP analysis (such as Storm
61Elba of 1929), it is difficult to obtain a physically consistent picture
62because of limitations of record keeping and the linearity
63assumption (Abbs 1999). In this context, numerical simulation
64of extreme storms and their consequent physical maximization
65to a PMP is gaining much more traction among science and engi-
66neering communities than before (Kunkel et al. 2013; Stratz and
67Hossain 2014).
68The numerical modeling approach has several key advantages
69over the traditional approaches. It is able to produce finer details
70on the spatial-temporal structure of the storms using fewer assump-
71tions and experience-based estimation. It is more tailored to a re-
72gion that has little or no long-term rainfall record or is rapidly
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73 undergoing changes in weather patterns due to land cover change or
74 global warming. More importantly, a well-established numerical
75 modeling framework is often able to handle various extreme events
76 within the model domain spanning decades (Chen and Hossain
77 2016). In the study by Tan (2010), the WRF model was calibrated
78 and set up over the American River basin. It was found capable of
79 simulating various PMP-class storms in the basin during 1970–
80 2000. The model also provided better space-time pictures of
81 the historical events that were used in HMRs for PMP estimation
82 in this basin. This is another benefit of the numerical modeling
83 approach.
84 There have been numerous studies on extreme events or PMPs
85 using numerical atmospheric models. Some conclusions have been
86 reached on the optimal setup of numerical models. For example,
87 optimal grid size ratios of 1∶7, 1∶5, and 1∶3 were validated over
88 eight storms in southwest England (Liu et al. 2012). The study
89 by Pennelly et al. (2014) concluded that for storms in Alberta,
90 Canada, 6-km grids in the WRF model are a balance between sim-
91 ulation quality and time expense. There have also been efforts to
92 optimize the simulated rainfall results by operating models with
93 more information. For example, Giannaros et al. (2016) assimilated
94 lightning data into the atmospheric numerical simulation, and it
95 helped improve precipitation forecast. However, a consistent
96 framework informing the users from the hydrologic engineering
97 community how to systematically set up and analyze numerical
98 models for engineering analyses is still absent from the literature.
99 Previous studies suggest that the performance of storm simula-

100 tion heavily depends on the parameterization schemes, which is the
101 mathematical identification of physical processes in the numerical
102 models (Stensrud 2009). Though a wise choice of parameterization
103 schemes results in improved simulations of big storms, it often has
104 to be achieved by trial and error. For example, several numerical
105 studies for the Mumbai July 2005 storm (Chang et al. 2009; Kumar
106 et al. 2008; Rao et al. 2007; Vaidya and Kulkarni 2007) show
107 steady progress in reconstructing the high precipitation values in
108 the various modeling platforms with different parameterization
109 schemes. Rajeevan et al. (2010) revealed that the optimal combi-
110 nations of parameterization schemes and IC/BC in the model can be
111 quite different for southeast Indian thunderstorms. These high
112 heterogeneities within optimal model configurations make it diffi-
113 cult for engineering communities to set up and operate these
114 models.
115 Given that the engineering community is relatively new to the
116 setup and operation of numerical models, as well as the use of mod-
117 els for maximization of extreme storms in PMP estimation, a frame-
118 work to explore the role of various parametrizations and IC/BC
119 on extreme storm simulation accuracy can provide a baseline for
120 optimal criteria for PMP simulation. Such a comprehensive study
121 will also illustrate ways to identify optimal model configurations
122 for extreme storm simulations and help the engineering infrastruc-
123 ture community that engages in hydrologic analyses for design and
124 operations embrace numerical models for PMP estimation and fur-
125 ther advance the methodology.
126 In this study, ways to establish a generic numerical modeling
127 framework over a given area are investigated. Taking the Nashville,
128 Tennessee, USA, 2010 storm as a test case, the procedures required
129 to achieve a good storm reconstruction using the WRF model
130 are illustrated. Various combinations of parameterization schemes,
131 IC/BCs, and grid sizes are evaluated. Using this framework, three
132 questions are addressed:
133 1. What combinations of model options in WRF are most skillful
134 for extreme storm event simulation?
135 2. What are the strengths and weaknesses of each model option in
136 reference to simulation accuracy of extreme precipitation?

1373. What are the optimal model configurations for engineering op-
138erations and infrastructure implications?

139Nashville, USA 2010 Extreme Storm

140During May 1 and May 2, 2010, the west and middle Tennessee
141region of the USA experienced a record-breaking storm. This 2-day
142rainfall event brought huge amounts of water to western Tennessee,
143with 48-h cumulative rainfall exceeding historical records at several
144gauge stations (such as the Nashville and Camden station in
145Tennessee). Fig. 1 shows the 48-h cumulative rainfall from this
146storm as observed from the NEXRAD network, which shows a
147southwest–northeast pattern.
148This storm, hereafter referred to as the Nashville 2010 storm,
149led to a flood in the following days that NOAA categorized as a
1501000-year return period flood event (NOAA National Weather
151Service and Weather Forecast Office, NWSWF 2010 5). The maxi-
152mum 48-h total precipitation observed was 493 mm (19.41 in.) at
153the Camden COOP station (36.05°N, 88.08°W, the star in Fig. 1).
154This value is quite close to the 5,000 mi2 48-h design PMP
155(495 mm, or 19.5 in.) for west Tennessee (an area in the HMR
1561951 report, hereafter referred to as the HMR51 region). Nash-
157ville’s international airport recorded its first and third highest
15824-h total rainfall in history on 1 and 2 May, respectively (NWSWF
1592010). These statistics qualify this rainfall event as a reference
160extreme storm for PMP design for the HMR 51 region. During the
161ensuing flood event, 21 deaths were reported, and over 30 counties
162were declared major disaster areas by the government. This unique
163rainfall record and infrastructure-damaging impact make this event
164worth revisiting with numerical simulation (Durkee et al. 2012).
165There have not been many numerical simulation efforts on this
166storm. Thus, a successful model reconstruction of this event would
167provide an important baseline for studying other local events or
168events in similar environmental conditions for engineering infra-
169structure applications.
170The Nashville 2010 storm was among a series of big storms
171(tornados 41, 43, and 57) hitting the mid-southern United States
172in the same period. Analysis of reanalysis products suggests that
173the event was associated with a synoptic system with significant
174atmospheric moisture. The Atlantic ridging associated with the
175negative phase of the North Atlantic Oscillation (NAO) helped

F1:1Fig. 1. 48-h (0000 UTC 1 May–0000 UTC 3 May, 2010) total rainfall
F1:2from Stage IV data
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176 amplify and slow the eastward propagating synoptic wave pattern
177 that generated heavy precipitation from mesoscale organized con-
178 vective systems (Durkee et al. 2012). An atmospheric river origi-
179 nating from the Intertropical Convergence Zone (ITCZ) in Central
180 America provided the moisture source for this record-breaking
181 event (Durkee et al. 2012). Surface topography in the Appalachians
182 provided orographic forcing for moisture convergence, and land
183 surface heating helped maintain atmospheric instability, so precipi-
184 tation continued until 2 May, 2010. Previous studies have identified
185 several key atmospheric factors such as the superposition of the
186 polar and subtropical jet (Winters and Martin 2014) and the atmos-
187 pheric river (Durkee et al. 2012; Moore et al. 2012). Because some
188 elements present in the Nashville 2010 event are common ingre-
189 dients in other extreme storms, reconstructing this extreme event
190 may serve as an important test case for evaluating the ability of
191 the WRF model for simulating other storms.

192 The Numerical Atmospheric Model

193 The WRF model is employed for big storm reconstruction. WRF
194 is an atmospheric modeling system (Skamarock et al. 2008) that
195 features two nonhydrostatic solvers, the advanced research WRF
196 (ARW) core for atmospheric research, and the nonhydrostatic ne-
197 soscale model (NMM) core for the operational forecast. This study
198 adopted WRF-ARW v3.6.1 for the storm simulation. WRF-ARW
199 has been employed in various big storm studies and demonstrated
200 to be capable of simulating several big storms across the world
201 (Chen and Hossain 2016; Kumar et al. 2008; Rajeevan et al.
202 2010; Tan 2010).
203 WRF-ARW is designed for mesoscale meteorological simula-
204 tion with spatial resolution ranging from 1 to 100 km. Accordingly,
205 the time step used in the model varies from seconds to minutes. It
206 simulates atmospheric motion using compressible, nonhydrostatic
207 Euler equations with consideration of mass, energy, and momen-
208 tum conservation. These equations are formulated and solved using
209 the Arakawa-C grid with terrain-following mass vertical coordi-
210 nates (Laprise 1992). WRF-ARW uses various parameterization

211schemes to estimate the atmospheric processes at the subgrid scale,
212and atmospheric moisture is considered in various phases in the
213cloud microphysics parameterization schemes. For example, in
214the Morrison microphysics scheme, water is considered in vapor,
215cloud droplets, cloud ice, rain, snow, and graupel or hail phases
216(Morrison et al. 2009). This ensures an accurate description of
217moisture in the air. By default, the WRF-ARW model uses the
218USGS or MODIS land use dataset to depict the surface feedback.
219As a platform, the WRF-ARWmodel provides multiple choices for
220major physics processes that affect the atmospheric state: cloud mi-
221crophysics, cumulus processes, radiation processes, planetary
222boundary layer processes, and land surface processes. With this
223modular design, it exhibits great flexibility for mesoscale atmos-
224pheric activities across a wide range of temporal and spatial scales
225while maintaining the capability of incorporating recent advances
226in atmospheric sciences.

227Experimental Design

228Previous studies suggest that the performance of numerical atmos-
229pheric models is mostly affected by cloud physics parameteriza-
230tion, model resolution, and initial and boundary conditions in
231the model, as well as the simulation period. The subsequent steps
232illustrate the workflow needed by engineers to establish the optimal
233modeling framework based on WRF. A schematic is shown in
234Fig. 2, and the details of each step are explained subsequently with
235an example of the Nashville 2010 storm simulation.
2361. Study previous modeling efforts to understand the background
237of the study domain;
2382. Determine the atmospheric numerical model(s) of interest;
2393. Determine the study domain and simulation period. Prioritize
240the main physical factors in the model that affect the simulation
241quality. This can be gained from step 1. Outline the model op-
242tions (i.e., combination of parameterizations) to be tested;
2434. Collect the input data, set up the model, and make model runs;
2445. Determine the main purpose of the modeling framework and the
245evaluation criteria. As shown subsequently in the Nashville

F2:1 Fig. 2. Generic framework for exploring optimal model configuration for extreme storms
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246 2010 case, different purposes of the modeling framework re-
247 quire different criteria and lead to different configurations in
248 the optimal atmospheric model. Collect the reference data;
249 6. Evaluate the simulation results using the metric(s) that best
250 serve the purpose.
251 The Nashville 2010 storm period is May 1–2, 2010, and pre-
252 vious studies (Mahoney 2013) concluded that a long spin-up would
253 result in less rainfall during the event. Thus, the simulation period is
254 chosen as 0000 UTC 1–3 May 2010. Here, three configurations of
255 nested domains were tested to evaluate model performance at 15-,
256 5-, and 1.6-km (the latter is referred to as “2 km” for convenience)
257 grid sizes. Fig. 3 shows the domains in the simulation of the
258 Nashville 2010 storm and two verification events (which will be
259 discussed later). The three nested domains in Fig. 3(a) are all

260centered over western Tennessee. In the first configuration [g15,
261the outmost domain in Fig. 3(a)], the domain covers the contiguous
262US at 15-km grid spacing. In the second configuration [g5, the
263whole domain plus the white box in Fig. 3(a)], a d02 domain at
2645-km resolution (white box) is nested inside the larger 15-km do-
265main. The third configuration [g2, Fig. 3(a)] further includes a d03
266domain of 1.6-km spatial resolution (red box) to better resolve con-
267vection at 1.6-km grid spacing. When there is more than one do-
268main involved in the simulation, WRF runs in a two-way nesting
269mode, which means the coarse grid results are updated using results
270in finer grids where available. This experiment design allows evalu-
271ation of the impacts of higher resolution achieved through nesting
272with the same placement of the outermost lateral boundaries for all
273simulations. Nominal time steps of 60, 20, and 6.7 s were used for

F3:1 Fig. 3. Spatial domain in modeling framework of Nashville 2010 storm, 1997CA event and 1980PNW event
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274 the 15-, 5-, and 1.6-km grids, respectively. Model outputs are ar-
275 chived hourly between 0000 UTC 1 May 2010 and 0000 UTC 3
276 May 2010, similar to Moore et al. (2012).
277 Three sources of data were used to generate IC/BCs: (1) NCEP/
278 DOE reanalysis product (NCEP2) at 2.5-degree resolution;
279 (2) NCEP/NCAR reanalysis product (NNRP) at T62 (209-km) res-
280 olution; and (3) North America nesoscale (NAM) forecast output at
281 T221 (32-km) resolution. For this study, the NAM forecast initial-
282 ized at 0000 UTC 1 May 2010 was used.
283 Previous studies suggest that precipitation simulation is more
284 sensitive to microphysics and cumulus parameterization schemes
285 than parameterizations for other processes in the model (Del Genio
286 et al. 2005; Pennelly et al. 2014; Zhang and McFarlane 1995).
287 Here, three microphysics parameterization schemes for mixed
288 phase clouds were tested, including (1) Morrison double moment
289 scheme (coded as “Morrison” here), (2) New Thompson scheme
290 (“Thompson”), and (3) WSM-5 scheme (“WSM5”). Three cumu-
291 lus parameterization schemes were also evaluated, including the
292 (1) Kain-Fritsch scheme (coded as “KF” here), (2) Grell-Devenyi
293 scheme (“GD”), and (3) Grell-Freitas scheme (“GF”). In the nested
294 runs (g5 and g2), the cumulus scheme is used only in the 15-km
295 domain because convection is explicitly resolved at the 5- and 2-km
296 resolutions. Grell and Freitas (2014) noted that at coarser resolu-
297 tions, the GF scheme functions as a cumulus parameterization to
298 represent the unresolved deep convection, but at this solution of
299 a few kilometers, deep convection is explicitly resolved and the
300 GF scheme mainly represents shallow convection. Thus, another
301 set of simulations are designed to test the scale-aware GF scheme
302 in which the GF cumulus scheme is applied to all the domains
303 (15 km, 5 km, 2 km) in the nested runs (g5 and g2). Other schemes
304 are fixed in all the experiments, and they are: RRTM long wave
305 radiation scheme, Dudhia shortwave radiation scheme, revised

306MM5 surface layer scheme, Yonsei University (YSU) planetary
307boundary layer scheme, Noah land surface scheme.
308The total number of combinations of the different options in grid
309sizes (3), IC/BCs (3), microphysics schemes (3), and cumulus
310schemes (3 in the g15 runs, 2 in the g5 and g2 runs) amounts
311to 63 WRF runs designed and conducted for this study.

312Framework Evaluation Metrics

313Independent precipitation observation data are required for the
314assessment of the storm simulations. One option is gauge data
315because they provide the most accurate estimate of rainfall amount
316and duration. In some cases, gauge data may not be available due to
317either the age of the storm or the gauges having stopped working
318(such as the Nashville international airport station in the Nashville
3192010 storm event); the gridded data can be used to validate model
320results. Here, the NEXRAD Stage IV precipitation dataset (Fig. 1)
321is used as the reference in selecting the optimal model configura-
322tion, given its high accuracy and good spatial coverage. Cumulative
32348-h rainfall is evaluated by the spatial correlation coefficient be-
324tween the simulated and Stage IV 48-h total rainfall. This reveals
325how the model performs in capturing the rainy area and the spatial
326heterogeneity of total rainfall. For extreme rainfall events used in
327engineering analysis, it is important that the numerical model cap-
328ture the core precipitating areas as accurately as possible. The val-
329idation steps used the Livneh daily CONUS near-surface gridded
330meteorological data (Livneh et al. 2013). This dataset is developed
331from gauge observations, and it provides an estimation of daily pre-
332cipitation. By validating the results using a different reference,
333reference-dependent conclusions can be avoided.
334Additional metrics employed include: probability of detection
335(POD), false alert ratio (FAR), frequency bias (Bias), Heidke skill
336score (HSS), critical success index (CSI, or TS), and Gilbert skill
337score (GSS, or ETS). They are defined as statistics of the binary
338result indices in Table 1. Table 2 shows the definitions of these
339metrics, as well as the ranges of their values. These metrics measure
340only the accuracy in the coverage of the rainy versus nonrainy area.
341Therefore, when the magnitude of precipitated water matters a lot,
342it would be better to use the correlation or root mean square error
343(RMSE) between observed rainfall and simulated rainfall for the
344period of interest (e.g., 6, 24, 48, and 72 h in the PMP design).

Table 1. Binary Results Indices for Spatial Coverage Evaluation Metric

T1:1 Simulated

Observed

T1:2 Yes No Sum

T1:3 Yes Hits (YY) False alarms (YN) YY þ YN
T1:4 No Misses (NY) Correct rejections (NN) NY þ NN
T1:5 Sum YY þ NY YN þ NN Total ¼ YY þ YN

þ NY þ NN

Table 2. Definition of Evaluation Metrics on Storm Performance in Spatial Coverage Using Metrics from Table 1

T2:1 Metric Definition Best score Worst score

T2:2 POD YY
YY þ NY

1 0

T2:3 FAR YN
YY þ YN

0 1

T2:4 Bias YY þ YN
YY þ NY

1 0 or ∞

T2:5 HSS 2 × ðYY · NN − YN · NYÞ
ðYY þ NYÞðNY þ NNÞ þ ðYY þ YNÞðYN þ NNÞ

1 −∞

T2:6 TS YY
YY þ NY þ YN

1 0

T2:7 ETS YY − YYrand

YY þ NY þ YN − YYrand
, where YYrand ¼

ðYY þ YNÞðYY þ NYÞ
Total

1 −1=3

Note: YY (hits) means both simulation and observation indicate rainfall at the grid or station; YN (false alarm) means only simulation indicates rainfall at
the grid/station; NY (misses) means only observation indicates rainfall at the grid or station; NN (correct rejection) means neither observation nor simulation
indicates rainfall at the grid or station. More details are in Table 1. All these metrics are monotonous, except for bias.

© ASCE 5 J. Hydrol. Eng.
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345 This can be done using either station data or gridded data. Other
346 terms worth considering are the storm duration (start time and end
347 time) and peak rainfall (to classify the storm severity). The Nash-
348 Sutcliffe model efficiency coefficient (NS) is also used to quantify
349 the simulated precipitation. When applied to a map, this coefficient
350 can be defined by Eq. (1), whereN = the total number of grid points
351 in the map; Po = the observed precipitation; and Pm is the simulated
352 precipitation. The range of NS is from −∞ to 1, and 1 is a perfect
353 score. A higher NS indicates stronger capacity of the model. These
354 metrics quantitatively evaluate the model performance; thus, the
355 recommendations given by these metrics can be applied to engi-
356 neering practice with confidence (Bennett et al. 2013)

NS ¼ 1 −
P

N
n¼1 ðPn

o − Pn
mÞ2P

N
n¼1 ðPn

o − PoÞ2
ð1Þ

357 These metrics measure different aspects of model performance
358 and provide different recommendations for the best combination of
359 parameterizations to support different applications. The POD met-
360 ric and storm duration are more useful if the successful forecast of
361 the rainy area is more important, such as the search for possible
362 shelter areas. The FAR metric should be weighted more if the cost
363 of emergency relocation is high, in which case unnecessary effort
364 related to areas that are actually not rainy should be avoided. In the
365 infrastructure design practice, the total amount of rainfall and peak
366 rainfall would be more important. If simulated rainfall data is being
367 used as input to other models (such as hydrological models for
368 stream flow forecasting), then a high spatial correlation or Nash-
369 Sutcliffe coefficient between simulated and observed rainfall would
370 be more desired.
371 This paper takes multiple metrics into consideration as a set
372 when assessing model performance because no single metric cap-
373 tures all the pertinent performance features. For example, a good

374numerical model configuration should produce a high probability
375of detection for rain as well as a high critical success index, but a
376low false alert ratio. Several metrics were combined and a unified
377score (US) created. The US is defined by Eq. (2), in which PODn,
378FARn and CSIn are normalized metrics defined by Eqs. (3)–(5). By
379combining different aspects of model performance into the score,
380the unified score is used to identify the best combinations for the
381overall performance reflected by the multidimensional metrics that
382appeal to the engineering infrastructure community (Sikder and
383Hossain 2016)

US ¼ POD2
n − FAR2

n þ CSI2n ð2Þ

PODn ¼
POD −minðPODÞ

maxðPODÞ −minðPODÞ ð3Þ

FARn ¼
FAR −minðFARÞ

maxðFARÞ −minðFARÞ ð4Þ

CSIn ¼
CSI −minðCSIÞ

maxðCSIÞ −minðCSIÞ ð5Þ

384Evaluation of Reconstruction of the Nashville 2010
385Extreme Storm

386Fig. 4 shows the observed and simulated 48-h total rainfall between
387UTC 0000 1 May 2010 and UTC 0000 3 May 2010. Panel 4(a)
388is the NEXRAD observation; panel 4(b) is from the WRF sim-
389ulation using the g5 grids (15 km–5 km nested grids), NAM
390IC/BC, Morrison microphysics, and KF cumulus parameterization
391schemes. This is one of the best simulations suggested by the

F4:1 Fig. 4. Stage IV observed and WRF simulated 48-h (0000 UTC 1 May–0000 UTC 3 May, 2010 total rainfall during Nashville 2010 storm event
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392 evaluation. Comparison of panel4(b) with panel 4(a) indicates that
393 this model setup is able to reconstruct the heavy rainfall area in
394 midwest Tennessee. The rainfall amount gradient is properly de-
395 scribed by this model setup. Also, the big southwest–northeast pat-
396 tern of the 48-h total rainfall is clearly captured. Panel 4(c) shows a
397 simulation with moderate scores under evaluation, and panel 4(d)
398 shows one of the worst simulations. Though all the simulations cap-
399 tured the northeast–southwest–oriented rain band, the detailed rain-
400 fall distributions from various model configurations differ a lot;
401 thus, evaluation based on the purpose of the modeling framework
402 is necessary. The detailed evaluation is shown as a demo of using
403 different metrics to establish the extreme storm events modeling
404 framework.
405 The Stage IV data and simulation results were all conservatively
406 regridded to the 1/16-degree grids within the d03 domain for the
407 following analysis. All the metrics were computed using the results
408 within the box of lat (31°N, 40°N), lon (95°W, 84°W), which is
409 referred to here as “evaluation area.”
410 The total rainfall amount in the event reveals the potential mag-
411 nitude of the successive flood and suggests how destructive the
412 storm would be. To evaluate the WRF simulated results, the ratios
413 of simulated total rainfall to the Stage IV total rainfall over the
414 evaluation area were calculated and shown in Table 3. Numbers

415in this table are all normalized using the observed Stage IV 48-h
416total rainfall; thus, the closer to 1, the more accurately the model
417reconstructs this event. For each grid size, the top three combina-
418tions are highlighted in bold in the table.
419All these combinations tend to underestimate the total rainfall in
420the evaluation area. However, the best results (such as g15-NCEP2-
421Thompson-KF and g5-NAM-Thompson-KF) are fairly close to the
422observed amount, with the difference within 10%. Also, the perfor-
423mance of NCEP2 is comparable to those of NAM IC/BC, both of
424which are significantly better than NNRP IC/BC. The simulated
425total rainfall amount is sensitive to the cumulus scheme because
426the difference in KF results from NCEP2 and NAM IC/BC is less
427than 7%, whereas the difference due to cumulus schemes is larger
428than 10%. The best results come from coarser resolutions. Thus, for
429total rainfall estimation, the optimal framework would go up to
430only 5 km resolution.
431Table 4 shows the spatial correlations and RMSEs between the
432simulated 48-h total rainfall maps and the Stage IV total rainfall
433map. Values in parentheses are the RMSE results. For each grid
434size, the top three combinations in the correlation coefficient are
435highlighted in bold in the table. Similarly, the top three combina-
436tions in RMSE are also bolded in the table, and they are exactly
437those deriving the best spatial correlation. At all three grid scales,

Table 3. Evaluation of Averaged 48-h Total Rainfall Simulated in the Evaluation Area (Normalized Using Stage IV Observed 48-h Total) in the Nashville
2010 Storm Event

T3:1 MP

NCEP2 NNRP NAM

T3:2 KF GD GF KF GD GF KF GD GF

T3:3 15-km grids
T3:4 Morrison 0.857 0.727 0.708 0.745 0.662 0.661 0.855 0.678 0.684
T3:5 Thompson 0.921 0.774 0.744 0.797 0.711 0.707 0.879 0.719 0.719
T3:6 WSM-5 0.866 0.754 0.740 0.753 0.705 0.698 0.855 0.712 0.718

T3:7 5-km grids
T3:8 Morrison 0.874 — 0.766 0.695 — 0.680 0.890 — 0.759
T3:9 Thompson 0.856 — 0.766 0.676 — 0.707 0.905 — 0.766

T3:10 WSM-5 0.892 — 0.787 0.707 — 0.706 0.899 — 0.793

T3:11 2-km grids
T3:12 Morrison 0.827 — 0.780 0.692 — 0.663 0.882 — 0.816
T3:13 Thompson 0.773 — 0.723 0.636 — 0.603 0.855 — 0.781
T3:14 WSM-5 0.841 — 0.794 0.683 — 0.648 0.898 — 0.829

Note: Bold numbers are the top three scores with the best performance within each grid resolution.

Table 4. Spatial Correlation and RMSE between Simulated and Stage IV Reference 48-h Cumulative Rainfall Distribution in the Nashville 2010 Storm Event

T4:1 MP

NCEP2 NNRP NAM

T4:2 KF GD GF KF GD GF KF GD GF

T4:3 15-km grids
T4:4 Morrison 0.364 (65.0) 0.344 (66.4) 0.231 (69.4) 0.259 (69.4) 0.345 (66.8) 0.139 (71.6) 0.597 (55.4) 0.488 (62.2) 0.471 (62.7)
T4:5 Thompson 0.359 (65.5) 0.368 (65.2) 0.254 (68.4) 0.249 (69.8) 0.344 (66.2) 0.125 (71.6) 0.606 (54.7) 0.516 (60.5) 0.516 (60.5)
T4:6 WSM-5 0.365 (64.9) 0.362 (65.6) 0.271 (68.1) 0.261 (69.4) 0.361 (65.8) 0.122 (71.8) 0.589 (55.8) 0.485 (61.8) 0.418 (64.2)

T4:7 5-km grids
T4:8 Morrison 0.455 (62.1) — 0.171 (71.3) 0.311 (69.1) — 0.154 (71.1) 0.773 (43.8) — 0.500 (60.6)
T4:9 Thompson 0.335 (68.1) — 0.216 (69.4) 0.334 (68.5) — 0.159 (70.7) 0.698 (49.2) — 0.509 (60.2)

T4:10 WSM-5 0.322 (68.9) — 0.220 (70.0) 0.337 (68.0) — 0.172 (70.3) 0.700 (49.2) — 0.537 (58.7)

T4:11 2-km grids
T4:12 Morrison 0.596 (55.6) — 0.527 (59.3) 0.289 (70.1) — 0.293 (70.2) 0.766 (44.4) — 0.705 (49.4)
T4:13 Thompson 0.490 (61.0) — 0.380 (65.8) 0.277 (70.1) — 0.302 (69.3) 0.697 (49.6) — 0.644 (53.6)
T4:14 WSM-5 0.482 (61.4) — 0.435 (63.8) 0.318 (68.4) — 0.313 (68.7) 0.708 (48.8) — 0.623 (54.6)

Note: Values in parentheses are RMSE (unit: mm=day). Bold numbers are the top three scores with the best performance (highest correlation or lowest RMSE)
within each grid resolution.
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438 NAM provides the best estimates of the 48-h total rainfall. Within
439 each IC/BC category, the difference from different microphysics
440 schemes is not huge (usually only within 20% of the score), but
441 different cumulus parameterization schemes have significant im-
442 pacts on the precipitation simulation quality. This is especially
443 notable in the simulations driven by the NCEP2 IC/BC, where the
444 spatial correlation ranges from ∼0.2 (GF scheme) to ∼0.6 (KF
445 scheme), and the correlations with the KF scheme are always higher
446 than those with the GF scheme. Also, the g5-NAM-Morrison-KF
447 case [Fig. 4(b)] produced the best spatial correlation among all
448 the tested cases. Based on Table 3, NAM IC/BC and the KF cumu-
449 lus scheme are recommended for storm reconstructions that address
450 the spatial distribution of the cumulative rainfall (such as PMP de-
451 sign). However, because this result is based only on the cumulative
452 rainfall, it does not reveal temporal evolution information.
453 At the 5- and 2-km grid scales, all the combinations produce
454 stronger correlations. As can be seen in the following analysis,
455 NAM often produces the best quantitative evaluation values in
456 the finer grids. The top combinations for the 5- and 2-km grids
457 are similar. The difference among the best correlation results at
458 the three different grid scales is not significant. In general,
459 higher-resolution simulations are able to capture finer-scale fea-
460 tures, although the improvement from 5 to 2 km is marginal.
461 In certain types of engineering infrastructure analyses, it is
462 important to know both the location and period of the storm event.
463 A better picture of the spatial-temporal structure of the storm

464would help make better operation plans for the drainage systems,
465for example. To better evaluate the simulated spatial–temporal
466structures of the storm, quantitative scores were computed for
467the 63 simulations. Unlike the calculation of spatial correlation us-
468ing rainfall total, the computation here used hourly rainfall data.
469Fig. 5 visualizes the evaluation on the spatial coverage of hourly
470rainfall simulated by WRF. Blank panels mean the corresponding
471combination was not tested (similar to “-” in Table 3). Fig. 5(a)
472shows the POD, with greater values representing more skillful
473simulations. Similarly, Fig. 5(b) shows the FAR (lower values
474are better). POD reflects the probability of rainfall grid points being
475successfully simulated as “rainy” by the numerical model. FAR
476evaluates the simulation accuracy of nonrainy regions, so com-
477bining it with POD can provide a better assessment of the simula-
478tion quality.
479The general information from Figs. 5(a) and 5(b) suggests that
480as the numerical model takes advantage of the finer grids, the sim-
481ulation quality usually improves. The g15 grid shows somewhat
482better POD than some of the g5 and g2 results, which is possible
483because POD measures only how completely the observed rainfall
484area is covered by the simulation. Fig. 5(a) suggests that the
485Morrison microphysics scheme tends to overestimate rainfall cov-
486erage, and this is supported by the higher FAR values in Fig. 5(b).
487Compared with the g15 grid, finer grid simulations are able to re-
488duce the likelihood of false alert: The range of the best three FAR
489scores in the g15 grid is [0.571, 0.588], which is less skillful than

F5:1 Fig. 5. Evaluation of spatial coverage simulated by WRF
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490 the g5 results of [0.520, 0.551]. Similar to the findings from the
491 spatial correlation and total rainfall analyses, the biggest difference
492 in the FAR comes from the choice of IC/BCs: NAM outperforms
493 others at both coarser and finer grids. Also, the WSM-5 scheme
494 tends to produce less spatial extent of rainfall, so it performs better
495 for the FAR score.
496 Fig. 5(c) shows the frequency bias scores. A bias score higher
497 than 1 means the model overestimates the rainfall coverage, and a
498 score less than 1 suggests an underestimation. As WRF is applied
499 in the finer grids, the bias scores steadily converge to 1. All micro-
500 physics schemes benefit from the use of the finer grids. All of the
501 bias scores are larger than 1, which indicates that all models over-
502 estimate the rainfall area. Because the total rainfall amount analysis
503 suggests that all models underestimate the total rainfall amount, the
504 simulated picture is most likely to be an expanded rainy area with
505 a rain rate smaller than the observed rate. This is confirmed by
506 comparing Fig. 4(b) to Fig. 4(a). Fig. 5(d) presents the HSS, with
507 higher scores indicating better simulations. For a simulation with
508 nonzero capability in forecasting and simulation, the HSS must be
509 greater than 0. Fig. 5(d) shows that all 63 simulations have some
510 capabilities for forecasting/simulation. Similar to the FAR scores,
511 NAM IC/BC performs best at both coarser and finer grids.

512The improvement from the g15 to g5 grid is significant (an approx-
513imately 20% increase), but the even finer g2 grid does not provide
514further improvement. Thus, the 5 km grid is an acceptable com-
515promise for PMP simulation because it does not compromise sim-
516ulation quality at the expense of reduced computational burden. In
517terms of microphysics schemes, WSM-5 is best for both the finer
518and coarse grids. In the coarse grid, the KF cumulus scheme is also
519a good choice when combined with the Morrison or new Thomp-
520son cumulus schemes.
521Fig. 6 shows the evaluation based on metrics that consider
522multiple aspects of the rainfall simulation quality. Fig. 6(a) shows
523the CSI grades (the higher the better). Any skillful forecast or sim-
524ulation should have greater than 0 grades. Fig. 6(c) shows the GSS
525grades (the higher the better). GSS improves CSI grades by taking
526into account the randomness of the observation, and it also requires
527a positive grade for the simulation to be considered skillful. The
528largest differences come from the choice of the IC/BC data source,
529and it is obvious that WSM-5 is the winning microphysics scheme
530at various grids.
531As shown in the previous figures, different metrics usually yield
532differing recommendations. They are helpful for specific purposes,
533but a better metric would be desired to simultaneously evaluate

F6:1 Fig. 6. Evaluation involving multiple aspects of rainfall simulation quality

© ASCE 9 J. Hydrol. Eng.



P
R
O
O
F

O
N
L
Y

534 multiple aspects of the modeling framework. For this purpose,
535 the unified scores [see Eq. (2)] were calculated and are shown
536 in Fig. 6(c). At a coarser grid (15 km), the Morrison microphysics
537 scheme provides the best results. With the NCEP2 IC/BC, the KF
538 scheme yields the highest scores in the g15 domain setup [Fig. 2(a)]
539 group. As the model is run in the finer grids, the NCEP2 results
540 produce lower scores, even negative sometimes. At the finer grids
541 (5 and 2 km), however, NAM yields the best detailed estimates of
542 rainfall. NNRP gives the worst results in both coarse and fine grids,
543 and the scores degrade further in the finer grids. With NAM pro-
544 viding IC/BC, the 2-km simulations are more skillful than the 5-km
545 simulations and less sensitive to the parameterizations used, though
546 the extra improvement is marginal. Also, the GF cumulus scheme
547 produces the best US score in the g5 and g2 domain setups. This
548 implies the GF scheme is scale aware, and it does not double-count
549 the deep convection along with the rainfall that is resolved by the
550 microphysics process.
551 For extreme events, it is sometimes more useful to analyze the
552 areas with heavy rainfall because they tend to result in the heavi-
553 est human and economic losses. NOAA’s definition of a heavy
554 storm is an event with an hourly rain rate larger than 7.6 mm.
555 Using this threshold to filter out nonheavy rainfall area, the
556 model performance over the heavy rain area can be evaluated.
557 Fig. 6(d) shows the GSS for the Nashville 2010 event with only
558 heavy (> 7.6 mm=h) rainfall cells and timesteps are treated as
559 rainy cells.
560 Unlike Fig. 6(b), the KF cumulus scheme tends to work best in
561 the heavy rain area. It is obvious that the KF cumulus scheme is a
562 winning option at various scales. At coarser resolutions, the
563 WSM-5 microphysics scheme tends to work better, whereas
564 Morrison is dominantly better at finer resolutions. The best mod-
565 eling frameworks recommended by general GSS scores (Fig. 6b)
566 are quite different from those highlighted by the heavy rain–
567 area GSS scores; thus, it is necessary to identify the specific ob-
568 jectives of the modeling framework and choose the corresponding
569 evaluation metrics.
570 In applications where storm magnitude is important (e.g., when
571 used as input to hydrological or hydraulic models), it is necessary to
572 quantify the simulated rainfall in both spatial extent and amount.
573 Here, the simulated 48-h rainfall maps are compared to Stage IV
574 and Livneh data under Nash-Sutcliffe coefficient. The results are
575 shown in Table 5, where the values in parentheses are the results
576 between the modeled data and the Livneh reference. The higher

577the Nash-Sutcliffe coefficient is, the better the model predicts the
578rainfall pattern. When compared to Stage IV data, Morrison micro-
579physics and KF cumulus schemes outperform others in both coarser
580and finer grids. The same holds true when they are compared
581against the Livneh reference, suggesting that their superiority is
582independent from the choice of reference. In terms of IC/BC,
583NAM produced the best results, followed by simulations with
584NCEP2 data.
585To check the statistics of simulated rainfall intensity, the hourly
586rainfall intensities can be plotted as histograms in Fig. 7. In these
587panels, the x-axis shows the hourly rainfall intensity and the y-axis
588shows the total count of such hourly rainfall intensities across the
589evaluation area in the 48-h duration. Each panel in the figure shows
590a combination of IC/BC, microphysics, and cumulus schemes. The
591black lines are the histograms from Stage IV data, the blues lines
592are those using g15 grids, red lines are those using g5 grids, and
593green lines are from g2 grids. The biggest difference comes from
594grid size, where g15 results are often biased away from observation.
595In most cases, g5 results are closer to the observation, and the im-
596provement from g5 to g2 is not significant. This confirms that g5
597is a balance between accuracy and computing burden. Again,
598Morrison microphysics and the KF cumulus schemes produced
599better results here.
600This evaluation suggests that different demands are best met
601with different model options for extreme storm simulation. These
602options have their own strengths and weaknesses. However, collec-
603tively, they can be used to generate a multiphysics ensemble fore-
604cast, which is useful for providing an “envelope” at a certain
605confidence level for an engineering application. For example, a
606range of possible PMP estimates can be much more useful for risk
607management than a single deterministic value. The results show
608that the width of the envelope is largely determined by uncertainty
609in the IC/BCs, followed by sensitivity to grid resolution. The use of
610the scale-aware GF scheme tends to reduce model sensitivity to
611resolution as intended and consistently yields high unified scores
612regardless of the microphysics parameterizations used. These re-
613sults demonstrate the possibilities of capturing the full range of
614the envelope using fewer but carefully tested configurations of
615the end members for design PMP estimates.
616In summary, NAM is better for finer-grid simulation, whereas
617NCEP2 is also a good choice at coarser grids for extreme storms. At
618finer grids, Morrison or WSM-5 is often a winning option. At the
619coarse grid scale, the results from different microphysics and

Table 5. Nash-Sutcliffe Metric between Simulated and Stage IV and Livneh Reference Rainfall Map in the Nashville 2010 Storm Event

T5:1 MP

NCEP2 NNRP NAM

T5:2 KF GD GF KF GD GF KF GD GF

T5:3 15-km grids
T5:4 Morrison 0.09 (−0.20) 0.05 (−0.04) −0.03 (−0.09) −0.03 (−0.43) 0.04 (−0.06) −0.10 (−0.24) 0.34 (−0.02) 0.17 (−0.08) 0.16 (0.01)
T5:5 Thompson 0.08 (−0.28) 0.09 (−0.01) 0.00 (−0.05) −0.05 (−0.48) 0.06 (−0.10) −0.10 (−0.28) 0.36 (0.00) 0.21 (−0.01) 0.21 (−0.01)
T5:6 WSM-5 0.09 (−0.18) 0.08 (−0.09) 0.01 (−0.11) −0.03 (−0.48) 0.07 (−0.09) −0.11 (−0.31) 0.33 (−0.01) 0.18 (−0.02) 0.12 (−0.01)
T5:7 5-km grids
T5:8 Morrison 0.17 (−0.16) — −0.09 (−0.46) −0.02 (−0.38) — −0.08 (−0.29) 0.59 (0.43) — 0.21 (0.01)
T5:9 Thompson 0.00 (−0.69) — −0.04 (−0.37) −0.01 (−0.46) — −0.07 (−0.33) 0.48 (0.18) — 0.22 (0.03)

T5:10 WSM-5 −0.02 (−0.59) — −0.05 (−0.51) 0.01 (−0.52) — −0.06 (−0.34) 0.48 (0.15) — 0.26 (0.04)

T5:11 2-km grids
T5:12 Morrison 0.34 (0.09) — 0.24 (0.07) −0.06 (−0.48) — −0.06 (−0.48) 0.58 (0.30) — 0.47 (0.15)
T5:13 Thompson 0.20 (−0.25) — 0.07 (−0.46) −0.06 (−0.56) — −0.04 (−0.44) 0.47 (0.11) — 0.38 (−0.05)
T5:14 WSM-5 0.19 (−0.41) — 0.13 (−0.46) 0.00 (−0.62) — −0.01 (−0.51) 0.49 (−0.01) — 0.36 (−0.20)

Note: Numbers in parentheses are with Livneh reference. Stage IV 48-h total precipitation map is used to evaluate the simulated 48-h total precipitation. Livneh
gridded daily precipitation data on May 1, 2010, is used to evaluate the simulated total precipitation on this day.
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620 cumulus schemes are mixed. Combinations that better resolve the
621 spatial-temporal structure of the storm are: g15-NAM-Morrison-
622 KF, g5-NAM-Morrison-KF, g15-NCEP2-Thompson-GF, and g5-
623 NAM-WSM5 (with KF or GF cumulus parameterization scheme).
624 The improvement from g5-NAM-WSM5 to g2-NAM-WSM5 is
625 insignificant (e.g., CSI changed from 0.40 to 0.41), so given the
626 larger computing requirements, the g2 option is not recommended
627 here. For general purposes, NAM-Morrison-KF is recommended as
628 a starting choice. With enough computing capacity, the g5 grid is
629 recommended, but g15 is also acceptable when running with this
630 configuration.
631 For the Nashville 2010 storm reconstruction, the recommenda-
632 tion emerging from the application of the framework differs from
633 previous studies. For example, Mahoney (2013) recommended the
634 4 km–1.3 km nested grids, and the NAM forecast IC/BC with the
635 new Thompson microphysics and no cumulus schemes. The maxi-
636 mum 48-h total rainfall captured by Mahoney (2013) was
637 260 mm, whereas in this study, it is 239 mm from the 1.6 km grid.
638 However, the WSM-5 scheme was not tested by Mahoney (2013).
639 In this study, the 300-mm 48-h total rainfall isohyet was captured
640 by using the WSM-5 microphysics scheme. Although these
641 estimates are smaller than the maximum 48-h total rainfall from
642 the Stage IV reference precipitation data (330 mm), the use of
643 WSM-5 represents an advance in capturing the high-precipitation
644 area.
645 This study includes the four major factors that affect atmos-
646 pheric model performance. However, there are still some other fac-
647 tors that can be fine-tuned as needed, such as land surface process,
648 planetary boundary scheme, and land use condition. Following the
649 same methodology outlined in this study, these factors can be added
650 into this evaluation framework to achieve even better simulation
651 quality, if desired by the engineering community.

652 Validation of Optimal Model Configuration

653 This study proved that the recommended model configuration is
654 independent from reference choice. The representativeness of this
655 finding for other storms remains a question. Therefore, the optimal

656WRF configuration was applied to other two storm events, the 1997
657January 1–3 storm in the American River watershed, California
658(denoted as the 1997CA event), and the 1980 December 24–26
659storm in the Pacific Northwest region (1980PNW event). Because
660of data availability, these two events are reconstructed using the
661NCEP2 IC/BC.
662The 1997CA event happened in northern California and caused
663a severe flood in Sacramento in the following days. The observed
664maximum 24-h precipitation was 284 mm, which made it one
665of the greatest storms in this area. The 1980PNW event happened
666in the Washington and Oregon, and the observed maximum
66724-h precipitation was 234 mm. This storm is one of the big
668storms used in the HMR for PMP in the Pacific Northwest region
669(HMR57).
670These storm events were reconstructed using the optimal model
671configuration (15 km–5 km nested grids, Morrison microphysics,
672and KF cumulus schemes) that was obtained through the Nashville
6732010 study. The simulated 3-day total rainfall of these two events,
674plus the simulated 1-day rainfall of the Nashville 2010 event,
675are shown in Fig. 8. Figs. 8(a and c) show the model reconstructed
6763-day precipitation, and Figs. 8(b and d) show the Livneh refer-
677ence. The third column shows the difference as WRF-Livneh. It
678shows that this model configuration depicts the heavy rainy area
679in both spatial extent and magnitude: In the 1997CA simulation,
680the model captures the storm center along the Sierra Nevada; in the
6811980PNW simulation, it captures the heavy rainy band along
682the coast.
683To quantity the performance of these reconstructions, all nine
684model configurations in 15-km grids, and six configurations in
68515 km–5 km grids were also tested. The evaluation of the Nash-
686Sutcliffe coefficient on the simulated maximum 3-day rainfall is
687shown in Table 6. In the 1997CA simulations, this optimal configu-
688ration (based on the Nashville 2010 storm) produced the best result.
689In the 1980PNW simulations, the performance of this optimal
690model configuration is within the top three among all the experi-
691ments. This confirms the capability of the optimal model configu-
692ration in reconstructing other severe storms, and this is independent
693of the choice of reference data.

F7:1 Fig. 7. Evaluation of hourly rainfall intensity histogram simulated by WRF
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694 Conclusions

695 In this study, an approach to establishing an optimal WRF-based
696 framework for extreme storm event simulation was investigated.
697 The goal was to introduce a more physically based method to
698 the engineering design and analyses community currently engaged
699 in large water-management infrastructure issues of today and to-
700 morrow. This framework takes into consideration the uncertainties
701 coming from various IC/BC data sources, grid resolutions, cloud
702 microphysics, and cumulus parameterization schemes. These are
703 the major contributors to the final model performance.
704 In the demonstration, a WRF-based modeling framework was
705 established for extreme storm events in the CONUS region based
706 on the Nashville 2010 storm and validated it using two other storms
707 in California and the Pacific Northwest. Based on the engineering
708 intent, the best model configuration can be different. For general
709 purposes, it is recommended that the WRF model be configured

710as: 15 km or nested 15 km–5 km grids, the NCEP2 or NAM boun-
711dary condition, and the Morrison microphysics scheme with the
712Kain-Fritsch cumulus scheme. This configuration is either the
713optimal configuration or a starting point that leads to quick conver-
714gence to the final optimal configuration.
715For future studies, the authors hope to complete application and
716validation of the optimal WRF modeling framework for a large
717number of storms that were maximized for PMP estimation in
718HMR reports. Because the use of atmospheric numerical models
719for engineering infrastructure analyses is gaining popularity among
720the infrastructure community, future studies should focus on im-
721proving current design and practice among engineers. Some exam-
722ples are: (1) exploration of physics-based probable maximum flood
723(PMF, the flood due to PMP), (2) impact of land use and land cover
724change and global warming on PMP and PMF during extreme
725storms, (3) improving streamflow forecast and thus improving res-
726ervoir and dam operation during extreme storm events, (4) multi-
727physics ensemble–based analyses of numerical model output for
728risk management.
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Table 6. Nash-Sutcliffe Metric between Simulated and Livneh Reference
3-Day Cumulative Rainfall Map in the 1997CA and 1980PNW Storm
Events

T6:1 MP

1997CA 1980PNW

T6:2 KF GD GF KF GD GF

T6:3 15-km grids
T6:4 Morrison 0.69 0.67 0.69 0.53 0.54 0.52
T6:5 Thompson 0.61 0.59 0.62 0.50 0.50 0.50
T6:6 WSM-5 0.59 0.57 0.63 0.41 0.41 0.40
T6:7 5-km grids
T6:8 Morrison 0.64 — 0.68 0.49 — 0.49
T6:9 Thompson 0.57 — 0.63 0.46 — 0.47

T6:10 WSM-5 0.52 — 0.61 0.31 — 0.33

Note: Livneh gridded precipitation data is used as references.
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