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Estimation of Satellite Rainfall Error Variance Using
Readily Available Geophysical Features

Abebe S. Gebregiorgis and Faisal Hossain

Abstract—The present study addresses the estimation of error
variance (mean square error, MSE) of three satellite rainfall
products: i) Tropical Rainfall Measuring Mission (TRMM) Multi-
satellite Precipitation Analysis (TMPA) product of 3B42RT;
ii) Climate Prediction Center (CPC) Morph (CMORPH); and
iii) Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks-Cloud Classification System
(PERSIANN-CCS). Nonlinear regression model is used to fit the
response variable (satellite rainfall error variance) with explana-
tory variable (satellite rainfall rate) by grouping them as function
of three key geophysical features: topography, climate, and season.
The results of the study suggest that the error variance of a
rainfall product is strongly correlated with rainfall rate and can be
expressed as a power-law function. The geophysical feature based
error classification analysis helps in achieving superior accuracy
for prognostic error variance quantification in the absence of
ground truth data. The multiple correlation coefficients between
the estimated and observed error variance over an independent
validation region (Upper Mississippi River basin) and time period
(2007–2010) are found to be 0.75, 0.86, and 0.87 for 3B42RT,
CMORPH, and PERSIANN-CCS products, respectively. In an-
other validation region (Arkansas-Red River basin), the correla-
tion coefficients are 0.59, 0.89, and 0.92 for the same products,
respectively. Results of the assessment of error variance models
reveal that the type of error component present in a satellite
rainfall product directly impacts the accuracy of estimated error
variance. The model estimates the error variance more accurately
when the precipitation error components are mostly hit bias or
false precipitation, while for a product with extensive missed pre-
cipitation, the accuracy of estimated error variance is significantly
compromised. The study clearly demonstrates the feasibility of
quantifying the error variance of satellite rainfall products in a
spatially and temporally varying manner using readily available
geophysical features and rainfall rate. The study is a path finder
to a globally applicable and operationally feasible methodology for
error variance estimation at high spatial and temporal scales for
advancing satellite rainfall applications in ungauged basins.

Index Terms—Climate, error variance, geophysical features,
rainfall rate, regression model, satellite rainfall, season,
topography.

I. INTRODUCTION

SATELLITE precipitation estimation has made considerable
progress over the last few decades in terms of accuracy, res-

olution, and global coverage (hereafter the word “precipitation”
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will be used interchangeably with “rainfall”). It has devel-
oped from the archaic Global Precipitation Climatology Project
(GPCP) [1]–[4] to the present variety of higher resolution rain-
fall products such as the TRMM Multi-satellite Precipitation
Analysis (TMPA) [5]; CMORPH [6], [7]; PERSIANN-CCS
[8]; PERSIANN [9]; Rain Estimation Using Forward-Adjusted
Advection of Microwave Estimates (REFAME) [10]; and
Global Satellite Mapping of Precipitation (GSMaP) [11].

The resolution of satellite rainfall data has also improved
from one degree spatial and monthly time scale available in
the 1990s to the 0.25◦ and 3 hourly or higher spatial and
temporal scales, respectively which is available today. Through
this evolution, satellite rainfall data has made a significant
contribution to understanding of the dynamics of earth’s cli-
matic and hydrologic system. Global rainfall data is nowadays
routinely produced using a range of variety of satellite retrieval
algorithms and techniques [5]–[8], [10], [11] and available for
the users and scientific communities. Despite the weakness
it may have, satellite rainfall has become indispensible for
hydrologic simulation and climate prediction especially where
there is no ground observation data.

Uncertainty in satellite rainfall products however remains
inherent because of the fundamental constraint posed by the
indirect approach of remote sensing. To tackle this inherent
shortcoming, numerous approaches have been developed to
reduce uncertainty of satellite rainfall estimation. Among the
many, some common approaches are: combining multisensors
infrared (IR) and microwave (MW) data [5], [12]; merging
multi-satellite products with gauge observation [4], [13]; im-
plementing different rainfall screening and retrieval techniques
[14], [6], [8]; blending (or merging) different satellite rainfall
products based on a priori (diagnostic) hydrologic predictabil-
ity [15]; fusion of multiscale multisensor precipitation using
Gaussian-scale mixtures in the wavelet domain [16]. Regardless
of such efforts, non-negligible errors associated with the satel-
lite rainfall products still remains a challenge. There always
seems to be room to improve the quality of satellite rainfall data
sets [9], [17], [18].

One approach, to aid the application of satellite rainfall data
for hydrologic predictions, is to understand the characteristics
of errors and their outcomes in hydrologic modeling under
various possible scenarios [19]–[21]. As the usefulness of these
rainfall data sets relies on users’ knowledge of uncertainty
about the product, operational quantification of satellite rainfall
uncertainty is a pressing need among data producers and users
[22]. The issue of quantitative analysis of uncertainty can easily
be addressed in a location where quality-controlled ground
observation data is adequately available. However, most parts
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of the globe are sparse regions that are not well-covered by
gauges or ground radars and others cannot be observed by
ground networks (e.g., large water bodies, mountainous and
remote desert areas). Therefore, the question is how one can
estimate the uncertainty of a satellite rainfall product at any
location and time in the absence of ground validation data?

In the past few years, several studies have been reported on
satellite rainfall uncertainty [19], [20], [22]–[37]. The main foci
of these studies were on investigation of error characteristics,
quantification of errors, and propagation and impacts of un-
certainty on hydrologic model simulations. Huffman [22] was
perhaps the first in formulating a functional relationship for
RMS random error using the average rainfall rate and proba-
bility distribution parameters associated with the precipitation
estimates. The RMS random error investigated in the study was
a combination of both sampling and algorithmic error, and it
was directly proportional to the rainfall rate as shown in

σ =
r

N1

(
H − p

p

)0.5

(1)

where r is the space–time average of precipitation over set
of E, H is a function of the shape of probability distribution
of precipitation (approximately 1.5 for most of global), p is
the frequency of nonzero precipitation in set E, and N1 is the
number of independent samples in E. The estimated RMS was
found to be reasonably comparable to the observed RMS error
[38]. The study considered 2.5◦ spatial and monthly temporal
scales to compute the RMS error [22].

Steiner [34] developed a framework to express the sampling
error variance of radar rainfall estimate as function of rainfall
rate R, domain size A, time T , and sampling interval Δt per
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According to this study, the random error due to sampling was
assumed directly proportional to sampling time interval and
inversely to size of space and time domain and rainfall rate.
In the case of Huffman [22], the direct proportional relation
between the total random error (which was a combination
of both sampling and measurement-algorithmic errors) and
rainfall rate was dominated by the existence of measurement-
algorithmic error. This suggested that measurement-algorithmic
error was the major component of the total uncertainty and it
was directly proportional to the rainfall rate. In the current era
of significantly improved temporal sampling by the constella-
tion of passive microwave (PMW) sensors, it is fair to claim
that sampling error is now a relatively negligible source of
uncertainty at the daily or higher timescales.

To explore the algorithmic uncertainty in detail, Tian and
Peters-Lidard [19] developed a global map of satellite rain-
fall uncertainty (which reflected both systematic and random
errors) by computing ensemble mean of six different satellite
rainfall products. The standard deviation was computed from
the mean (i.e., anomalies) as a measurement of uncertainty.
The finding revealed that the uncertainty over the ocean was
relatively smaller, as expected, when compared over land.

Besides, large amount of uncertainty was observed over high
latitude during the cold season. It is clear from past studies that
the knowledge of uncertainly inherent in satellite rainfall esti-
mates is important for data users and producers. For instance,
Huffman [22] indicated that spatially and temporally varying
uncertainty is more important than single data set-averaged es-
timate. The former helps data producers to evaluate the perfor-
mance of their algorithms and make the necessary adjustment as
a function of location, storm systems and seasons. It also assists
data users to assess models’ simulation outputs and make more
reliable prediction.

However, the nature and magnitude of rainfall errors associ-
ated with different satellite rainfall products are not thoroughly
investigated and fully addressed to broaden their application at
relevant spatial and temporal scales. Unless ground truth data is
available, there is no way for the users to know error informa-
tion associated with 3B42RT, CMORPH, or PERSIANN-CCS
products at different part of the globe. Without the fundamental
knowledge and guideline on selection of publicly available
satellite rainfall products, users rightfully can ask “which prod-
uct should one use for a specific hydrological investigation at a
particular location? Is there a mechanism for users to know the
uncertainty of these products without having access to ground
truth data at a specific location?” This study seeks an answer
to the latter question with a view to further promote satellite
rainfall products for hydrological application. The study aims at
quantifying the error variance of three satellite rainfall products
using regression models classified according to easily available
geophysical features of the basin and satellite rainfall estimates.
Previous studies on estimation of error variance have not lever-
aged the role played by readily available geophysical features
and hence, this study represents a new contribution to the body
of knowledge.

The finding of the current study (estimation of spatially and
temporally varying error variance using regression model) is
also expected to contribute to the merging of various satellite
products to a unified state in ungauged basins. Gebregiorgis
and Hossain [15], [39] earlier proposed a merging scheme for
different satellite rainfall products based on individual perfor-
mance. The developed merging scheme used error variance of
hydrologic predictability to generate weight factors of individ-
ual products in the merging process. The finding suggested
that leveraging runoff error variance yielded a more accurate
merged product [15]. In a follow-up paper, Gebregiorgis and
Hossain [39] reported that the use of both spatial and temporal
varying error signatures of hydrologic predictability was more
useful in merging products for better hydrologic prediction.
Therefore, any space–time estimation of error variance over
ungauged regions will be valuable in the merging of rainfall
products.

In another work, Gebregiorgis and Hossain [27] showed that
investigating rainfall uncertainty based on topography, climate
regions and seasons is a systematic approach to understanding
the nature and magnitude of errors in satellite rainfall products.
Topography has a major effect on climate and formation of
precipitation. For instance, mountains can affect climate by
changing the patterns of temperature, precipitation, and wind
circulation. Based on these fundamental drivers, Gebregiorgis
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Fig. 1. Geophysical features of Mississippi River Basin (MRB). (a) Selected regions for calibration and validation of regression model framework.
(b), (c) Topographic and Köppen climate regions and with five major sub-basins of MRB. (d) Land use land cover data from MODIS 2003 (source: http://
webmap.ornl.gov/wcsdown/wcsdown.jsp?dg_id=10004_12).

and Hossain [27] studied the dependency of satellite rainfall
uncertainty on topography and climate. Their study reported
that the low land regions of a basin are mostly characterized
by missed precipitation while the highland regions are domi-
nated by hit bias (deviation of satellite prediction from ground
observation during rainfall detection) and false precipitation.
The climate of a region can also be used in segregating the
nature of rainfall error attributed to a particular topographic
region. For instance, in mountainous region where orographic
rainfall is dominant, the rainfall rate falling within the same to-
pographic region could significantly be different in the leeward
and windward sides of the mountain. In such situations, the
climate type of the region can control rainfall characteristics,
which has an impact on the uncertainty of estimated satellite
rainfall. Exploring the nature of satellite rainfall errors based
on seasons is also essential to understand the effect of other
seasonally varying meteorological and geophysical processes
(such as temperature, snow cover, land use and land cover) that
take place on the land surface.

Based on the above fundamental premise, a similar procedure
(use of geophysical features) is adopted in the current study
to estimate error variance using mathematical models. In the
following sections of this paper, detail description of the study
area, data and methodology are presented. Next, the results of
the study are discussed. In addition, the performance of the
regression model in estimating the error variance is evaluated.

Finally, the finding and limitation of this work are summarized
together with the future extension of the study.

II. STUDY AREA, DATA, AND METHODOLOGY

The Mississippi River Basin (MRB) is chosen as the study
region due to its diverse geophysical features and existence of
ground truth data for validation purpose (Fig. 1). MRB has five
major sub-basins: Missouri, Ohio, Lower Mississippi, Upper
Mississippi, and Arkansas-Red basins. The first three basins are
considered for validation purpose and the remaining two are
selected for model calibration [Fig. 1(a)]. The basin is delin-
eated into five regions based on topography features [Fig. 1(b)]
to develop the regression model framework. Moreover, each
region is classified according to the dominant Köppen climate
type as shown on Figs. 1(c) and 2. The major land use land
cover (LULC) types that inform the user about the geophysical
nature of the regions are also shown on Fig. 1(d). Interestingly,
the topographic regions, Köppen climate classes, and LULC
somehow similar spatial patterns as shown on Fig. 1(b)–(d).
Detailed description of regions is presented in Table I.

Three satellite rainfall products, namely 3B42RT, CMORPH,
and PERSIANN-CCS, are used to develop error variance re-
gression model over MRB. These satellite rainfall products are
widely used, available on near-real time, and are considered
fairly high resolution products for satellite-based hydrologic
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Fig. 2. (a) MRB region classification based on topography and Köppen climate type for the purpose of regression model development. The model is developed
for four seasons in each region (Winter-Dec, Jan Feb; Spring-Mar, Apr, May; Summer-Jan, June, Aug; Fall-Sep, Oct, Nov). (b) Schematic representation of
regression model. (c) A layer of topographic regions and Koppen climate map for MRB and Northwest Basins (NWB) to demonstrate model performance on
independent basin.

application. Both 3B42RT and CMORPH, data is available at
0.25◦ spatial and 3 hourly temporal resolution. For the purpose
of this study, the spatial resolution is downscaled to 0.125◦

using local scaling method [40] and the 3 hourly time scale
is aggregated to a daily time step. Likewise, the PERSIANN-
CCS product is aggregated to 0.125◦ and daily resolution from
a from a 0.04◦ spatial and hourly resolution.

Although the focus of this study is exclusively on assess-
ing how well error variance can be modeled mathematically
regardless of scale, the choice of 0.125◦ as the scale of study
is governed by the following factors. First, the ground truth
data on rainfall is available to us at the 0.125◦ resolution for the
CONUS region (see the detail in the next paragraph). Second,
0.125◦ offers a standard compromise between the PERSIANN-
CCS scale of 0.04◦ and the typical scale of 0.25◦ for CMORPH
and 3B42RT. Third, the aim of this study is not to compare
products for their ability to be “modeled” of error variance
per se, but rather, to assess the underlying factors of regression
models and geophysical features that can assist in estimating
error variance of satellite rainfall. For detail algorithm and
retrieval technique of each product, readers are referred to
Huffman et al. [5], Joyce et al. [6], and Hsu et al. [8] for
3B42RT, CMORPH, and PERSIANN-CCS, respectively.

To calibrate and validate the regression model on error
variance, the observed error variance is computed using gridded

ground observation rainfall data available from the Washington
University’s Surface Hydrology Group at the 0.125◦ daily scale.
This data pertains to the contiguous United States (CONUS)
and is derived from more than 7000 stations collected from the
National Oceanic and Atmospheric Administration (NOAA)
at an average density of one station per 700 km2. The point
data is gridded using synergraphic mapping system (SYMAP)
interpolation algorithm [41].

A nonlinear regression model framework is developed based
on the following procedure. In the first step, the MRB is
grouped into five regions based on topography. Each topo-
graphic region is classified into three dominant Köppen climate
classes except for region 1, which is dominated by only one type
of climate class [Fig. 2(a) and (c)]. Thus, the regression model
calibration is performed for 13 regions. Each of these scenarios
is further broken down per season leading to 52(= 4× 13)
scenarios. Thus, to estimate the error variance over a pixel and
a given day, the user first needs to have the information on
topography (to classify the region it falls under), climate type
and season of the day and is then guided to the appropriately
calibrated regression model. In the next step, pixel’s observed
error variance and satellite rainfall rate are extracted for each
region during the period of 2003–2006 (calibration period). The
satellite rainfall rate is considered as independent (explanatory)
variable; whereas the observed error variance is dependent
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TABLE I
TOPOGRAPHY, KÖPPEN CLIMATE, AND LAND USE LAND COVER DESCRIPTION OF THE MISSISSIPPI RIVER BASIN

(response) variable. Finally, the extracted satellite data is used
as input to the nonlinear regression model [Fig. 2(b)]. The
method of least squares is applied to generate the estimators
of the model by minimizing the sum of square error using an
iterative procedure. Detailed explanation of the model calibra-
tion and optimized estimators are provided in the Appendix.
Finally, the performance of the model is checked (validation)
using goodness-of-fit tests (correlation, mean relative bias, and
analysis of residual errors) on independent regions [Northwest
basin, Fig. 2(c)] and time period (2007–2010) that were not
used in calibration. The Northwest basin includes the following
sub-basins: Northwest and Columbia, California, Great basin,
and Colorado River basin.

Additionally, to understand the contribution of topography
and climate, the regression model is developed for two scenar-
ios: with and without geophysical feature based classification.
In the first scenario, each topography and climate region has
its own regression equation to predict the error variance. In
the second scenario, a single regression equation is developed
based on the entire calibration region without considering the
topography and climate classification of the region. Ultimately,
both models are tested on Northwest basin which is completely
independent from the calibration region. This allowed us to
elucidate the role of readily available geophysical features in
improving the estimation of error variance.

III. RESULTS AND DISCUSSION

As seen on Fig. 2(b), the error variance is expressed as a
function of satellite rainfall rate. It is, therefore, important to
identify the spatial distribution of error component of satellite
rainfall to understand its impact on error variance estimation
using the regression model. On Fig. 3, 3B42RT and CMOPRH
products have significant missed precipitation during the win-
ter and summer seasons in the eastern and southern part of
Mississippi basin (region 1, 2 and part of region 3). Thus, the
regression model expected to underestimate or produce nil error
variance in these regions.

The error variance of three satellite rainfall products is
quantified at the 0.125◦ spatial and daily temporal scale for
the period of 2003–2010. Fig. 4 presents the observed and
estimated error variance spatially and seasonally averaged
over topography-climate regions during the validation period
(2007–2010) for 3B42RT. Generally, the magnitude of the error
variance is small in region 4 and 5. This is directly related to the
considerably lower rainfall intensity in these regions (Fig. 3).
The observed and estimated error variances have also good
agreement in these regions. However, the model underestimates
the error variance in region 1-Cfa, 2-Cfa, and 2-Dfa due to the
presence of missed precipitation (Fig. 3) in this region [26].
These regions are mainly dominated by cropland, forest and
savanna-grassland systems.
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Fig. 3. Seasonal average satellite rainfall rate and the total error components (total bias, missed-rain bias, hit bias, false-rain bias) for the winter and
summer seasons.

Fig. 4. Estimated and observed error variance for 3B42RT satellite rainfall product, spatially and seasonally averaged over topographic and Köppen climate
regions of MRB for the validation period (2007–2010). Region code is based on Table I. (Wn: winter; Sp: spring; Sm: summer; Fl: fall seasons).
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Fig. 5. Same as Fig. 4, except for CMOPRH rainfall product.

As seen in Fig. 5, the estimated error variance from
CMORPH is also underestimated in regions 1-Cfa, 2-Dfb, and
3-Dfb, mostly as a result of missed precipitation (Fig. 3).
These regions are mostly characterized by forest, cropland
and savanna-grassland system. But the model slightly overes-
timates in regions 3-BSk and 3-Dfa (both regions are dom-
inated by savanna-grassland system) due to the existence of
positive hit bias for CMORPH product, reported earlier by
Gebregiorgis et al. [26] or refer to Fig. 3. On Fig. 6, the error
variance estimated from PERSIANN-CCS is relatively more
accurate for regions 1 and 2. But in regions 3-BSk, 3-Dfa,
and 4-BSk, this product over predicts the error variance espe-
cially during the winter and spring seasons. In regions 4-Dfb,
4-Dfc, and 5-H, it overestimates the error variance during win-
ter season. These regions are also mostly covered by savanna-
grassland systems. This is mainly caused by false precipitation
and positive hit bias during the cold seasons (Fig. 3). In general,
the above results reveal that the regression model performs
well and captures the trend of observed error variance in the
region where hit bias and false precipitation are dominant
components of the error. However, if the region is dominated
by missed precipitation, the model’s predictability is compro-
mised because of the satellite data reporting extensive zero
rainfall rates. This is one of the main limitations of the power-
law type multiplicative type error model used in the study
(discussed later).

Fig. 7–9 present the time series of error variance spatially
averaged over the major Mississippi sub-basins (calibration
and validation regions) for the entire period of simulation
(2003–2010). A 31-day moving average is applied to the time
series data (observed and estimated error variances) to reduce
visual cluttering. In case of 3B42RT product, the trends of the
observed and estimated error variance are closely similar in
Missouri basin during the entire period (Fig. 7). This is not true,
however, for Lower Mississippi, Ohio, Upper Mississippi, and
Arkansas-Red basins. The model fails to capture the peaks of
observed error variance, particularly during the cold seasons.
On the other hand, in case of CMORPH product (Fig. 8), the
model displays outstanding performance for all sub-basins dur-
ing the entire period of validation. For PERSIANN-CCS, the
drift of observed and estimated error variances in all sub-basins
is qualitatively similar (Fig. 9). However, the model overesti-
mates the error variance in Missouri basin almost during the
entire period due to the inherent problem of false precipitation
in PERSIANN-CCS as reported earlier by Gebregiorgis et al.
[26] (also see Fig. 3). In general, this reinforces that the
main type of error component (hit, miss or false precipitation)
that is associated with a particular product directly affects the
performance of the regression model at a given location.

The residual error variance (which is defined in this case, as
the difference between estimated and observer error variance),
computed over the entire basin, is shown on Fig. 10. Residuals
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Fig. 6. Same as Fig. 4, except for PERSIANN-CCS rainfall product.

Fig. 7. Estimated and observed daily time series of error variance for 3B42RT rainfall product, spatially averaged over the selected calibration (top two panels)
and validation sub-basins (bottom two panels) during the period of 2003–2010. A 31-day moving average is applied to reduce visual cluttering.
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Fig. 8. Same as Fig. 7, except for CMORPH rainfall product.

Fig. 9. Same as Fig. 7, except for PERSIANN-CCS rainfall product.

provide a general idea of the required unbiased nature of a
predictive model. In general, the modeling approach seems to
be relatively unbiased for all satellite rainfall products during
the independent validation period (2007–2010). It captures the
spatial pattern of the observed error variance. The unbiased
regions mostly show non-zero actual rainfall records (ratio of
error variance to ground rainfall (EV/GR) is greater than zero).
The estimated error variance shows quantitative offset from
the observed in range of −400 to 400 (mm/day)2 (or −20 to

20 mm/day in standard deviation). As expected, 3B42RT is a
little skewed toward negative residual error variance because
of more missed rain.

Fig. 11 shows the comparison of spatially and seasonally
averaged observed and estimated error variance over the de-
veloped topography-climate regions and seasons. In case of
all products, the estimated and observed error variances are
reasonably comparable. In case of 3B42RT, the computed mean
error variance in region 1-Cfa is underestimated during winter
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Fig. 10. Estimated, observed, and residual error variance and ratio of computed error variance to ground rainfall value for three satellite rainfall products over
the MRB for four randomly selected days during the validation period (2007–2010). (EV: error variance; GR: ground rainfall).

Fig. 11. Mean observed and estimated error variance of satellite rainfall products during the calibration period (2003–2006) for the 13 topographic and climate
regions and 4 different seasons. The x-axis on the lower panel shows the topographic region and climate types, and on the middle panel it displays the seasons for
each region.

and fall seasons; for CMORPH, the estimated error variance
is larger than the observed in region 2-Dfa and 2-Cfa during
the summer season; and for PERSIANN-CCS, the predicted
mean variance is underestimated only in region 1-Cfa during
fall season. In general, the model shows good performance for
CMORPH and PERSIANN-CCS products.

To understand the proportion of variance of the dependent
variable (error variance) explained by the independent variable
(rainfall rate), the following parameters are computed: the total
variance of the dependent variable (total sum of squares, TSS),
the proportion of variance due to the residuals (error sum of
squares, SSE), and the proportion of variance due to the



GEBREGIORGIS AND HOSSAIN: SATELLITE RAINFALL ERROR VARIANCE USING AVAILABLE GEOPHYSICAL FEATURES 11

Fig. 12. Ratio of SSR/TSS (correlation) and unbiased standard error of estimate (UnSEE) of observed and estimated error variance of satellite rainfall products
during the calibration period (2003–2006) for the 13 topographic and climate regions and 4 different seasons.

regression model (regression sum of squares, SSR =
TSS-SSE). The ratio of the regression sum of squares to
the total sum of squares (SSR/TSS) explains the proportion
of variance accounted for in the dependent variable (error
variance) by the model, in other words, it shows the correlation
between the observed and predicted error variance. Fig. 12
presents the correlation (SSR/TSS) of the observed and
estimated error variance. In general, for most of the regions
and products, the ratios of SSR/TSS are generally larger than
0.5. However, it shows distinct features among product types
and also regions. For 3B42RT and CMORPH products, the
correlation reduces from lowland to highland regions. For
both products, during winter, the correlation is significantly
very low. For PERSIANN-CCS products, the SSR/TSS ratio
increases from lowland to highland regions.

The standard error of estimate (SEE) is another measure
of the accuracy of predictions which is the squared root of
the average squared deviation. To make the sample standard
error of estimate an unbiased estimator for the population, the
degrees of freedom in the denominator of the estimator is mod-
ified as N-2 and the adjusted SEE is called unbiased standard
error of estimate (UnSEE). The smaller the standard error of
the estimate is, the more accurate the predictions are. Fig. 12
also presents the UnSEE of the observed and estimated error
variance. In general, the PERSIANN-CCS has the smallest SEE
as compared to the other two products.

The mean relative bias (MBias) also measures the agreement
between observed and estimated error variance. The allowable
limit for MBias is between −40% and 40% with zero as the
ideal value [42]. Table II illustrates the correlation coefficient
(SSR/TSS) and mean relative bias (MBias) based on sub
basins. Accordingly, the model predicts the error variance very
well over Missouri, Lower Mississippi and Ohio basins using
CMORPH and PERSIANN-CCS products; whereas the predic-

TABLE II
CORRELATION COEFFICIENT (SSR/TSS) AND MEAN RELATIVE BIAS

(MBIAS,%) OF OBSERVED AND ESTIMATED ERROR VARIANCE

BY SUB-BASINS

tion obtained from 3B42RT and CMORPH is more accurate
over Upper Mississippi.

To look further into the performance of the regression model,
the error variance has been estimated for Northwest basin.
Fig. 13 presents the spatial error variance distribution of the
three satellite rainfall products for the four seasons over the
Northwest basin. In this case, the regression model that consid-
ers geophysical features is implemented. For 3B42RT (Fig. 13
top three panels), the model captured the spatial distribution
pattern adequately over entire region despite quantitative ac-
curacy of prediction. The model performance for CMORPH
(Fig. 13 middle three panels) is similarly good except it has
underestimated the error variance during the winter season. As
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Fig. 13. Computed, observed, and residual seasonal average error variance
for three satellite rainfall products over the NWB for the period of 2004–2005.
The regression model is developed based on geophysical regions (topography
and Koppen climate).

it has been discussed earlier for MRB case, the underestimation
is possibly due to missed precipitation particularly over Pacific
coastal region. The estimated error variance for PERSIANN-
CCS (Fig. 13 bottom three panels) is somehow different from
the observed error variance during spring, summer and fall
seasons. It has tendency to overestimate on some part of the
region and underestimate elsewhere.

Fig. 14 shows the comparison of observed and computed
error variance using the regression model that does not consider
geophysical features. The model does not capture the spatial
pattern of the observed error variance for all satellite products.
This shows that the geophysical features play an important
role in the error variance estimation. The trend of temporal
error variance over the Northwest basin for both scenarios is
presented on Fig. 15. From qualitative comparison, there is no
significant difference in the model performance except that the
CMOPRH and PERSIANN-CCS over predict the error variance

Fig. 14. Same as Fig. 13, except the regression model is developed without
the consideration of geophysical features.

during the summer season. Table II also presents the SSR/TSS
and MBias of the estimated and observed error variance for
Northwest basin. The regression model based on classifica-
tion of geophysical feature demonstrates good performance as
compared to without region classification. The former scenario
shows that the SSR/TSS is 0.85, 0.48, and 0.60 for 3B42RT,
CMORPH, and PERSIANN-CCS, respectively. Without the
classification of geophysical feature, the SSR/TSS is 0.63, 0.44,
and 0.51 for the respective rainfall products.

One of the limitations for independently testing the regres-
sion model is that some of the climate types in Northwest
basin are not available in MRB. Therefore, matching of closely
similar climate type was made in error variance estimation
procedure. The Koppen climate classes specific to Northwest
basin (NWB) includes BWh (dry subtropical desert), BSh
(dry subtropical steppe), Csa (Mild mid-latitude with dry, hot
summer), Csb (Mild mid-latitude with dry, warm summer), and
Dsb (Sever mid-latitude continental with warm summer). For
instance, the dominant climate class in region 2 of NWB Csb
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Fig. 15. Estimated and observed daily time series of error variance spatially averaged over NWB for the period of 2004–2005 using the regression model
developed with and without geophysical region classification (upper and lower panels, respectively). A 31-day moving average is applied.

is matched with Cfa of MRB; Dsa in region 4 of NWB with
Dfb of MRB and so on. Such a “mapping” could affect the
estimation of error variance. Therefore, it is recommended to
develop the regression model on a large-scale basin where the
entire spectrum of the diverse geophysical features is existent.

IV. CONCLUSION AND RECOMMENDATION

As satellite rainfall estimates become more important for
hydrologic and atmospheric applications, users’ knowledge on
uncertainty associated with the satellite rainfall product is a



14 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 16. Computed value of scaling factor (α) for different regions of MRB for the three satellite rainfall products.

Fig. 17. Computed value of power or exponent (β) for different regions of MRB for the three satellite rainfall products.

necessary step to advance its application. A simple nonlinear
regression model has been developed for 3B42T, CMORPH,
and PERSIANN-CCS products to estimate the error variance

at the 0.125◦ spatial and daily temporal resolution. Topogra-
phy, climate and seasons are considered as readily available
geophysical features for enhancing the predictive ability of
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the model at any location. In general, topography plays a
direct role on the pattern of climate of the region due to its
forcing on the formation of clouds, temperature and albedo.
These climatic and weather-scale processes strongly influence
the effectiveness of indirect approach of the remote sensing
measurement technique. Therefore, use of topography, climate
and season as major governing factors in the development of
regression framework is logical to identify the uncertainty type
associated with satellite rainfall estimates.

The findings of this study can be summarized into the fol-
lowing three major points.

1) The error variance (EV) has a strong correlation and is
directly proportional to the rainfall rate (RR). The relation
between the two variables can be adequately expressed
by a power function EV = α(RR)β , where α and β
are constant real numbers. The parameter “α” serves as
simple scaling factor, moving the values of “(RR)β”
up or down as the value of “α” increases or decreases,
respectively. The parameter “β” is called the exponent or
power that determines the rate of growth or decay and
also shape and behavior of the function.

2) In general, the parameter “α” is high for 3B42RT, mod-
erate for CMORPH, and small for PERSIANN-CCS
products (see Fig. 16). For all products, “α” gradually
decreases from lowland to highland regions. The value of
“β” is found to be high for PERSIANN-CCS product and
there is no significant variation among different regions.
For 3B42RT and CMORPH, “β” shows considerable
variation from season to season without obvious system-
atic trend across the regions (see Fig. 17).

3) The type of error components (missed rain, hit, and false-
rain biases) that is present in the satellite rainfall estimates
has a direct impact on the performance of regression
model. The model estimates the error variance more
accurately when hit or false precipitation is dominant in
the product. On the other hand, the presence of large
missed precipitation, makes a product less amenable for
error variance estimation.

The key limitation of this study is the model’s inability
to predict the error variance accurately in a region where
missed precipitation is dominant. If satellite product predicts
zero rainfall, then the estimated error variance will be zero by
design. Therefore, further exploration is needed to know the
location where missed rain is more likely to occur and include
other independent (additive) variables in the regression model
to estimate the error variance in such conditions. Moreover,
the proposed method has a conceptual limitation when the
precipitation errors depend heavily on other factors such as
physical properties of rain systems. Further exploration on these
issues will help improve the concept of this study for practical
applications.

On the basis of the promising results reported herein, further
investigation into the impact of diverse geophysical features on
the performance of regression model by extending the study
region to a global scale is now appropriate. Future investigation
should also target the quantification of the probabilistic behav-
ior of missed rain as a function of terrain, climate and satellite

rain rate. Such an assessment may allow proxy adjustments
to avoid the aforementioned limitation of zero error variance
prediction.

In summary, high resolution and multisensor satellite-based
precipitation estimates, such as those analyzed in this study and
those anticipated from the Global Precipitation Measurement
(GPM; http://gpm.gsfc.nasa.gov) satellites, now hold great
promise for hydrologic applications, especially over parts of the
world where surface observation networks are sparse, declining
or non-existent. However, the usefulness of such precipitation
products for hydrological applications will depend on their
error characteristics and how successful we are in intelligently
harnessing the implications of uncertainty for surface hydrol-
ogy. The decline of the few existing global ground based
measurement networks for rain and stream flow and the absence
of in-situ measurement in most parts of the world represent a
“paradoxical” situation for evaluating satellite rainfall estima-
tion uncertainty. By developing simple models for estimation
of error variance for satellite data that a user can use anywhere
and anytime using only readily available geophysical features,
our study represents a first comprehensive step at resolving the
paradox for the GPM era.

APPENDIX A
MATHEMATICAL FORMULATION OF REGRESSION MODEL

Regression is a highly useful statistical method for devel-
oping a quantitative relationship between dependent variable
and one or more independent variables. The dependent variable
often is called response or predicted variable. The independent
variables that explain the response variable are called explana-
tory or predictor variables. In this paper, the dependent variable
is defined as error variance, EV and the independent variable is
satellite rainfall rate, RR.

The proposed nonlinear functional relation between the two
variables is expressed as

EV = α(RR)β (A1)

where, α and β are constant real number and are called scaling
factor and power, respectively. The nonlinear equation can be
converted to linear equation by applying logarithmic function
in (A1)

log(EV) = log(α) + β log(RR). (A2)

Let y = log(EV), αo = log(α), α1 = β, and x = log(RR),
then (A2) can be written as form of linear regression form.

y = αo + α1x. (A3)

For ith observation, the predicted value can be written as:

Yi = αo + α1xi.

If EVo is the observed error variance then the logarithmic
form of the observed error variance for the Ith observation, yoi

yoi = log(EVo).

http://gpm.gsfc.nasa.gov
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Applying least square method (LSM) to minimize the error
sum of the squares (SSE) SSE =

∑n
i=1(yoi − yi)

2 for n num-
ber of observation

SSE =

n∑
i=1

(yoi − αo − α1xi)
2. (A4)

To minimize the sum of error square differential (A4) and
equate to zero

∂(SSE)

∂αo
=

∂

∂αo

(
n∑

i=1

(yoi − αo − α1xi)
2

)
= 0 (A5)

∂(SSE)

∂α1
=

∂

∂α1

(
n∑

i=1

(yoi − αo − α1xi)
2

)
= 0. (A6)

Equations (A5) and (A6) are called normal equations. Carry-
ing out the differentiation, we obtain

nαo + α1

∑
xi =

∑
yoi

αo

∑
xi + α1

∑
x2
i =

∑
yoixi

where all the summation go from i = 1 to i = n. The solution
to these normal equations can be given as

αo = yo − α1x and

α1 =

n∑
i=1

(xi − x)(yoi − yo)

n∑
i=1

(xi − x)2
.

Finally, convert the logarithmic scale back to normal

α = anti − log(αo)

β =α1.

For 3B42RT, CMORPH, and PERSIANN-CCS products, the
value of α and β are computed for the developed topography-
climate regions as shown in Figs. 16 and 17, respectively.
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