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A B S T R A C T

Dam construction in developing nations is on the rise. Monitoring these dams is essential to understanding
downstream hydrologic impacts and for better planning and management of water resources. Satellite ob-
servations and advancements in information technology now present a unique opportunity to overcome the
traditional limitations of reservoir monitoring. In this study, a global reservoir monitoring framework was
developed as an online tool for near real-time monitoring and impact analysis of existing and planned reser-
voirs based on publicly available and global satellite observations. The framework used a mass balance ap-
proach to monitor 1598 reservoirs in South America, Africa, and Southeast Asia. Simulated streamflow of
the developed tool was validated in 25 river basins against a mu ltidecadal record of in-situ discharge. The
simulated storage change was validated against in-situ data from 77 reservoirs. The framework was able to
capture reservoir state realistically for more than 75% of these reservoirs. At most in-situ gaging locations,
the reservoir tool was able to capture streamflow with a correlation of more than 0.9 and a normalized root
mean square error of 50% or less. The tool can now be used to study existing or planned reservoirs for short
and long-term decision making and policy analysis.

1. Introduction

By the end of the 20th century, approximately 58,000 large dams
higher than 15 m, with a total reservoir surface area of about
300,000 km2 (Lehner et al., 2011) had been built for hydroelectricity,
irrigation, and water supply needs. With rapid growth in human popu-
lation and energy demand, dam construction in the developing world is
currently rising (Zarfl et al., 2014). The majority of dams either planned
or already under construction are concentrated in South America, Asia,
and Africa, mainly in developing countries with Human Development
Index values ranging from “low to medium,” as defined by the United
Nations Development Program (Fig. 1). Many of these new or upcom-
ing dams are designed to harness the hydropower potential of rivers
and to supply water for drinking and irrigation.

Dams and reservoirs have long been treated as cheap and clean en-
ergy sources with low carbon emissions and benefits related to flood
control, food security, irrigation, and socio-economic development.

Hereafter, dams and reservoirs will be used interchangeably in this pa-
per. For example, dams built for irrigation purposes provide water to
30–40% of the world's agricultural lands and produce about 40% of the
world's food (World Bank, 2020). Dams also have long-term down-
stream consequences due to disruptions they pose to the natural flow
regime. Flow regulation and river fragmentation (Bunn and
Arthington, 2002), narrowing of river beds and downstream erosion
(Khan et al., 2014), seawater intrusion (Sikder, 2013), and thermal
stratification (Lugg and Copeland, 2014) are among the many ways
dams negatively impact river systems. Grill et al. (2015) studied exist-
ing and future large dams, showed a 48% alteration of rivers, and pre-
dicted that the number could rise to 93% if all planned dams are built.
Unplanned and uncoordinated dam management also affects down-
stream flooding (Mishra and Shah, 2018), disrupts pre-existing agricul-
ture production (Strobl and Strobl, 2011), and weakens the ecosystem
(Poff and Zimmerman, 2010). Due to significant impacts of dams on
the environment, it is necessary for all basin inhabitants, particularly
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Fig. 1. Overview of 6862 large dams (Lehner et al., 2011) and about 3700 planned and under-construction hydropower dams with an installed capacity >
1 MW (Zarfl et al., 2014). The map: United Nations' Development Program's Human Development Index for 2010 .

those living downstream, to understand the operating pattern and state
of upstream reservoirs.

Downstream nations, as well as all riparian nations, can make both
immediate and long-term decisions for water management and maxi-
mize stakeholder benefits, through the unhindered exchange of hydro-
logic data and reservoir-operating information. Understanding the role
dams play in flow regimes is also necessary to manage water-related
hazards such as floods and droughts, public safety and infrastructure
resilience (Woldemichael et al., 2012), effects of human alterations to
the land hydrologic cycle (Gao et al., 2012), and impacts of multi-
reservoir systems on downstream river discharge (Döll and Zhang,
2009). It is also critical to know how reservoir operating patterns will
need to be revised to address climate change, especially in climate-
vulnerable regions such as the Amazon (Pokhrel et al., 2014) and the
Mekong basin (Lauri et al., 2012). Despite clear need and urgent calls
for the unhindered exchange of hydrologic information (Khattar and
Ames, 2020), global and freely accessible reservoir monitoring informa-
tion is currently unavailable for inhabitants of regulated basins around
the world. This is due to insufficient ground observations, particularly
in developing regions, limited data sharing protocols (Alsdorf et al.,
2007; Hossain et al., 2007) and lack of financial resources (Solander et
al., 2016a,b). Such hurdles make it challenging to study and routinely
monitor the impact of reservoirs around the world (Gao et al., 2012).

Due to the absence of direct measurements, models have been used
to monitor reservoirs at the continental and global scale, as well as to
assess future climate projections (Döll et al., 2003, 2009; Hanasaki et
al., 2006; Meigh et al., 1999). However, large-scale modeling ap-
proaches do not accurately resolve individual dams, making them less
relevant for local decision-makers. When global reservoir modeling sys-
tems were still in the early stages of development, it was often assumed
that a rectangular or inverse pyramid-shaped bathymetry would repre-
sent the storage capacity of reservoirs (Döll et al., 2003; Meigh et al.,
1999). The first grid-based, explicit representation of a reservoir used in
global hydrological models was reported by Hanasaki et al. (2006) and
subsequently improved by several other studies (Pokhrel et al., 2014;
Voisin et al., 2013). Solander et al. (2016a,b) proposed a very idealized
reservoir model by using temperature as the primary factor to simulate
seasonal changes in reservoir management. Despite the above-
mentioned modeling studies used to simulate the effect of dams on river
discharge, several issues remain unsolved relating to spatiotemporal
dynamics of the individual reservoir (Bierkens et al., 2015). For exam-
ple, most schemes were developed for macroscale hydrologic models

with typical grid sizes of more than 50 km (Fatichi et al., 2016), which
is unsuitable for representing small to medium-sized reservoirs. Also,
none of the studies considered reservoir surface area dynamics and ba-
thymetry, which is critical to capturing reservoir evaporation and im-
pacts on the weather (Degu et al., 2011).

The calibration and validation of most global models were com-
pleted using in-situ observations from developed regions. Thus, the skill
of such modeling systems remained untested for operational decision-
making and policy analysis in developing regions (Gao et al., 2012).
Most recently, Yigzaw et al. (2018) proposed a method to define a
characteristic shape of the reservoir for an area-elevation relationship
that facilitates easier software representation of reservoir bathymetry
in earth system models that also works well for reservoir related studies.
However, every reservoir is unique in its bathymetry, and defining an
idealized shape may not be suitable for deriving skillful storage change
or detecting reservoir operating patterns for the individual dam. Thus,
to reduce uncertainties related to the actual representation of reservoir
topography along with surface area dynamics in global monitoring,
satellite remote sensing is needed that can measure or estimate a wide
range of variables and provide data to determine a reservoir's state.

Over the last few decades, satellite remote sensing has played an im-
portant role in providing spatio-temporal observations of surface wa-
ter and hydrologic processes at global-scale coverage with near real-
time availability (Khaki et al., 2020; Biswas and Hossain, 2017; Avisse
et al., 2017; Kansakar and Hossain, 2016; Gebregiorgis and Hossain,
2011). The application potential of remote sensing observations for de-
riving reservoir state and operating patterns has been well established
in previous studies (Bonnema et al., 2016; Gao et al., 2012). The same
approach used in Bonnema et al. (2016) was later applied to over 20
reservoirs of the Mekong Basin to infer the operating pattern of reser-
voirs and residence time (Bonnema and Hossain, 2017; Hossain et al.,
2019). However, such approaches have so far been limited to individual
regions or reservoirs. With the availability of remotely sensed observa-
tions and computationally robust and versatile online software tools
(such as cloud and distributed computing), it is now possible to have a
global scale and freely accessible monitoring framework for existing
and planned reservoirs (Wood et al., 2011).

In order to build an online, global-scale reservoir framework for in-
formation monitoring, several priority issues must be addressed. These
issues include the following: (1) automatic delineation of spatial extent
around the reservoir shoreline to derive the dynamic surface area, com-
monly known as the region of interest (ROI); (2) construction of the
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area-elevation relationship to define reservoir bathymetry; (3) selection
of a universally applicable method to estimate the time series of the
reservoir's water surface area; (4) setup and calibration of the upstream
hydrological model to derive reservoir inflow; (5) advanced under-
standing of remote sensing, models and data for the users; and (6)
availability of computational resources. With the availability of the
GranD Dam Database (Lehner et al., 2011), a georeferenced reservoir
database is now available for global-scale studies. This database, how-
ever, does not provide all necessary information on reservoirs, such as
the maximum areal extent of reservoir or ROI. In previous studies (Gao
et al., 2012; Bonnema et al., 2016), the ROI had been manually identi-
fied using the visible/Infrared imageries. Some studies (i.e., Zhao and
Gao, 2018) used a fixed buffering distance around a reservoir polygon
for defining ROI for global-scale studies, which may not yield accurate
results for reservoirs that are highly irregular in shape.

The extraction of reservoir surface area poses the most difficult
challenge in obtaining a globally scalable method. There are numerous
studies (Bonnema and Hossain, 2017; Gao, 2015; Pekel et al., 2016;
Zhao and Gao, 2018) related to water area extraction of lakes and
reservoirs using different passive and active satellite sensors (i.e., Land-
sat 5,7, 8, Sentinel 1 and 2). The calculation of reservoir inflow on a
global scale is another critical issue. There is no global parameteriza-
tion for any of the hydrological models that can be applied universally.
Nijssen et al. (2001a,b) optimized the Variable Infiltration Capacity
(VIC) model parameters at the global scale to estimate global river dis-
charge and sensitivity to climate change. However, the spatial resolu-
tion is too coarse for most reservoirs, and the approach lacks a stream-
flow routing model. There are a number of other streamflow datasets
and global hydrological modeling frameworks (Lin et al., 2019;
Barbarossa et al., 2018) that exist based on global hydrological model
setups. Two major limitations with any dataset are the lack of publicly
accessible operational modeling at a daily or weekly timescale and
datasets with spatial resolution that is too coarse to capture the dy-
namics of reservoirs of all sizes. Thus, routine monitoring of reservoirs
in near real-time that is also publicly accessible cannot be achieved
with existing hydrological models and frameworks. Even if all the
above constraints were addressed, an advanced understanding of re-
mote sensing and modeling would still be required for stakeholders
from developing countries wishing to manage their river basins under
increasing transboundary regulation. Fortunately, there have been re-
cent technological advancements, including the publicly available
cloud, which can now eliminate many of the limitations faced by in-
habitants of developing nations. Another advancement is distributed
computing that reduces the requirement of high internet bandwidth for
downloading and processing of large-scale datasets. For example,
Google Earth Engine (GEE) (Gorelick et al., 2017) combines a multi-
petabyte catalog of satellite imagery and geospatial datasets with the
planetary-scale analysis that has been applied in several studies of
reservoirs (Biswas et al., 2019; Bonnema and Hossain, 2017; Zhao and
Gao, 2018).

This study describes an operational framework for developing the
software needed for a global, freely available monitoring system of
reservoirs in developing regions. This modeling framework, known as
Reservoir Assessment Tool (RAT), is motivated by the need to democra-
tize access to information on reservoir operations and study reservoir
impacts on hydrology so that inhabitants and water managers can de-
vise 21st-century solutions. Those end users who lack advanced knowl-
edge of remote sensing, access to in-situ or transboundary data, or the
capacity to operate complex hydrological models will find such a soft-
ware tool useful in their efforts to monitor and manage their reservoirs.

The study describing the development of RAT is organized as fol-
lows. First, the reservoir mass balance approach used in RAT is shown
in Section 2.1, with datasets described in Section 2.2. Using these
datasets, the specific methods used to estimate different parameters of
reservoir states are described in Section 2.3. The user interface and

overview of the proposed operational framework are briefly described
in Section 3. Validation results for the RAT framework are presented in
Section 4, where accuracy of the simulated storage change, surface
area estimation, and reservoir inflow is assessed against reference data.
The conclusion and scope for further development of the RAT frame-
work are described in Section 5.

2. Framework description

2.1. Overview and reservoir mass balance approach

In this study, satellite-based remote sensing data were used to esti-
mate reservoir outflow by employing a reservoir mass balance equation
(1). For monitoring reservoir dynamics (fill, release and storage
change), this mass balance is the core component of the RAT frame-
work. A schematic diagram of the mass balance concept is shown in
Fig. 2.

(1)

Here, the terms represent the following: O = Outflow, I = inflow,
E = Evaporative loss, and ΔS = Storage change. In this study, the
term “outflow” was used as a proxy for “release,” which also included
parallel diversions and other consumptive uses. The reservoir surface
water extent areas At-1 and At in Fig. 2 were extracted from visible/NIR
imageries, corresponding heights ht-1 and ht were extracted using Area-
Elevation Curve (AEC), and finally, ΔS was calculated using equation
(2). Details about the AEC development are discussed in Section 2.3.2.

(2)

First, the ROI (previously explained in the Introduction section) of
any reservoir is defined by following a reservoir size-dependent buffer
distance shown in Table 1. The ROI is used to clip satellite observations
for preparing the area-elevation relationship and to extract the time se-
ries of surface water area. Storage change of any reservoir can be com-
puted using the reservoir water surface area/elevation time series and
area-elevation relationship shown in Fig. 2. This is a widely-used tech-
nique that has been reported to yield acceptable skill (Bonnema et al.,
2016; Crétaux et al., 2011; Gao, 2015; Gao et al., 2012). Meteorologi-
cal observations and land surface parameters are forced into a hydro-
logical model to derive reservoir inflow. The inflow, evaporation, and
storage change can then be used to infer the reservoir outflow using
mass balance. Details about the datasets and specific methods are dis-
cussed in Sections 2.2, 2.3, and 2.4.

2.2. Datasets

The land elevation dataset used in this study was the Shuttle Radar
Topography Mission (SRTM) 30 m resolution Digital Elevation Model
(DEM) (Hennig et al., 2001). Three sensors were used to derive water-
extent area time series, including (1) USGS Landsat 8 Collection 1 Tier
1 and Real-Time data Raw Scenes, (2) Sentinel-1 SAR GRID: C-band
Synthetic Aperture Radar Ground Range Detected, and (3) Sentinel-2
MSI: Multispectral Instrument, Level-1C. In the gridded hydrological
model, FAO Harmonized World Soil Database (Nachtergaele et al.,
2008), USGS Global Land Cover Characteristics (GLCC), and Land
Cover Database (Geological Survey, 1997) were used for land-surface
parameters. CHIRPS precipitation (Funk et al., 2015), maximum and
minimum temperature, and average wind speed at 10 m height from
NOAA NCEP/Climate Prediction Center provided meteorological forc-
ing data for this study. For routing the hydrological model outputs,
global flow direction at 1/16° spatial resolution (Wu et al., 2011) was
used.

3
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Fig. 2. Concept of satellite data-based mass balance for reservoir monitoring. The reservoir parameters and corresponding satellite datasets used are as fol-
lows: (a) The Area-Elevation relationship Curve (AEC) derived from SRTM, (b) and (c) are from visible/NIR satellite imagery, (d) was derived from AEC and
(e) from satellite-based meteorological observations.

Table 1
Reservoir class, buffering distance, and computational scale in GEE.

Reservoir Surface Area from GranD (Km2) Buffering Distance (m)

<2.0 500
2–10 750
10–50 1000
50–200 1250
200–500 1500
500–1000 1750
>1000 2000

2.3. Storage change calculation

The method followed in this study to calculate change in reservoir
storage is shown in Fig. 2. Major components mentioned in the mass
balance equation are (a) ROI generation, (b) AEC extraction, (c) time-
series processing of water extent area, (d) storage change calculation,
(e) simulation of reservoir inflow from the hydrological model and
evaporation from the reservoir, and (f) reservoir outflow calculation.
Aside from hydrologic modeling (items e and f), all components are exe-
cuted in the cloud using Google Earth Engine (GEE) to minimize inter-
net bandwidth needed for downloading large datasets. GEE has been
extensively used in different large-scale hydrological analyses (Biswas
et al., 2019; Pekel et al., 2016; Zhao and Gao, 2018), which offers
highly advanced and previously unachievable computational possibili-
ties.

2.3.1. ROI delineation
After many trials over several reservoirs using multiple approaches,

we classified the reservoirs according to the polygon defined in the
GranD database. The polygon area was used to classify reservoirs into
seven distinct classes to identify the appropriate buffering distance to
create the ROI. Before deciding the buffering distance for each class,
the frequency of occurrence map of the global surface water dataset
(GSWD) prepared by Pekel et al. (2016) was used for visual comparison
over 70–80 reservoirs. By following the maximum water extent of the
GSWD dataset, a suitable buffer distance was decided (Table 1).

2.3.2. Area-elevation curve extraction
Using the delineated ROI mentioned in Section 2.3.1 and SRTM

DEM data, the Area Elevation Curve (AEC) was derived in two steps.
First, the ROI of the selected reservoir was used to clip the SRTM DEM.
The SRTM DEM elevation was used to generate the area-elevation re-
lationship, which was valid for elevation above the water surface at
the time of the SRTM overpass (which was in February 2000). The his-
togram of SRTM DEM was populated to count the number of cells cor-
responding to each of the elevation data. The area of individual eleva-
tion was then calculated and incremented to get incremental area. The
steepest slope of the AEC was used to identify elevations corresponding
to reservoir surface areas. Areas less than the area of water surface ele-
vation were considered to be satellite noise and discarded from further
analysis. Next, the relationship developed in the first step was extrapo-
lated to the near-zero surface area in order to complete a virtual area-
elevation relationship for elevations lower than the SRTM-observed
water surface. During extrapolation, univariate spline was found to be
the best estimator and was therefore used as the operational area-
elevation relationship generator. Finally, these two area-elevation rela-
tionships were merged to create the complete area-elevation curve. The
whole methodology of AEC development is summarized graphically in
Fig. 3. For more information on the area-elevation curve generation
approach, readers are referred to the works of Bonnema et al. (2016)
and Bonnema and Hossain (2017).

2.3.3. Surface water area extraction
The surface area time series and the AEC are prerequisites to calcu-

lating the storage change of any reservoir. First, the ROI polygon and
AEC are prepared by following the approach mentioned in Sections 2.2.
1 and 2.2.2. All imagery scenes are first filtered using a predefined date
window and the ROI polygon, and then clipped using the ROI. In the
case of Sentinel 2 and Landsat, cloudy pixels were removed from the
ROI region of the scene. The area of scenes was calculated and filtered
out for areas less than 80% of the ROI (after the removal of cloudy and
partially covered scene). In the case of Sentinel 1, scenes were filtered
based on polarization, look angle, and date window, and pixels with
less than −16 dB backscatter value (Ahmad et al., 2019) were treated
as water. For Landsat and Sentinel 2, different index-based methods

4
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Fig. 3. Reservoir ROI polygon delineation and AEC curve extraction procedure.

were assessed, such as Normalized Difference Water Index-NDWI
(McFeeters, 1996), Modified Normalized Difference Water Index-
MNDWI (Xu, 2006), Water Index (Fisher et al., 2016), Advanced Water
Extraction Index (Feyisa et al., 2014), and Dynamic Surface Water Ex-
tent-DSWE (Jones, 2019). The extracted time series were then used to
calculate the storage change time series (Fig. 4).

2.3.4. Calculating storage change
The storage change time series was calculated from the surface time

series of the water extent area and the AEC (Fig. 4). For any pair of con-
secutive surface-water area data, corresponding elevations were com-
puted from the AEC. Storage change was calculated from two consecu-
tive heights and elevations using equation (2).

2.4. Simulation of reservoir inflow

The reservoir inflow was simulated using a hydrological model with
streamflow routing capability. Variable Infiltration Capacity (VIC)
model (Liang et al., 1994; Lohmann et al., 1998) was chosen for simu-
lating the gridded surface runoff, evaporation, and baseflow in the up-
stream catchment area of the reservoir. Meteorological observations
forced the model, along with land-surface parameters. For soil and land
surface parameters, FAO land cover and World Harmonized Soil
Dataset were used. Meteorological parameters used in this study were
precipitation, maximum and minimum temperature, and average wind
speed. All input forcings to the VIC model were prepared at 0.0625° by
0.0625° spatial resolution to match the Dominant River Tracing (DRT)
flow direction at 0.0625° resolution (Wu et al., 2011). We chose the
finest resolution of the hydrological model and DRT flow direction to

Fig. 4. Workflow for surface water area time series and storage change.
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cover the maximum number of reservoirs possible from the GranD
database (Lehner et al., 2011).

There are several calibration parameters for the VIC model, which
can be used to improve simulated streamflow. Some of these parame-
ters (i.e., saturated hydraulic conductivity and the exponent of the un-
saturated hydraulic conductivity curve) were estimated from soil prop-
erties by following the approach mentioned in Nijssen et al. (2001a,b).
Initially, the two calibration parameters (variable infiltration parame-
ter and depth of the soil layer) were taken from Nijssen et al. (2001a,b).
We found that those critical parameters identified in Nijssen et al.
(2001a,b) were thoroughly investigated, based on climatic zone and
geographical region, and presented the best available baseline study.
These calibration parameters were resampled to a spatial resolution of
0.0625° by 0.0625° by using the cubic spline interpolation technique.
The calibrated parameters were further updated wherever it was avail-
able to ensure better estimation of reservoir inflow by following more
recent studies in several basins. For example, we used parameters for
Ganges, Brahmaputra, Meghna basins from Siddique-E-Akbor et al.
(2014), for Indus basin from Iqbal et al. (2017), for Mekong basin from
Hossain et al. (2017) and for Nile basin from Eldardiry and Hossain
(2019).

Upon completion of hydrological model simulation, outputs were
forced into the Routing Model (Lohmann et al., 1998) along with the
DRT flow direction (Wu et al., 2011) to simulate reservoir inflow. DRT
flow-direction-derived flow accumulation was matched with satellite
imagery and river networks manually in most of the reservoir locations.
It was done by comparing the flow accumulation from the DRT flow
direction to satellite imagery at different locations with the assistance
of Google Earth (https://www.google.com/earth/).

2.4.1. Calculation of reservoir evaporation and outflow
The total net evaporation computed by the VIC hydrological model

was used to compute the evaporation from the reservoirs. Users are re-
ferred to https://vic.readthedocs.io for a detailed description of total
net evaporation calculation of VIC Model. Here, the VIC model grid
closest to the dam location was identified, and the simulated total net
evaporation at that grid cell was assumed to represent reservoir surface

evaporation over a unit area. This amount of evaporation from the grid
cell was multiplied by the reservoir surface area to calculate the evapo-
ration from the reservoir. Equation (1) was used to calculate outflow
from the reservoir. The inflow volume, storage change volume, and
evaporation amount were used to calculate outflow volume between
two consecutive storage changes. We have assumed the role of seepage
and groundwater loss as minor, based on a previous study (Bonnema et
al., 2016), and thus discarded them from the mass balance approach.

2.4.2. Consideration of upstream reservoirs
Where there is a series of reservoirs along a river and its tributaries

and the inflow volume of the upstream reservoir is greater than 10% of
the natural inflow to the downstream reservoir, the influence of the up-
stream reservoir on downstream inflow was considered. This was done
by deriving the difference between the inflow and outflow of the up-
stream reservoir and adjusting for that for downstream reservoir in-
flow.

3. The interface of Reservoir Assessment Tool (RAT) and
operational reservoir monitoring

3.1. Graphical user interface (GUI)

The main window of the frontend is shown in Fig. 5, which can be
accessed through http://depts.washington.edu/saswe/rat_beta. The
detailed design of the frontend and salient features of the tool are dis-
cussed in the user manual of the tool and also available in the GitHub
link (https://github.com/nbiswasuw/rat-reservoir_assessment_tool).
Currently, 1598 Dams from the GranD Database version 1.3 located in
South America, Africa, and Southeast Asia are modeled operationally
and visualized on the RAT frontend interface. All reservoir parameters
(i.e., AEC, surface water extent, inflow, storage change, and outflow)
were added to the frontend.

Fig. 5. Frontend web interface of the RAT tool operational framework with the blue reservoir icons showing reservoir locations. The polylines are the river
network downloaded from https://www.naturalearthdata.com. The upper right corner of the window allows users to toggle between selections of layers and
to switch available basemaps from the lower right corner.
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3.2. Monitoring of reservoirs

3.2.1. Monitoring of existing reservoirs
As more recent and frequent satellite observations on reservoir areas

become available via GEE, the RAT framework automatically
processes the data, runs the hydrological model, and post-processed
model outputs to create updated estimates of outflow, inflow, storage
change of the existing reservoirs. The water extent time series is ex-
tracted with the latest available scenes per the methodology used for
water-extent area extraction, mentioned in Section 2.3.3. The avail-
able AEC data and water extent time series are processed to get the
storage change time series. VIC model is simulated weekly (at a daily
time step) to get the most recent inflow into the reservoirs. Finally, the
outflow is calculated from the inflow and storage change. All of these
time-series data are made available in the frontend for user access. The
data and information interchange between the backend server and the
frontend GUI of the tool is explained in Fig. 6. If the inflow into any
reservoir is not calculated, the user can make a request through the
frontend, which is explained next in Section 3.3.

3.3. User request for adding new reservoirs to RAT

When data is not available over a reservoir location shown in the
RAT framework, jQuery allows a user to push a request button (shown
in Figure 16 of the RAT framework user manual). The user needs to
specify the GranD ID of the reservoir when sending the request and
other information, as mentioned in the user manual (see Figure 16 of
the user manual). The form can also be accessed through this link:
https://forms.gle/MUebn4bheie1b91J7. The request will push notifica-
tions to the administrator of the RAT framework to take further action.

After being notified, the administrator can review the request to add
the missing dam to the available list for calculation of reservoir state.
During regular monitoring of reservoirs, the newly added reservoir will

be considered for deriving all the parameters (including AEC extrac-
tion) and the user notified of the availability of data.

4. Results and discussion

The developed RAT software framework was applied in estimating
reservoir storage change, inflow, and outflow. Reservoir Inflow and
storage change were compared against in-situ measured data. The
reservoir outflow was derived from the inflow and storage change us-
ing the mass balance approach discussed in section 2.1. Thus, it is as-
sumed that accuracy of reservoir outflow is dependent on inflow and
storage-change accuracy.

4.1. Accuracy of reservoir storage change

In-situ measurements of daily reservoir storage were web-scraped
from the Central Water Commission (CWC - http://cwc.gov.in/) of In-
dia. This web-scraping is very similar in nature to a hydrologic plat-
form development work described by Biswas and Hossain (2018). A
map showing the reservoirs' locations along with their surface area (in
different colors) and area-perimeter ratio (termed as irregularity index,
shown in different colors) is shown in Fig. 7. To quantify the proposed
framework's performance for different sizes of reservoirs, 77 reservoirs
were classified according to their surface areas (from GranD database)
in five different classes (very small, small, medium, large, and very
large), as seen in Table 2.

To compare the simulated storage change based on reservoir shape,
the reservoirs were classified according to the ratio of surface area to
the perimeter (from GranD database), which is termed here as irregu-
larity index. The categories based on area-perimeter ratio are highly ir-
regular, very irregular, irregular, regular, very regular, and highly regu-
lar. Details about the classification based on the area-perimeter ratio
are shown in Table 3. Three reservoirs, each with a distinctive irregular-

Fig. 6. Data and information exchange between the backend server and the frontend interface. Left panel: Processing of different datasets and simulations.
Right panel: summary of datasets that are made available in the frontend.
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Fig. 7. Validation stations along with the reservoir area, with their sizes color-coded and irregularity index as defined by A/P ratio (in parenthesis).

Table 2
Reservoir classifications according to size for validation of the RAT soft-
ware tool.

Clas sification GranD Area Range (Km2) Reservoir Count

Very sm al l Less than 20 12
Sm al l 20–50 20
Medium 50–100 20
La rge 100–200 13
Very la rge Greater than 200 12

Table 3
Reservoir classification according to irregularity index.

Clas sification Irregula ri ty Index (A/P, unit: Km 2/m) Reservoir Count

Highly ir regula r Less than 0.25 13
Very ir regula r 0.25–0.40 25
Irregula r 0.4–0.5 18
Regula r 0.5–0.75 9
Very regula r 0.75–1.0 7
Highly regula r Greater than 1.0 5

ity index are shown in Fig. 8 to illustrate the differences in reservoir
shapes based on the irregularity index.

The simulated storage change was compared against in-situ storage
change of the individual reservoir on a monthly basis. Different sensors
(Landsat 8, Sentinel 1 and 2) and different index-based methods (i.e.,
NDWI, MNDWI, WI, AWEI for Landsat 8 and Sentinel 2; Backscatter
Coefficient for Sentinel 1) were tested to compare their accuracy. The
correlation coefficient and the normalized root mean square error
(NRMSE) were used to quantify the accuracy of individual methods
and sensors for different reservoir classes. The sensors and methods are
described in Table 4.

The mean correlation coefficient and the normalized RMSE com-
parison of different reservoir sizes are shown in Fig. 9. All of the sensors

and methods yield a correlation coefficient of more than 0.7 for all
types of reservoirs. The correlation coefficient is highest for reservoirs
with more than 200 km2 of surface area (very large reservoirs). For
Landsat (marked as L8 in Fig. 9), all methods yielded a correlation co-
efficient of more than 0.8, which means more than 80% of the in-situ
storage can be represented by the RAT framework. Except for very
large reservoirs, the Normalized RMSE comparison revealed that Sen-
tinel 2-generated storage changes are less accurate than those of Land-
sat or Sentinel 1, possibly because all of the indices were extensively
tested for waterbody detection using Landsat data. Sentinel 1 provided
better representation than Sentinel 2; however, the accuracy was less
than that of Landsat. Although the data from Sentinel 1 was more ac-
curate than that of all other sensors except Landsat, a few unrealistic
estimations and a smaller number of samples resulted in a low score.
Vegetated inundation, poor quality atmospheric composition during
imagery acquisition, and incorrect identification of sand pixels as wa-
ter are likely some of the underlying issues resulting in the low perfor-
mance of Sentinel 1 (Martinis et al., 2015). In the case of very small,
small, and medium reservoirs, Landsat performed better for all indices
than the other two sensors. Among the different methods of Landsat 8,
the DSWE method generated time series with continuous underestima-
tion of water area and fewer records compared to the others. This was
due to multiple filtering conditions. Additionally, GEE processing time
was almost five times higher for DSWE than the calculations of other
indices, making GEE a less practical method of global reservoir moni-
toring. MNDWI method was found to have limited skill for reservoirs
located in steep terrains. Compared to all other methods, NDWI pro-
duced consistently better results with a simpler processing approach.

The storage change time series also was classified according to
reservoir the irregularity index, which was used for very irregularly
shaped reservoirs with extensive shorelines. The satellite imageries have
limitations in detecting water pixels at the edges; thus, it was helpful to
quantify the relative performance of the sensors and methods. The

8
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Fig. 8. Reservoirs according to differing irregularity indices: (a) Highly Irregular Linganamakki Reservoir over Sharavathi River, India with A/P ratio 0.19
(Surface area 146.49 km2), (b) Regular-shaped Supa Reservoir over Kalinadi River, India with A/P ratio 0.51 (Surface area 94 km2), (c) Highly regular Ban
Sagar Reservoir over Sone River, India with A/P ratio of 1.8 (Surface area 384.3 km2).

Table 4
Sensors, temporal and spatial resolution, and applied methods.

Sensor Temporal and Spatia l
Reso lution

Method References

Landsa t
8

15 days (30 m) NDWI McFeeters (1996)

MNDWI Xu (2006)
WI Fisher et al .

(2016)
AWEI Feyisa et al .

(2014)
DSWE Jones (2019)

Sentinel
1

10 days (10 m) Backscatter
Filter

Ahma d et al .
(2019)

Sentinel
2

5 days (10 m) NDWI McFeeters (1996)

MNDWI Xu (2006)
WI Fisher et al .

(2016)
AWEI Feyisa et al .

(2014)
DSWE Jones (2019)

mean correlation coefficient and mean of the normalized RMSE for
each of the classes were compared and shown in Fig. 10. The accuracy
of every method and sensor decreased with the irregularity of the reser-
voirs. Landsat-based methods worked best for reservoirs in the irregular
category. For regular shaped reservoirs, almost all methods yielded sim-
ilar results. Highly irregular shaped reservoirs returned the lowest corre-
lation coefficient, mostly due to water detection along the reservoirs'
shorelines. Considering all the advantages and disadvantages of each

of the sensors and methods, the Landsat 8-based NDWI method's per-
formance was found to be most robust and consistent and was there-
fore selected for the operational RAT software framework.

4.2. Validation of reservoir surface area estimation

The RAT framework's simulated reservoir surface area was com-
pared with the latest published reservoir surface area dataset prepared
by Zhao and Gao (2018). Zhao and Gao (2018) dataset provides the
surface water extent area of the GranD database from 1984 to 2015 on
a monthly scale. We compared the total reservoir surface area (from the
NDWI method of Landsat 8 sensor and the DSWE method for Landsat
5) of all the RAT domain reservoirs to the total surface area of the same
reservoirs estimated by Zhao and Gao (2018). The RAT framework was
extensively validated for the Landsat 8 satellite imagery, and it was
found that the NDWI method worked best in the case of the Landsat 8.
Due to differences in sensor characteristics and differences in spectral
band ranges, we found that the DSWE method worked best for the
Landsat 5. For operational purposes, water areas generated from Land-
sat 5 (using the DSWE method) and Landsat 8 (using the NDWI
method) were combined to produce monthly timeseries and then com-
pared with Zhao and Gao (2018) data (Fig. 11). It was also found that
reservoir surface area records were discontinuous for many reservoirs in
the Zhao and Gao (2018) data during the years before 2000; conse-
quently, comparison began with the year 2000. The proposed frame-
work yielded a correlation coefficient of 0.92. Fig. 11 shows that the
reservoir surface area's seasonal variation is more clearly visible when
the proposed framework-generated dataset was used. We should note
that Zhao and Gao (2018) dataset is not available in near real-time

Fig. 9. (left) Correlation Coefficient and (right) Normalized RMSE comparison of reservoirs of various sizes.
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Fig. 10. Correlation Coefficient (left side) and Normalized RMSE comparison of different reservoir classes defined according to the irregularity index (right
side).

Fig. 11. Comparison between the derived total reservoir surface area of all the reservoirs included in the RAT framework with Zhao and Gao (2018) gener-
ated reservoir surface area.

scale for monitoring reservoir dynamics from the latest available satel-
lite imagery.

4.3. Validation of VIC hydrological model

Using the land surface parameters and meteorological forcing men-
tioned in Section 2.3.4, the VIC and Route model was simulated for the
RAT domain (South America, Africa, and Southeast Asia). The simu-
lated daily streamflow was first compared against ground-based daily
discharge data collected through different sources. Information about
validation stations is mentioned in Table 5. The stations along with the
respective basins are shown in the upper panel of Fig. 12.

Time series comparisons of two stations are shown in the middle
panel of Fig. 12. The left panel is Tabatinga station, located in the
Amazon basin, where the correlation coefficient was less than 0.7, and
the VIC model was not very accurate in representing low-flow and
high-flow peaks. A similar case was observed at other stations. Time-
series comparison of Kampong Cham station located on the Mekong
river (shown in the middle right corner) found accuracy was highest for
the correlation coefficient. This basin performed exceptionally well due
to subbasin scale calibration performed by Hossain et al. (2017). Never-
theless, the hydrological model showed dry season flow to be lower
than the actual flow and overestimated the peaks. Summary statistics
of all validation stations are shown in the lower panel of Fig. 12. In
Southeast Asia's stations, the correlation coefficients were more than

0.8, whereas the South American stations showed more than 0.6. Also,
in some stations, NRMSE was higher with a good correlation coeffi-
cient due to the model's underperformance in capturing seasonality. We
found that flow-direction modification improved the results signifi-
cantly.

4.4. Comparison of streamflow with GRADES streamflow

We compared streamflow at different inflow locations with the
Global Reach-level A priori Discharge Estimates for Surface Water and
Ocean Topography modeled streamflow (GRADES; Lin et al., 2019).
We compared our model's estimated streamflow with the GRADES
model's simulated streamflow at 44 randomly chosen locations along
the river reaches within the RAT domain. The summary statistics are
shown in Fig. 13. The average correlation coefficient of all the stations
was 0.62, and the mean of normalized root mean square error was
0.49. Again, stations located in Southeast Asia performed better com-
pared to the stations in the South America region. This is a clear indica-
tion that better calibration at regional and basin scales can improve
simulated streamflow accuracy at the locations where our model un-
derperformed.

10
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Table 5
VIC hydrological model validation stations (BWDB: Bangladesh Water De-
velopment Board, Bangladesh; MRC: Mekong River Commission; CWC:
Central Water Commission, India; GRDC: Global Runoff Data Center;
PWAPDA: Pakistan Water and Power Development Authority; and So-
Hybam: HYBAM monitoring program- https://hybam.obs-mip.fr/).

Station Basin Longitude La titude Data
Source

Data
Avai labili ty

Ha rdinge
Bridge

Ganges 89.0273 24.0649 BWDB 2001–2019

Bahadura bad Brahma putra 89.7161 25.3363 BWDB 2001–2019
Ka mpong

Cham
Mekong 105.4740 11.9855 MRC 2001–2019

Vijayawada Kr ishna 80.6091 16.5049 CWC 2007–2019
Polava ra m Godava ri 81.6547 17.2575 CWC 2001–2019
Pye Irra wardy 95.2123 18.8075 GRDC 2001–2010
Hydera bad Indus 68.3111 25.3727 PWAPDA 2014–2019
Ka tima Muli lo Zambezi 24.2809 −17.4843 GRDC 2001–2018
Vioolsdrif Or ange 17.7295 −28.7611 GRDC 2001–2018
Lokoja Niger 6.7571 7.7595 GRDC 2001–2006
Brazzavi lle Congo 15.2817 −4.2904 So-

Hybam
2001–2020

Obidos Amazon −55.5178 −1.9339 So-
Hybam

2001–2018

Chapeton Rio Para na −60.3540 −31.6236 GRDC 2001–2014
Pichi Ma huida Rio

Colora do
−64.8295 −38.8261 GRDC 2001–2014

Primera
Angostura

Rio Negro −63.6744 −40.4452 GRDC 2001–2015

Bhai ra b Bazar Meghna 90.9937 24.0441 BWDB 2001–2019
Serr inha Amazon −64.8077 −0.4891 So-

Hybam
2001–2019

Tabatinga Amazon −69.9429 −4.2832 So-
Hybam

2006–2016

Ocona Rio Ocona −72.6795 −16.7330 GRDC 2006–2018
La Pascana Rio Tambo −70.133 −18.4940 GRDC 2001–2018
Ha indi Sa int Paul −10.1238 6.5698 GRDC 2012–2019
Ruacana Kunene 11.9861 −16.7715 GRDC 2001–2018
Beibrug Limpopo 30.1731 −23.1643 GRDC 2001–2019
Prieska Or ange 22.7492 −30.0171 GRDC 2001–2018
Gamtoos Poor t Gamptoos 25.9853 −34.3954 GRDC 2001–2018

5. Conclusion and future scope

To our knowledge, the online software framework for reservoir
monitoring called RAT is the first of its kind. Given that the RAT tool is
now publicly available for the world to use and benefit from, we be-
lieve the following are some examples of potential applications of this
framework.

• By using this tool, long-term records denoting real-time behavior
and operating rules at reservoirs can become publicly available.

• RAT can help users and the scientific community derive a global
picture of reservoir monitoring, how they are being operated, and
how they are likely impacting natural river flow and its variability
as a function of climate, hydrologic regime, and socio-economic
indicators.

• With further improvements in hydrological modeling using locally
available ground observations, the RAT framework can be used
with higher accuracy in local, regional, and global scale operational
water resources management considering its near real-time data
availability.

• The RAT framework can facilitate feasibility study of
proposed/planned dams. It can be used to estimate the future
reservoir capacity and inflow availability at any location, which is
useful in optimizing reservoir benefits.

• The RAT framework presents future possibilities to study the impact
of harnessing hydropower on river temperature, greenhouse gas
emissions, aquatic habitats, land-use and landcover change, and
agriculture practices.

• The RAT tool can be used to minimize conflict between riparian
countries (i.e., Egypt and Ethiopia over Nile Basin; China, India, and
Bangladesh over Ganges-Brahmaputra-Meghna Basin; China, Laos,
Thailand, Cambodia, Vietnam over Mekong Basin) as it can be
considered an unbiased tool to all parties and provide data needed
to drive fair and transparent water-sharing agreements.

There are some future improvements that can be considered to make
the framework more applicable in solving real-world water challenges.
While the hydrological model validation showed promise, known un-
certainties mandate that current results be carefully interpreted. Addi-
tionally, the VIC model used here will still need time to be improved and
validated further at a more granular level. This need for improvement
at many regions is evident when a superior goodness-of-fit such as
Nash-Sutcliffe efficiency (Fig. 14) is compared with in-situ flow (accu-
mulated over 16 days to match Landsat revisit time and for reservoir
management). Improved reservoir inflow estimation can be made by
using regional and basin-scale calibration, and validation of the hydro-
logical model is one of them. The more complex method of water pixel
identification from satellite imagery with artificial intelligence and the
application of machine learning algorithms may yield better estimation
of reservoir surface area. Reservoir bathymetry data from ground sur-
veying or Lidar applications may be used to define the area-elevation
curve more accurately. Lastly, reservoir outflow calculated in this
study includes all types of diversions and consumptive water uses for
various purposes, which may not be very accurate nor comparable to
the actual reservoir releases. Thus, the simulated outflow should be
compared with measured flow at in-situ locations immediately down-
stream of a reservoir.

The focus of our study here was on reservoirs and on methods of en-
abling the monitoring/prediction of reservoir states (surface area, stor-
age change, inflow and outflow) at weekly to monthly scales of reser-
voir management. It should be noted that our study is not about devel-
oping a global hydrological modeling framework or even promoting an
existing one for that matter. Our RAT framework is agnostic enough
that the current hydrological model (VIC) can be replaced with other
competing hydrological models. Our work to develop such an open and
publicly available tool is driven by our mission to democratize water in-
formation on regulated river basins for all stakeholders and to facilitate
more equitable water management. We believe that such a tool can
level the playing field for stakeholder agencies and riparian nations
that suffer from limited access to information on water availability due
to hydro-politics, lack of in-situ infrastructure, or low adaptive capac-
ity.

Software availability

https://github.com/nbiswasuw/rat-reservoir_assessment_tool.

Key findings

1. A web-based framework was developed for near-realtime
monitoring and impact analysis of reservoirs around the world.

2. The framework is freely available and able to monitor the dynamic
state for more than 1500 reservoirs.

3. The storage changes of more than seventy-five percent of reservoirs
were accurately captured with skillful inflow simulation at bi-
weekly timescale.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

11

https://hybam.obs-mip.fr/
https://github.com/nbiswasuw/rat-reservoir_assessment_tool


N.K. Biswas et al. Environmental Modelling and Software xxx (xxxx) 105043

Fig. 12. (upper panel) VIC Model validation stations along with the respective basins, (center left) Streamflow timeseries of Tabatinga station of Amazon
Basin, (center right) Streamflow Kampong Cham station of Mekong Basin, (lower panel) Summary statistics of validation stations.

Fig. 13. (left) Correlation Coefficient and (right) Normalized RMSE of different stations compared with GRADES simulated streamflow.
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Fig. 14. Nash-Sutcliffe efficiency of the streamflow validation stations (against in-situ stream flow) shown at 16-day aggregation in accordance with Landsat
revisit period and reservoir management.
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