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Abstract—In an era of declining ground-based networks 
for measurement of precipitation, satellite precipitation 
data, that is now routinely available in increasing frequency 
and spatial coverage, represents an interesting paradox. 
Specifically, effective assessment frameworks and error 
metrics for satellite precipitation data must be developed 
for advancing the utility of satellite data for global applica-
tions. While there seems to be a concerted effort by the com-
munity to evaluate satellite precipitation data, there does 
not seem to be similar efforts to resolve the paradoxical 
issue of balancing the need for global uncertainty informa-
tion and the stark lack of global GV datasets for doing so. In 
this article, we present one practical approach to estimating 
satellite precipitation uncertainty that is not dependent on 
the notion of ground validation (GV) data. By using input 
that is more readily available around the globe (i.e., satellite 
data and geophysical features of terrain, climate and sea-
sons), the approach can potentially advance applications as 
it allows a coherent way to merge available satellite precipi-
tation data products to a more superior state, particularly 
for hydrologic applications. We provide an assessment of 
how the approach works in various regions of the develop-
ing world as a way to encourage the community to further 
the development of such ideas and provide end-users with 
a practical decision-making tool.

1. IntroductIon

T    he traditional approach to measuring precipitation by 
placing a probe on the ground will likely never be ad-

equate or affordable in most parts of the world. Fortunately, 
satellites today provide a continuous global bird’s-eye view 
(above ground) at any given location. Emerging high resolu-
tion and multi-sensor satellite-based precipitation estimates, 
such as those anticipated from the Global Precipitation Mea-
surement (GPM) [1], [2] satellites, now hold great promise, 
especially over parts of the world where surface observation 

networks are sparse, declining or non-existent. Among 
applications, most aspects of a hydrological study and its 
findings have a clear benefit in terms of societal value. 
Whether it is floods, droughts, climate change, ecosys-
tem impacts, land use management or agriculture, the 
importance of knowing the hydrological mechanisms for 
better prediction, forecasting and decision making has al-
ways been obvious [3]. Thus, satellite precipitation data, 
which is a key input to hydrologic models, is a benefac-
tor of many hydrologic applications over regions where 
it is already difficult to obtain data from conventional 
ground networks. These regions are typically the devel-
oping world faced with challenging financial resources. 
Hereafter, we shall interchangeably use the term ‘rainfall’ 
with ‘precipitation’ to signify the same.

However, the usefulness of such precipitation products 
for hydrological applications depends on their error char-
acteristics and how intelligently we can harness the impli-
cations of uncertainty for surface hydrology [4]–[12]. The 
need to take advantage of uncertainty represents a unique 
paradox when it comes to making satellite precipitation 
data ‘work’ for the developing world. On one hand, the 
decline of the few existing global ground based measure-
ment networks for precipitation means that ground valida-
tion data from in-situ measurements are mostly absent in 
most parts of the world for estimating the uncertainty. On 
the other hand, satellite precipitation data is most useful 
where there exists little to none conventional measure-
ments. As a result, the conventional method of compar-
ing satellite estimate against in-situ records to ‘harness’ 
the uncertainty is unrealistic and impractical [9], [12]. As 
a community tasked with the job of making satellite pre-
cipitation ‘work’ for applications in most parts of the world, 
there is now a need think outside the box [13]–[16].

2. tHE KEY HurdLE to MAKInG SAtELLItE 
PrEcIPItAtIon dAtA WorK
Obviously the existing high resolution satellite rainfall 
estimates have a significant role to play in filling this 
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widening gap of data-shortage at operational timescales 
for hydrologic applications. Current pre-GPM satellite 
products provide quasi-global coverage and acceptable 
spatial (a25 km) and temporal (a3 hour) sampling.  To 
‘beat’ this estimation uncertainty, which persists in large 
amounts, we are now witnessing an explosion of vari-
ous multi-sensor satellite precipitation products, each 
based on a combination of competing concepts, satellite 
observations and algorithms. There are at least ten such 
multi-sensor products on the ‘market’ (i.e., ScaMPR [17], 
3B41RT [18], 3B42V6 [19], 3B42RT [19], CMORPH [20], 
[21], QMORPH [20], PERSIANN-CCS [22], PERSIANN-
REFAME [23], NRL-Blended [24], GsMAP [25], [26]). 
Most of these products essentially use similar inputs from 
a consistent constellation of sensors.

The key difference among the products available in the 
‘market’ lies in their algorithm to infer satellite precipita-
tion from the measured electromagnetic properties. For 
example, 3B42RT is one of the products provided by the 
TRMM Multi-satellite Precipitation Analysis (TMPA) algo-
rithm at spatial resolution of 0.25 # 0.25 degree and tem-
poral sampling of 3 hours [18]. It is a combination of Pas-
sive Microwave (PMW) and PMW-calibrated Infrared (IR) 
data in manner that MW precipitation estimate is consid-

ered where it is available, and the IR estimate is used to fill 
the gap (in space and time) elsewhere. CMORPH is a high-
resolution satellite rainfall product known as the Climate 
Prediction Center (CPC) using MORPHing technique [20]. 
This product is also avail-
able at a spatial resolution 
of .0 25c degree and tem-
poral resolution of 3 hours. 
This product uses rainfall 
estimates from MW and the 
rainfall patterns are propa-
gated in space and time over 
via motion vectors obtained 
in fact from IR data to bridge 
the MW sampling gaps [20]. 
PERSIANN (Precipitation 
Estimation from Remotely 
Sensed Information using 
Artificial Neural Networks) is based on extraction of 
cloud features from IR imagery of geostationary satellite to 
derive rainfall estimates at finer scale . .0 04 0 04#c c^ h and 
hourly temporal resolution using MW data as a guide for 
the artificial neural network [23]. Most satellite precipita-
tion products essentially use the same suite of PMW and 
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IR sensors, such as Advanced microwave sounding unit 
(AMSU), TRMM Microwave Imager (TMI), Special Sensor 
Microwave/Imager (SSM/I), Advanced Microwave Scanning 
Radiometer for Earth Observing System (AMSR-E), Geosta-
tionary Operational Environmental Satellite (GOES) etc. 
Such a plethora of products without a proper user manual 
for the layman leads the novice user in the developing world 
to wonder, ‘which one do I use?’ and ‘why do we have so many 
out there?’

The satellite precipitation product development com-
munity has rightfully progressed in the direction of 

embracing multiple sensor 
data and blending various 
algorithms to push the enve-
lope of estimation uncer-
tainty reduction. Although 
the exact details are not yet 
known due to the very recent 
launch of GPM precipita-
tion radar (Feb. 24, 2014), 
the nature of the combined 
algorithm that we shall have 
available during the GPM 
era will likely involve the 
following components: 1) 

combination of both Infrared (IR) and Passive Microwave 
(PMW) sensor data calibrated to GPM radar observables 
[18]; 2) space-time downscaling [22]; 3) artificial neural 
networks for cloud patch detection [27]; and 4) data assim-
ilation (filtering) approach to synergize the complemen-
tary sampling strengths of IR and PMW scans [21]. In this 
effort to ‘combine’ different algorithms and products, one 
question that has been left out, is, ‘for the end-user, is it possi-
ble to reduce estimation uncertainty by leveraging the individual 
performance of each product and merging them accordingly?’

We believe that the accuracy and appeal of satellite rain-
fall products can be further improved for the practical user 
interested in applications by optimal merging of the avail-
able products. The assumption based on which we make 
this claim is that the inherent (diagnostic) uncertainty associ-
ated with each individual product is a function of geophysical 
features and is insightful for merging through a relative weight-
ing scheme in the prognostic mode (i.e., forward in time) [7]–
[12]. Indeed, such a priori hydrologic predictability based 
merging is already proving effective [10], [11]. Recently, we 
investigated satellite rainfall uncertainty and its propaga-
tion through a hydrologic model by tracing the source of 
runoff and soil moisture errors as function of rainfall error 
(bias) components over the United States (US) [7], [8].

To explore the feasibility of such a merging concept 
(that linearly weighs the inverse of error variance) and the 
validity of the assumption, the Variable Infiltration Capac-
ity (VIC) macroscale hydrologic model [28] was set up over 
the entire Mississippi River Basin (MRB) and Northwest 
Basins (NWB) (Fig. 1(a)) for three widely used, near-real 
time, and multi-sensor satellite rainfall products (3B42RT, 

CMORPH and PERSIANN). These products were assessed 
of their a priori ability to predict the surface hydrologic 
state and fluxes such as runoff, soil moisture and stream 
flow (Fig. 1(b) and (c)).

Based on the a priori hydrologic predictability, a merging 
scheme was developed for the products using the inverse of 
simulation error variance in runoff and soil moisture [7]–
[12]. Our investigations have shown that a product merged 
according to a priori simulation error in either soil moisture 
or runoff was consistently more superior (during an inde-
pendent validation/prognostic period) than the original 
products for predicting stream flow forward in time (Fig. 
1(b) and (c)). Products “unified” in this way had similar 
rainfall patterns as the ground validation data (Fig. 1(d)) 
and performed far better in stream flow simulation than 
a merging scheme based purely on precipitation measure-
ment uncertainty (i.e., no hydrological conditioning).

However, such a method of a priori hydrologic predict-
ability-based merging for the practical user only works 
where a model can be set up with quality controlled in-situ 
hydrologic data. Therefore, this is not truly a global option 
for users around the world. The more pressing and global 
issue which we need to address now is ‘how can such a merg-
ing scheme be implemented (validated/calibrated) in un-gauged 
basins around the globe where ground data to test the quality of 
satellite data is not available?’ It is obvious from Fig. 1 that 
each satellite product has a unique response to simulation 
of stream flow (which is key to applications). The perfor-
mance of these products also seems complimentary as 
well as a complex function of the underlying surface physi-
cal features (such as terrain, vegetation, elevation, storm 
regime, and climate type). We can rephrase the previously 
stated practical question as a science question as follows, 
“What can terrestrial features tell us about the property of satel-
lite rainfall errors in different parts of the globe in order to make 
more practical use across the globe?” For example, climate type 
can indicate the most frequent type of rainfall systems that 
will be remotely sensed, and topography information can 
indicate the likelihood of fog-rain-snow and orographic 
processes that are usually hard to estimate [29]–[31]. Since 
these geophysical features (topography, land use/land 
cover and climate) are easily available across the world, 
we should be able to estimate satellite precipitation uncer-
tainty based on these readily (and freely) available features 
towards the weighted merging of satellite precipitation 
data for the user anywhere around the world.

3. A PrActIcAL APProAcH to MAXIMIZInG 
APPLIcAtIon PotEntIAL
Our practical approach to making satellite precipitation data 
work for the developing world is based on the development 
of a globally-applicable regression error model approach to 
estimate rainfall uncertainties (error variance) in un-gauged 
basin from the readily available geophysical information. 
We selected globally four diverse regions around the world 
where topography, climate and landuse/landcover (LULC) 
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FIGurE 2. Globally selected study regions for developing and validating error variance regression model and satellite rainfall products 
merging scheme.
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FIGurE 3. Topographic classes and Koppen climate types for global regions used in regression model for runoff error variance estimation.
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varied. These regions comprised USA, Asia, Middle East, 
and Mediterranean regions (Fig. 2).

The contiguous United States (48 adjoining U.S. states, 
called CONUS) comprises a total area of 3,119,885 square 
miles (8,080,464 km2), which is 1.58% of the total surface 
area of the Earth. This region comprises a diverse topography 
that ranges from 0–4500 m above sea level (a.s.l.). The high-
est elevation is the Rocky Mountains which are located in 
the west central part of CONUS. The major climates are arid 
(highland of west-central), temperate (south, east and west 
coast), and cold (northern part of the CONUS). Tropical and 
polar climates are not common in US due to the positioning 
of the states in terms of latitude (see Figure 2 for detail topog-
raphy and climate features of the regions). The Monsoon Asia 
is the largest and most populous region which is located in 
the eastern and northern hemisphere. This region encom-
passes the most diverse region both in topography and cli-
mate type. All the topography and climate classes are found 
in this region. The world highest mountains (collectively 
called Himalayas) are located in this region including the 
Everest Mountain which is about 8500 m tall above sea level. 
All the six major climate types are also found in the region: 
tropical, arid, temperate, cold, and polar climate. The Medi-
terranean region encompasses the lands around the Mediter-
ranean Sea. The topography of the region ranges from the 
lowest elevation region on land (The Dead Sea) -420 to 2600 
m a.s.l. It includes arid, temperate, and cold types of climate. 
The Middle East is a region that roughly covers Western Asia 
region. The topography varies from -300–2700 m a.s.l and is 
dominantly characterized by arid climate type. To embrace 
the combination of all types of topographic and climate fea-
tures, USA and Asia regions are selected to calibrate the error 
variance regression model; whereas, Mediterranean and 
Middle East regions are chosen to validate the performance 
of the model on independent area.

We also chose these regions based on the availability of 
reference (GV) data to calibrate and validate our method. 
Fig. 3 shows the variation in the readily available geophysi-
cal features of interest (topography and climate). The topog-
raphy and climate are the two major governing factors con-
sidered to characterize satellite rainfall and runoff errors 
and implement the error variance regression model [8], 
[9], [12]. Three satellite rainfall products, namely 3B42RT, 
CMORPH, and PERSIANN-CCS, were used to develop 
the framework of error variance regression model over the 
selected study regions. These satellite rainfall products are 
widely used, available on near-real time, and are considered 
fairly high resolution products for satellite-based hydrologic 
application. Both 3B42RT and CMORPH data is available at 
0.25 degree spatial and 3 hourly temporal resolution [19], 
[20]. The global PERSIANN-CCS data exists at 0.04 degree 
spatial and daily time scale. This data is then remapped to 
the consistent scale of 0.25 degree to allow inter-compari-
sons among and merge with the other products.

Fig. 4 summarizes our ‘practical’ approach for making 
satellite data work for the developing world through imple-

menting runoff error variance model and then merging of 
the available products. The selected regions were delineated 
based on topography features (Fig. 3) to develop the regres-
sion model framework. Each region was classified according 
to the dominant Köppen cli-
mate type. Moreover, the sat-
ellite rainfall and runoff error 
variance (the independent 
and dependent variables, 
respectively) were segregated 
based on seasons to account 
for the periodic variation of 
meteorological and hydro-
logical events. After the 
region classification and data 
segregation were completed, 
the model estimators (a  and 

;b  see next paragraph) were 
obtained using the least square method through minimiza-
tion of the sum of runoff error variance square. At this point, 
we want to remind the reader that the runoff simulated from 
the ground rainfall data was considered as synthetic truth in 
the computation of error variance for the satellite products.

The runoff error variance equation is generally 
expressed as power function as: EV ( )RRa= b  where the 

3B42RT

High Resolution Satellite Rainfall Products, P

CMORPH PERSIANN-CCS Ground
Validation

Rainfall Data

Land Surface Hydro-
Logic Model (VIC)

Runoff Error Variance, EV

Sorted Out Error Variance Based on

Dependent Variable

Regression
Model

Model Estimators: a, b

EV = \ (P)b

Independent Variables

• Topographic Regions
• Climate Classes
• Seasons

Grid Based
Simulated Runoff

Simulated Runoff/
Synthetic Truth

FIGurE 4. Flow chart that demonstrates the development of 
regression equation based on geophysical features (topographic, 
climate, and season) to estimate the runoff error variance for 
global regions.
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parameters a  and b  serve as simple scaling factor and mea-
sure of rate of growth or decay, respectively. The error vari-
ance is expressed as a function of satellite rainfall rate (RR) 
explicitly and topography, climate, and season implicitly. 
The parameters, a  and ,b  are calibrated and validated on 
the selected regions for each geophysical feature combina-
tion. This allows us to transfer the error information to un-
gauged regions for the purpose of merging.

After estimation of runoff error variance, the next most 
important task is the merging of the available satellite rain-
fall products (i.e., 3B42RT, CMORPH, and PERSIANN-
CCS). These products have their own specific strengths and 
weaknesses in retrieval technique, accuracy, resolution, 
availability, coverage, and quality control. Our hypothesis 
is, by implementing a priori performance based merging 
of precipitation data obtained from different sources, we 
can improve the accuracy of precipitation estimates. The a 
priori performance analysis helps us to exploit the comple-
mentary strengths of the products involved in the merging. 
Herein, the term complementary means that each prod-
uct can have strengths in rainfall estimation that is unique 
to its algorithm at the expense of other weaknesses such 
that, when merged, only the strengths are combined. For 
example, one product may have superior rain and no-rain 
discrimination property while suffering from high bias. 
On the other hand, another product may have poor rain 
discrimination skill for heavy rain systems but low bias 
when it estimates rain. Combining these two ‘complemen-
tary’ products should yield a product that has both good 
rainfall discrimination and low bias. The merging proce-
dure linearly weighs the inverse of error variance as shown 
in the next equation.
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where RR: rainfall rate in mm/day; EV: runoff error vari-
ance (mm/day)2; PBMP: performance based merged prod-
uct; 3B42: 3B42RT rainfall product; CMO: CMORPH; PER: 
PERSIANN-CCS; l: latitude-longitude location, t: time at a 
day scale; s: seasons (1-winter, 2-spring; 3-summer, 4-fall).

4. ASSESSMEnt oF tHE APProAcH  
At GLoBAL ScALES
The most widely used error metrics, e.g. [32]–[37], are 
employed to assess the performance of the merged satel-
lite rainfall product. These include grid-box based error 
metrics such as Probability of Detection (POD), False 
Alarm Ratio (FAR), and Threat Score (TR) and Root Mean 
Square Error (RMSE). To assess the spatial accuracy of sat-
ellite rainfall estimates and characterize the performance 
of satellite rainfall data, grid-box dependent error metrics 
are more useful. They tell us how the spatial pattern of the 
rainfall event is captured across the region. On the other 
hand, the RMSE measures the average error magnitude by 

aggregating the errors between satellite rainfall estimates 
and reference data of various times into a single measure 
of predictive power. The RMSE implies how the temporal 
rainfall variation is accurately estimated.

4.1 Setting up of a proxy ground  
Validation precipitation dataSetS
In order to obtain and evaluate the a prior predictability of 
satellite rainfall products, calibrate and validate the error 
variance model across the globe, and assess the accuracy 
of merged precipitation product, good quality of ground 
validation data are indispensable. As mentioned in section 
3, one of the requirements in the selection of the study 
regions was the availability of good quality reference data. 
For USA, gridded ground observation rainfall [38] and 
NEXRAD-IV [39] data were used as validation data.

The gridded ground observation rainfall data is 
obtained from the University of Washington Surface 
Hydrology Group at the 0.125 degree daily scale. This data 
pertained to the contiguous United States (CONUS) and 
is derived from more than 7000 stations collected from 
the National Oceanic and Atmospheric Administration 
(NOAA) at an average density of one station per 700 km2. 
The point data is gridded using synergraphic mapping sys-
tem (SYMAP) interpolation algorithm [39]. NEXRAD-IV 
(Next-Generation Radar stage IV) data is operated by the 
National Weather Service (NWS) of NOAA. It is an esti-
mate of doppler weather radars that have been adjusted 
based on gauge data from NOAA’s highest accuracy precip-
itation stations. This data is available at 0.04 degree spatial 
and 1 hour temporal resolution.

Asian Precipitation—Highly-Resolved Observational 
Data Integration Towards Evaluation of Water Resources 
(APHRODITE’s) project develops a daily gridded precipita-
tion datasets from a dense observational network stations 
(up to 12,000 stations) for Asia (including Himalayas, south 
and southeast Asia) and Middle East regions [40]. For Medi-
terranean region, the gridded precipitation data is collected 
from European Climate Assessment & Dataset (ECAD). As 
a quality control (QC) measure, all the reference datasets 
are validated against other source of good quality precipita-
tion datasets which include CPC-Unified gauged gridded 
data and 2A25 precipitation radar (PR) orbital data. The 
result of QC analysis shows that the validation datasets are 
consistent with 2A25 PR rainfall measurement [12].

4.2 How well doeS tHe  
practical approacH work?
We validated our approach independently by splitting our 
region with GV data into two regions: one for calibration 
(estimation of regression parameters) and the other for vali-
dating how well the regression equation worked when com-
pared with error variance derived directly from GV data. Fig. 
5 compares the spatial distribution of rainfall for the origi-
nal and merged satellite precipitation products at global 
scale. The fundamental concept of the merging procedure 
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is based on runoff error variance which is estimated from 
the regression model as discussed in section 3. The extent of 
the merged product is, therefore, limited to the land portion 
of the earth’s surface. The merged product is now available 
at spatial resolution of 0.25 degree between 50c north and 
south latitude and temporal scale of a day for the period of 
2003-2010. For the interested readers and due to size limita-
tions, we have made publicly available only a subset of this 
merged dataset spanning May 2003 to July 2003 at http://
iweb.tntech.edu/fhossain/papers/MergedPrecipDataSam-
ple.zip. However, the entire 8 years (2003-2010) merged 
data (8 GB in size) can be provided on request to any of the 
authors via ftp or media mail.

As seen in Fig. 5, the magnitude and spatial rainfall dis-
tribution pattern of the three satellite rainfall products are 
not consistently the same. Undeniably, the 3B42RT and 
CMORPH show a close similarity in all selected days. The 
PERSIANN-CCS has a different feature both in magnitude 
and spatial pattern than the other two products. There-
fore, the question is how well does the merged product 
derived from the three satellite rainfall estimates capture 
the magnitude and spatial pattern of the ground truth 
data in selected test sites?

Fig. 6(a) shows the POD of the original and merged 
satellite rainfall products over the study regions. The POD 
signifies the percentage of rainfall events that are detected 
correctly. In all study regions and all seasons, the merged 
product exhibits high value of POD (almost greater than 
0.6, except for summer season in Middle East region). This 
shows that in terms of the spatial accuracy, the merged prod-
uct is the best estimates from the original products. High 

POD implies that the spatial distribution of the rainfall pat-
tern is well spotted by the algorithm during the screening 
stage of the retrieval process. But it does not fully indicate 
the level of accuracy in estimation of the rainfall magnitude.

Fig. 6(b) demonstrates a false alarm categorical veri-
fication measure for rainfall forecast that is associated 
with no rain observed. The FAR represents the fraction of 
detected rainy grid cells that were found to be non-rainy. 
The merged product has the highest FAR next to PERSI-
ANN-CCS product. As it is a 
combined signature of three 
satellite rainfall products, 
high FAR should be expected 
in the merged product. As 
seen from the result, most of 
the false signal within PER-
SIANN-CCS estimate is also 
inherent into the merged 
product. Like POD, FAR is 
also associated with the spa-
tial accuracy but not with 
the accuracy of the estimated 
rainfall magnitude.

The next verification measure of spatial accuracy is 
the Threat Score (TR), which represents the fraction of 
detected rain event that were detected correctly. TR is also 
called Critical Success Index (CSI) with an ideal value of 
one. The CSI is not affected by the number of non-event 
forecasts that verify a no-event forecast associated with no 
event observed. In case of large number of miss and false 
precipitation events, the CSI value is generally low. Fig 6(c) 
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shows the TR of the original and merged satellite rainfall 
products over the four study regions. Based on TR mea-
sure, the merged product has good spatial accuracy in all 
regions except it demonstrates similar performance with 
3B42RT and CMORPH products in a few cases.

In Fig. 6(d), the RMSE of the original and the merged sat-
ellite rainfall products. The categorical measures presented so 
far demonstrate the spatial accuracy of the rainfall data; how-
ever, RMSE quantifies the deviation of the estimated rainfall 

from the observed values. Therefore, the smaller the RMSE 
the satellite rainfall product has, the closer the fit is to the 
observed rainfall data. In most cases, the merged product has 
either the smallest RMSE from all original satellite rainfall 
products (e.g. Asia region in winter, spring, summer; Middle 
East in summer; Mediterranean in summer) or comparable 
RMSE with the original satellite rainfall product that has the 
smallest RMSE (e.g. USA in spring, summer, fall; Asia in fall, 
Middle East in spring; Mediterranean in fall). There are also 
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cases where some satellite rainfall products have lower RMSE 
than the merged product (e.g the CMORPH has the lowest 
RMSE for Middle East in winter and fall seasons; and Medi-
terranean in winter season). Even though the merged prod-
uct does not have the lowest RMSE in those specific cases, 
overall it has tackled and reduced the high RMSE of the other 
satellite rainfall products involved in the merging process.

Finally, on Fig. 7, time series of the individual and 
merged satellite rainfall estimates has been demonstrated. 

To avoid visual cluttering for the reader, a 31 day moving 
average shown here. As seen on the Fig. 7, the merged prod-
uct captures well the temporal variation of the observed 
rainfall values. In general, these performance measures 
discussed above have their own unique implication in the 
residual error analysis. The accuracy should be determined 
not only based on a single performance measure but also 
the combined inference of different measures. From hydro-
logical application point of view, the implications of the 
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performance measures have also different perception. For 
instance, from the perspective of reducing risk, a satellite 
rainfall product with high POD value is more appropriate 
in flood modeling. On the other hand, from the economic 
point of view, such as in design of hydraulic structure 
for low to medium return periods (10–25 years), satellite 
rainfall product with high FAR may not be appropriate as, 
it could overestimate the design flood. In summary, the 
merged product presented in this study has highest POD, 
high FAR, comparable TR with the individual satellite rain-
fall products and consistently lower RMSE. Therefore, the 
authors believe that the merged rainfall product will have 
better merit and contribution for hydrologic applications 
compared to the individual products, particularly in the 
developing world that is mostly ungauged.

Our approach is not without limitations. A key limita-
tion of the error regression approach, although very prac-
ticable, is that a detailed physical (process-based) under-

standing of rainfall uncertainties is attainable only for 
regions that have ground truth (gauged) data. Another lim-
itation is the bias of satellite precipitation data. If all input 
satellite data have similar bias, then there is no addition 
skill to be enhanced by the merging process. In such situa-
tions, various non-linear data fusion techniques might be 
more appropriate. Nevertheless, satellite rainfall products 
are more valuable for data sparse or remote regions of the 
world. So a key concern is addressing the nature of errors 
in poorly instrumented regions.

5. concLuSIon
As satellite rainfall estimates become more important 
for hydrologic and atmospheric applications, users’ 
knowledge on uncertainty associated with the satellite 
rainfall product is a necessary step to advance its appli-
cation. Availability of uncertainty information associ-
ated with each satellite rainfall product can assist the 
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data users as a ‘HOW TO USE’ guideline in the practical 
world. We developed a practical approach involving a 
simple non-linear regression model to estimate the error 
variance for satellite precipitation products and used it 
for merging (linearly weighted according to inverse of 
error variance). A user can apply this approach to esti-
mate probable error variance and then use it as a proxy 
for data quality and decision making. We argue that 
topography, climate and seasons are considered read-
ily available geophysical features for the end-user at any 
location. The use of topography, climate and season as 
major governing factors in the development of regres-
sion framework is logical to identify the uncertainty 
type associated with satellite rainfall estimates.

In summary, high resolution and multi-sensor satel-
lite-based precipitation estimates, such as those analyzed 
in this study and those anticipated from the Global Pre-
cipitation Measurement (GPM; Hou et al., 2008) satel-
lites, now hold great promise for hydrologic applications, 
especially over parts of the world where surface obser-
vation networks are sparse, declining or non-existent. 
However, the usefulness of such precipitation products 
for hydrological applications will depend on their error 
characteristics and how successful we are in intelligently 
harnessing the implications of uncertainty for surface 
hydrology. The decline of the few existing global ground 
based measurement networks for rain and stream flow 
and the absence of in-situ measurement in most parts of 
the world represent a ‘paradoxical’ situation for evaluat-
ing satellite rainfall estimation uncertainty. By develop-
ing simple models for estimation of error variance for 
satellite data that a user can use anywhere and anytime 
using only readily available geophysical features, our 
study represents a first comprehensive step at resolving 
the paradox for making satellite precipitation data work 
around the world during the GPM era. More importantly, 
we have demonstrated that the accuracy of satellite rain-
fall products can be improved by merging the existing 
satellite rainfall products based on their hydrologic pre-
dictability. This will contribute an important finding to 
the existing NASA investigation on the merging of algo-
rithms and processing sequence for the Integrated Multi-
satellitE Retrievals for GPM (IMERGE).

The mission statement provided on the GPM website 
(http://pmm.nasa.gov) states “The GPM mission will help 
advance our understanding of Earth’s water and energy 
cycles, improve the forecasting of extreme events that 
cause natural disasters, and extend current capabilities of 
using satellite precipitation information to directly benefit 
society.” If “to directly benefit society” is indeed a commu-
nity priority, much more must be done so that the scien-
tific advancements translate to tangible products or utili-
ties for the world that societies can actually benefit from. 
GPM has the unique potential as a pathfinder mission to 
show how satellites can truly improve lives of millions of 
people through more cost-effective water management.
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