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ABSTRACT

Extreme precipitation events bring huge societal and economic loss around the world every year, and they

have undergone spatially heterogeneous changes in the past half-century. They are fundamental to probable

maximum precipitation (PMP) estimation in engineering practice, making it important to understand how

extreme stormmagnitudes are related to key meteorological conditions. However, there is currently a lack of

information that can potentially inform the engineering profession on the controlling factors for PMP esti-

mation. In this study, the authors present a statistical analysis of the relationship between extreme 3-day

precipitation and atmospheric instability, moisture availability, and large-scale convergence over the conti-

nental United States (CONUS). The analysis is conducted using the North America Regional Reanalysis

(NARR) and ECMWF ERA-Interim reanalysis data and a high-resolution regional climate simulation.

While extreme 3-day precipitation events across the CONUS are mostly related to vertical velocity and

moisture availability, those in the southwestern U.S. mountain regions are also controlled by atmospheric

instability. Vertical velocity and relative humidity have domainwide impacts, while no significant relationship

is found between extreme precipitation and air temperature. Such patterns are stable over different seasons

and extreme precipitation events of various durations between 1 and 3 days. These analyses can directly help

in configuring the numerical models for PMP estimation at a given location for a given storm.

1. Introduction

Extreme rainstorms are events that rarely happen and

whose magnitudes are far beyond the average climato-

logical statistics. They are responsible for a large fraction

of flooding and landslides and bring huge societal and

economic losses every year (Evans et al. 2000; Casagli

et al. 2006; Cong et al. 2006). The historical changes in

extreme rainstorms are often attributed to global warm-

ing (Min et al. 2011), but studies also show that the his-

torical trends of extreme precipitation vary as a function

of duration (from hourly to daily; Kunkel et al. 2013a;

Prein et al. 2017). This difference suggests that the re-

lationship between air temperature and precipitation is

not simple. Therefore, a better understanding of the re-

lationship between various atmospheric conditions and

precipitation is a necessity.

Extreme rainstorms are also the cornerstone of the en-

gineering design community forwatermanagement. Large

water management infrastructures have been built to last

from tens to hundreds of years using probable maximum

precipitation (PMP) as a key criterion. PMP is now widely

used in the design of these infrastructures all around

the world. It is defined as the theoretical greatest depth

of precipitation for a given duration that is physically

possible over a particular drainage area (Huschke 1959).

During the past several decades, PMP has been mostly

estimated through moisture maximization of extreme

rainstorm observations as PMP5P3PWm/PWo (World

Meteorological Organization 1986; Schreiner and Riedel

1978; Kunkel et al. 2013b). Here P is the observed rainfall

amount, PWo is the observed precipitable water in the

same event, and PWm is the observed maximum pre-

cipitable water over a certain time duration (such as 12h).

Although moisture maximization is one of the most

widely used techniques for PMP estimation, various

studies have investigated the underlying deficiencies in

this approach. A consensus that emerges from those

studies is that a numerical model-based method is ex-

pected to be physically superior for the estimation of
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PMP (Abbs 1999; Tan 2010;Ohara et al. 2011; Ishida et al.

2015; Stratz and Hossain 2014; Chen and Hossain 2016).

The numerical approach is based on the physical maxi-

mization of a phenomenon relevant to the historical

storm reconstruction. A recent study by Chen and

Hossain (2016) has shown that it is now possible to re-

construct the infrastructure-relevant extreme rainstorms

of the continental United States (CONUS) after 1948

with acceptable accuracy.However, up to now, there is no

consensus on how to physically ‘‘maximize’’ the historical

storms for PMP estimation using numerical models.

The ways to maximize storms as reported in literature

can be classified into these categories: 1) the disturbance

of air moisture through changing air temperature/rela-

tive humidity and keeping the atmospheric columns

throughout the simulation domain fully moist during the

storm events (Tan 2010; Ohara et al. 2011), 2) the dis-

turbance of moisture flux through changing wind speed

or wind fields (Ishida et al. 2015), and 3) the combination

of the worst historical environmental conditions (Tan

2010). One particular issue that makes such techniques

appear ad hoc is that there has been no compre-

hensive study to date that investigates the key atmo-

spheric conditions that affect extreme storms (e.g.,

moisture availability, atmospheric instability, large-

scale convergence). Thus, the engineering community

is left without a rational guideline on the use of nu-

merical models for PMP estimation. The information on

how extreme historical rainstorms are controlled by

environmental conditions is now timely as the engi-

neering community debates and reevaluates the future

risk of water management infrastructures (Chen and

Hossain 2016).

There have been various studies on the cause of ex-

treme storms, mostly on selected events. For example, a

series of studies examined a heavy rainfall event in

Mumbai, India, and identified the synoptic-scale

weather systems and land surface feedback as contrib-

utors to this epic event (Kumar et al. 2008; Chang et al.

2009; Rama Rao et al. 2007; Vaidya and Kulkarni 2007).

Similarly, the record-breaking Nashville, Tennessee,

storm on May 2010 was investigated in Moore et al.

(2012) and Durkee et al. (2012), and it concluded that

the storm was a result of the interaction between the

North Atlantic Oscillation, an atmospheric river, and

strong land surface feedback. These studies now

provide a platform for systematic analysis that can be

used as a ‘‘design monograph’’ or guide that engineers

are so inclined to apply in practice. Some studies have

also been done on the general relationship between

extreme storms and environmental factors, but most of

them only checked the relationship at the hourly scale or

for selected events (Hardwick Jones et al. 2010; Mishra

et al. 2012; Hand et al. 2004; Ducrocq et al. 2014).

Other studies approached this problem by systemati-

cally checking certain environmental factors (Davies

et al. 2013; Lepore et al. 2015). For example, Davies

et al. (2013) identified the significant roles of moisture

convergence in tropical rainfall events. Loriaux et al.

(2016) found that atmospheric instability, moisture

availability, and horizontal wind convergence are all

positively related to the hourly peak rainfall intensity in

the Netherlands. The rainfall events were treated in a

single analysis, and no spatial patterns were analyzed.

Some exceptions, such as the study by Lepore et al.

(2015) that divided the eastern United States into four

subregions, reveal the geographic patterns at a quite

coarse scale, and the results are not spatially fine enough

to inform the engineering design practice for water

management infrastructure. These studies also indicate

the usefulness of atmospheric reanalysis products in

such analyses. More localized analysis at small sub-

regions is required, especially for engineering practices

such as PMP estimation.

To address this need, some studies often correlate

precipitation with various environmental conditions.

Other studies further quantify these correlations as re-

gressions (Lepore et al. 2015). However, by this ap-

proach it is difficult to account for most of the time lags

between extreme rainfall intensity and extreme envi-

ronmental conditions. To avoid the lag issue, our study

analyzes the environmental conditions in 72-h durations,

which is also a general standard design period for large

water management infrastructures. Also, this correla-

tion/regression approach inexplicitly assumes a fixed

relationship between precipitation and environmental

factors. For example, Lepore et al. (2015) assumed a

linear relationship between precipitation and atmo-

spheric instability. This may introduce extra un-

certainties in the regression results. To overcome this, in

this study we look at a wide range of atmospheric con-

ditions in the frequency space and make connections

between these percentiles by asking the following:

When an extreme storm happens, what are the meteo-

rological factors that appear dominant in the same

duration?

In this study, we examine the extreme precipitation

events archived in the North American Regional Re-

analysis (NARR) and European Centre for Medium-

RangeWeather Forecasts (ECMWF) interim reanalysis

(ERA-Interim). The use of two reanalysis products

helps us to make conclusions that are robust and not

subjective to the choice of the product. By extracting the

extreme precipitation events across the CONUS and
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investigating the atmospheric conditions, we answer the

following three PMP-relevant questions:

1) How has extreme 3-day precipitation changed in the

past half-century?

2) What is the relationship between atmospheric con-

ditions and the extreme rainstorms in the CONUS

during 1979–2015 as revealed by reanalysis?

3) Does the impact of these atmospheric factors show

any geographically consistent patterns?

By answering these questions, we find the connections

between extreme precipitation and meteorological fac-

tors and use the climatic trends of these factors to

explain the trend of extreme precipitation. Also, this

would reveal how extreme precipitation is likely to be-

have under the change of these factors, so that simulated

‘‘maximization’’ is rationalized in numerical models.

The paper is organized as follows. In section 2, we in-

troduce the NARR and ERA-Interim data used in this

study, as well as the diagnosis variables employed. In

section 3, we show the relationship between extreme

precipitation amounts and various environmental fac-

tors during 1979–2015, as well as the geographic distri-

bution of the dominant controls on extreme rainstorms.

Further discussions of the results are presented in sec-

tion 4. A summary and conclusions are presented in

section 5.

2. Data and methods

a. Reanalysis, simulation, and observation data

The NARR project is produced by the National

Centers for Environmental Prediction (NCEP). It re-

constructs the weather conditions of North America

since 1979 (Mesinger et al. 2006). This reanalysis is done

by assimilating observations from various sources on air

temperature, moisture, pressure, and wind fields. It also

utilizes the surface observations of precipitation, which

ensures a physically consistent quality in the re-

construction of precipitation. Studies have shown that

NARR has an improved representation of precipitation

climatological patterns when compared with previous

reanalysis products, especially within the CONUS do-

main (Bukovsky and Karoly 2007; Nigam and Ruiz-

Barradas 2006). For this reason, NARRhas been used in

the investigations of extreme weather events (Neiman

et al. 2011; Wang et al. 2016).

ERA-Interim is the second-generation global re-

analysis product from ECMWF (Dee et al. 2011). It is

produced using a 4D data assimilation system and ben-

efits from various sources of observations including

satellite data. ERA-Interim has been used in various

studies on historical extreme weather events, including

extreme precipitation (Pfahl and Wernli 2012; Guan

et al. 2010; Seneviratne et al. 2014). It has also been used

as a historical reference to evaluate the extremeweather

in climate models (Kharin et al. 2013).

Some basic information about these two datasets is

provided in T1Table 1. In this study, we took the data of

1979–2015 (37 years) and extracted the top fifty 72-h

precipitation events in every grid of the two datasets. At

every model grid, we calculated the 72-h precipitation

(hereafter called MP72) time series and identified the 50

events with the greatest 72-h precipitation. To check the

quality of the reconstructed precipitation climatology, we

compared the maximum 72-h precipitation (i.e., the top

event) during 1979–2011 against gridded observations

(Livneh et al. 2013), as shown in F1Fig. 1. The Livneh grid-

ded daily precipitation data are generated using the gauge

observations across the United States since 1915, and it is

one of the few long-term gridded datasets available.

With a higher spatial resolution, NARR better captures

the impact of land topography on the atmosphere. This

results in higher simulated precipitation from NARR on

the West Coast and over the southeastern United States,

which is closer to the Livneh data. Figure 1d shows the

correlation of maximum 72-h precipitation between the

two reanalysis products with the Livneh data. NARR

has a slightly better performance, though in general the

two reanalysis products show the spatial variation rea-

sonably well. In our analysis, we focus on the NARR data

and take the ERA-Interim as a validation.

b. Diagnostic atmospheric variables

Based on previous studies (Davies et al. 2013; Lepore

et al. 2015; Loriaux et al. 2016), we first focus on the

relationship between extreme precipitation and the

following meteorological factors: atmospheric in-

stability, moisture availability, and moisture conver-

gence. These are assumed to be major factors related to

extreme precipitation. Therefore, we investigate the

roles of the following atmospheric conditions in the

initiation and evolution of precipitation: convective

available potential energy (CAPE), precipitable water

(PW), and vertical wind velocity (wind). CAPE is de-

fined as the energy that a parcel of air would have if it

were vertically lifted a certain distance in the atmo-

sphere. In this study, we used surface-based CAPE, and

it is calculated using Eq. (1), where Z1 is the land sur-

face, Z2 is the equilibrium level, Ty,p is the virtual tem-

perature of the parcel, Ty,e is the virtual temperature of

the environment, and g is the gravitational constant.

CAPE is widely used to indicate atmospheric instability,

and it is useful in severe weather prediction (Brooks

et al. 2003; Markowski et al. 2002). In general, positive
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CAPE indicates an unstable condition, and the higher

the CAPE value, the more unstable the atmosphere is:

CAPE5

ðZ2
Z1

g
T
y,p

2T
y,e

T
y,e

dz. (1)

Precipitable water is the vertical integration of mois-

ture in the air column. It is calculated using Eq. (2),

where x is the mixing ratio at the pressure level, p1 is the

surface pressure, and p2 is the uppermost-level pressure

(100mb in NARR and 1mb in ERA-Interim; 1mb 5
1 hPa). PW indicates the moisture availability for the

rainstorm, and in heavy rainstorm events, moisture that

is several times that of the PW can be depleted:

PW5
1

rg

ðp2
p1

x dp . (2)

Vertical wind is directly taken from reanalysis fields,

presented as the velocity between pressure levels. From

the mass balance perspective, the strength of vertical

velocity is also an approximation of the large-scale

horizontal convergence (LSC). Our analysis suggests

that the greatest vertical velocity happens at 700mb in

the MP72 duration. This is in agreement with earlier

studies of midlatitude storms (Loriaux et al. 2016), and

in the following analysis we will analyze the vertical

velocity at 700mb, as it is most related to precipitation

processes.

CAPE, PW, and wind represent a summary of atmo-

spheric conditions. To check the role of driving variables

in the MP72 process, we also consider relative humidity

(RH) and air temperature T. Specifically, temperature

averaged between 850 and 500mb (Tavg) is used to

represent the ‘‘general air temperature,’’ and the

TABLE 1. Dataset used in this study.

Dataset Range Spatial resolution Temporal resolution

NARR 1979 to present 32 km/29 levels 3 h

ERA-Interim 1979 to present 0.758/60 levels 12 h (precipitation, CAPE); 6 h (PW, wind, RH, Tair)

FIG. 1. Climatological max 3-day precipitation during 1979–2011 in (a) Livneh gridded observations, (b) NARR,

and (c) ERA-Interim. (d) Regression between the observations and the two reanalysis datasets, where the x axis is

the Livneh data and the y axis is the reanalysis data. For this plot, the Livneh data were conservatively regridded to

the NARR/ERA-Interim model grids.

Fig(s). 1 live 4/C
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temperature difference between 850 and 500mb (Tdiff;

850-mb T 2 500-mb T) is used to represent the vertical

temperature gradient.

c. Analysis approach

For analysis of long-duration events (more than a

day), one difficulty is to define a state for atmospheric

conditions that is representative for the storm duration.

Therefore, we use frequency analysis to check the extent

to which the atmospheric variables are extreme.F2 Figure 2

depicts the procedures, and we give a step-by-step

description here. First, at each grid (e.g., the blue grid

in Fig. 2a), we compute the 3-day cumulative pre-

cipitation time series from reanalysis data (NARR or

ERA-Interim) and collect the top 50 most severe 3-day

precipitation events at every model grid during

1979–2015 (Fig. 2b). At this grid, we also compute the

cumulative distribution function (CDF) of factor X

(CAPE, PW, wind, RH, Tavg, or Tdiff) using 1979–2015

records, as shown by the blue lines in Figs. 2c–e. Then,

for each of these 50 events, we overlay the values ofX in

the MP72 duration on the CDF curves. From these

FIG. 2. (a),(b) Demonstration of frequency-based analysis. From a given grid, such as the blue point in (a), we can obtain the pre-

cipitation time series from the reanalysis (NARR or ERA-Interim) as shown in (b). Then we can identify the top fifty 72-h events with the

greatest rainfall amount. These 50 periods are shown as red bars in (b). From the 36-yr reanalysis data, we can also obtain the climatology

(CDF) of (c) CAPE, (d) PW, and (e) wind (blue curves). The red dots reflect the conditions of these factors in one 72-h storm duration. If

we define CDF5 95% (dashed lines) as the threshold of the extreme condition, it shows that in the 72-h duration, PW and vertical wind

are persistently high, and we call them the controlling factors of this event. At one grid, if a factor controls most of the top 50 events, then it

is defined as the dominant control of the extreme storms at this grid.

Fig(s). 2 live 4/C
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combined plots we then infer whether this variable also

reaches extreme conditions. For the example storm in

Fig. 2, the analysis indicates that PW and wind stay

persistently high, and these variables control the mag-

nitude of this storm. Compared with the previous studies

where only the peak rainfall hour (or the surrounding

12 h) environmental conditions are checked (Loriaux

et al. 2016; Mishra et al. 2012), we do not focus on a

specific hour, but rather the entire 72-h duration. This is

expected to reduce the bias in the results that are caused

by the time lag between the peak rainfall and extreme

environmental conditions.

To quantify these environmental controls, we take the

CDF$ 95% (we will call this parameter p1 hereafter) as

the threshold of extreme conditions (the dashed lines in

Figs. 2c–e). If factor X stays extreme (i.e., CDF$ 95%)

for over 15% (parameter p2) of the MP72 duration

(i.e., $4 snapshots for 3-h data, or $2 snapshots for 6-h

data), we define this event as controlled by X. Our

choice of p15 95%and p25 15%may appear somewhat

arbitrary. However, our sensitivity tests (Fig. S1 in the

online supplement) indicate that the difference in the

results is marginal when the analysis is performed with

p1 between 90% and 99% and p2 between 10% and

20%. Besides, our goal here is not to quantify the spe-

cific physical trigger but rather to identify the one that is

statistically most prevalent (or dominant) at a given

geographic location. By comparing the percentage of

the top 50 events that are controlled by each factor, we

can define the dominant physical control as the one

controlling most events. The above analyses are based

on the full records during 1979–2015, and the year-round

dominant controls can be derived. By applying the

analysis at seasonal scale, that is, using only the records

and climatology information in the given season, we also

investigate the seasonal variability of these physical

controls.

Following the same analysis framework but for pre-

cipitation of different durations (e.g., 1 or 2 days), we

can also investigate the dominant control of these dif-

ferent precipitation events.

d. Estimation of precipitation change based on the
dominant meteorological factor

The above analysis reveals how extreme precipitation

at a given location is related to the meteorological

conditions. If factor X plays a dominant role, then it is

reasonable to expect that extreme precipitation will

exhibit a similar trend as factor X. Because of the

different magnitudes and units of measurement for

different factors, this approach can only give binary info

(i.e., increase or decrease) in the precipitation trend.

3. Results

a. Historical change in extreme 3-day precipitation

F3Figure 3 shows the trend of extreme 3-day pre-

cipitation between 1948 and 2010, from gridded obser-

vation data (Livneh et al. 2013). This 1/168 dataset is
available from 1915, but because of limited raw gauge

data availability before 1948, we only analyzed the data

after 1948. To check the trend during 1948–2010, for

each year the 20-yr average return interval (ARI) value

was computed using the 3-day precipitation data in this

year. Then linear regression was applied to estimate the

trend (Fig. 3a), and the Mann–Kendall test was applied

to check the significance of these trends (Fig. 3b).

Figure 3b only renders the grids where the trends are

statistically significant under the Mann–Kendall test

(a 5 0.1). It shows high spatial variation in the extreme

precipitation trends, with mainly the central United

States showing more significant increasing trends. Ex-

treme precipitation in the northwestern United States

and the southeastern United States shows decreasing

trends, but the trends in the southeastern United States

are not significant.

Compared with changes in hourly and daily extreme

precipitation found in previous studies (Prein et al. 2017;

Kunkel et al. 2013a), Fig. 3 shows higher spatial het-

erogeneity. This suggests that the sensitivity of long-

duration (i.e., longer than 1 day) extreme events to the

past global warming is not the same across the CONUS,

and some of them may be sensitive to other climate

variables.

To connect the changes in extreme precipitation

to meteorological conditions, we also computed the

1979–2015 trends of the NARR meteorological factors

(CAPE, PW, wind, RH, and temperature) using the

samemethod (Fig. S2). A visual comparison suggests the

precipitation change (Fig. 3a) pattern mostly resembles

the vertical wind change (Fig. S2c). Previous studies

indicate that although changes in extreme precipitation

follow the Clausius–Clapeyron relation, it can be dif-

ferent when local moisture convergence (strong wind)

takes place (Trenberth 1999; Trenberth et al. 2003).

Thus, it is necessary to look into the relationship be-

tween extreme precipitation and individual factors.

b. How is 3-day extreme precipitation related to
atmospheric conditions?

F4Figure 4 shows the percentage of the top 50 local ex-

treme precipitation events that are related to extreme

CAPE, PW, and vertical wind from the NARR data.

Overall, vertical wind velocity has the greatest impact

on extreme precipitation, and this is reasonable given
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that vertical motion triggers moisture condensation. It is

necessary to note the cause of the strong impact of

vertical velocity on theWest Coast and the southeastern

United States is different, which feature atmospheric

river systems and mesoscale convective systems (cy-

clones), respectively. Regarding this ‘‘absolute impact,’’

both CAPE and PW have similar patterns: they are

closely related to extreme precipitation in the central

United States, but less so on the West Coast and in

the southeastern United States. The southeast region

experiences high CAPE year round (Fig. S3a), so it is

not a particularly important factor in extreme pre-

cipitation occurrences. In the northwest region, most of

the extreme precipitation events happen in wintertime,

when the air is cold and stable. Also, these are mainly

atmospheric river landfall events where abundant

moisture is raised and then condenses along the coastal

Cascade Range. Thus, CAPE does not play a key role

there. The fact that extreme precipitation is more

related to vertical wind velocity than PW is because

vertical wind also implies large-scale horizontal con-

vergence, which brings inmoisture from the surrounding

area in the precipitation process. This is in agreement

with findings from previous studies that during extreme

rainfall events, the consumed moisture is several times

that of PW (Kunkel et al. 2013b).

Similarly, Figs. 4c–f show the impact of distinct me-

teorological factors from NARR. They are wind

(Fig. 4c), RH (Fig. 4d), average temperature (Fig. 4e),

and the temperature gradient (Fig. 4f). It is obvious that

vertical wind and RH are the significant top two controls

in general. Specifically, wind controls storms on the

West Coast and in the southeastern United States, and

RH controls the mountainous region in the western

United States, as well as the Appalachian Mountains.

The significant role of RH is because RH has a natural

upper bound (of 100%, or ;105% in supersaturation

situations), and in the extreme precipitation duration, it

often stays at this upper bound persistently. PW is af-

fected by two factors: Tavg (i.e., the maximum moisture

holding capacity) and RH (how close the actual air

moisture is to the maximum moisture holding capacity).

Figure 4 indicates that Tavg is not a key factor in driving

PW to an extreme condition in precipitation (Fig. 4b).

Tavg and Tdiff have the greatest impact in the central-

north United States, around the Great Lakes. Also,

Tavg has a significant role in the southeast coastal re-

gions and Florida.

c. Year-round dominant controlling factor

Based on Figs. 4 and F55, we can now compare the

strengths of relationship with various factors and pick a

single factor that controls most of the 50 events as the

dominant control of extreme 3-day precipitation at that

grid. Figure 5 shows the distribution of such year-round

dominant controls. Figures 5a and 5b AU1paint the ‘‘com-

petition’’ among general atmospheric conditions (at-

mospheric instability, moisture availability, and wind

convergence). We can see that storms are mostly con-

trolled by vertical wind (i.e., convergence) in general,

though within the mountainous regions of the western

United States they would also be dominated by CAPE

or PW. Both NARR and ERA-Interim show similar

patterns, except that ERA-Interim shows an expanded

region that is dominated by CAPE. The CAPE/PW

dominant regions are distributed in the southwestern

United States, where the climate is dry and hot. There-

fore, air tends to be dry and stable, requiring significant

perturbation or abundant moisture influx before con-

densation can happen.

Figures 5c and 5d show the dominant meteorological

factor in these precipitation events. Given that it is

FIG. 3. Historical trends in extreme 3-day precipitation (taken as a 20-yr ARI) between 1948 and 2010. The trend

is calculated using an annual 20-yr ARI 3-day precipitation series between 1948 and 2010 observations. (a) Trends

from linear regression and (b) only the grids where the Mann–Kendall test shows a significant trend (at

a 5 0.1 level).
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easier for RH to reach its naturalmaximum (100%) than

PW, RH exhibits dominant roles in the western United

States. Meanwhile, the seasonal variation (i.e., the range

between winter and summer values) of RH is much

smaller than other factors such as Tavg. Therefore, even

for those extreme events occurring in winter, it would

still be possible for RH to reach its annual maximum.

For these reasons, we performed another evaluation

excluding RH, and the results are illustrated in Figs. 5e

and 5f. It indicates that as RH is taken out from the

analysis, wind becomes the single domainwide dominant

factor. The domainwide dominance of wind can also be

partially explained by the weak seasonal cycle of wind,

compared to Tavg and Tdiff.

Though both NARR and ERA-Interim yield similar

results, the major difference between the two is the

contribution of wind. As seen in Fig. 5d, over the

mountainous westernUnited States, ERA-Interim gives

fewer regions that are dominated by wind. This is likely

due to the coarse horizontal resolution in the ERA-

Interim data, which makes it harder to elicit the finer-

scaled variation in wind speed as air flows over the

mountainous regions. Such an impact from topography

is also visible in Fig. 5d, where the Pacific Northwest

region (upper-left region) in ERA-Interim shows con-

tinuous control under wind, while NARR successfully

resolves the impact of the CascadeRange near the coast.

Another difference is the description of mesoscale

convection systems (such as cyclones) in both datasets.

In the ERA-Interim product, the 75-km horizontal grids

cannot capture the spatial variability of cyclonic or

tropical storm activity in the eastern United States,

FIG. 4. The percentage of top 50 extreme precipitation events that are related to extreme (a) CAPE, (b) PW,

(c) wind, (d) RH, (e) Tavg, and (f) Tdiff during 1979–2015 from NARR. This reflects how many of the top 50

extreme 3-day rainfall events at a given grid are controlled by this meteorological factor.
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which contribute a considerable number of extreme

precipitation events in this region.

d. Seasonality of dominant controls

F6 Figure 6 shows the seasonal variation in the dominant

controls from NARR. For comparison, ERA-Interim

results are shown in Fig. S4. Both reanalysis datasets

show highly similar patterns, and they resemble the

year-round patterns to a good extent. This simplifies

the implementation of the findings in this study and

indicates that the dominant factors found here are

stable. In the CAPE/PW/wind analysis, the south-

western United States is more related to PW, since it is

dry there in summer, and moisture controls the ini-

tialization of precipitation. Also, the northern United

States is controlled by CAPE along with wind in

winter, as cold air is stable during winter. Regarding

the wind/RH/Tavg/Tdiff analysis, the patterns are

stable across seasons. This is because RH and wind,

the two dominating factors, show less seasonal vari-

ability, and in all seasons it is easier for them to reach

extreme values.

FIG. 5. Year-round dominant control over extreme precipitation across the CONUS for (left) NARR and (right)

ERA-Interim for analyses using (a),(b) CAPE/PW/wind; (c),(d) wind/RH/Tavg/Tdiff; and (e),(f) wind/Tavg/Tdiff.
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The only big difference between the two reanalysis

results is during summer. NARR shows that the eastern

United States is controlled by wind, while ERA-Interim

shows this region is now controlled by RH. Again, this is

likely due to ERA-Interim failing to capture cyclones or

tropical storms in the eastern United States during

summer when extreme precipitation is produced along

with strong vertical winds. Therefore, the seasonality

produced by NARR is more reliable.

e. Inferring precipitation trends based on
meteorological factors

The difficulty of precipitation simulation has been

widely recognized in climatemodeling (IPCC2001).Given

the year-round dominant control map in Fig. 5a, it is pos-

sible to use the long-term trends of these factors in NARR

to estimate the precipitation trends. In our analysis, if

factor X is the dominant control at a given grid, there is a

positive relationship between extreme X and extreme

precipitation. Therefore, combining Fig. 5a with the trends

of these factors during 1979–2015 (Fig. S2), we can

estimate the binary trends (i.e., increase or decrease) of

extreme precipitation; the results are shown in F7Fig. 7. As a

validation, the trends derived from the Livneh dataset are

shown in Fig. 7a. This is the same as Fig. 3a, but with exact

values removed. Figure 7b shows the estimation based on

the trends ofmeteorological factors. The large-scale spatial

patterns show a goodmatch: the vast regions in the middle

and eastern United States show increased precipitation;

the northwestern and southeastern United States show

decreased extreme precipitation. It is necessary to point

out that Fig. 7a is derived from 1/168 data, so it presents

more variation at finer scales. Such a good match suggests

that it is possible to estimate the extreme precipitation

trend from the long-term trends of related meteorological

factors (that are easier to simulate reliably).

4. Discussions

For the guidelines derived in this study to be ready to

use in engineering practice, they need to be robust and

include an estimate of uncertainty. Here, we check the

FIG. 6. Seasonal variations in the dominant controls from NARR: (a)–(d) the seasonality among wind/PW/CAPE, (e)–(h) the seasonal

variation among wind/RH/Tavg/Tdiff, and (i)–(l) as in (e)–(f), but with RH removed from the analysis.
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robustness of our results (both in the results themselves

and how they compare to the previous studies). Also, as

the guidelines are derived from relatively coarse reso-

lution data (as compared with those high-resolution

simulations suggested by climate modeling communi-

ties), the internal uncertainty in the simulated meteo-

rological factors and thus the derived results are also

investigated.

a. Robustness check

We checked the robustness of our results in three

ways:

1) We checked the generated maps (Figs. 4–6) using

different thresholds. In the presented results, we

used p1 5 95% and p2 5 15% (i.e., CDF$ 95% and

15% of 72-h duration) as thresholds. We perturbed

p1 between 90% and 99%, and p2 between 10%

and 20% in the sensitivity experiments. The results

(Fig. S1) are similar to Fig. 5a.

2) We conducted the analysis using NARR and

ERA-Interim data individually. The ERA-Interim

results are shown in Fig. 5 and Fig. S4. Despite the

difference in horizontal grid size (32 km and 75km),

the derived control maps share very similar spatial

patterns.

3) We conducted another analysis, focusing on 1- and

2-day extreme precipitation events. The derived

maps of dominant atmospheric conditions (F8 Fig. 8)

resemble Fig. 5. Thus, the patterns we find here are

robust for multiday extreme precipitation events.

b. Spatial variations of physical controls

Previous studies have checked the quantitative re-

lationship between rainfall intensity and meteorological

conditions (Lepore et al. 2015; Mishra et al. 2012;

Loriaux et al. 2016). Some of the studies regress the

rainfall intensity P to moisture availability Td and at-

mospheric instability (CAPE), and the results indicate

that there is considerable variation in these regressions.

For example, in the study of theUnited States east of the

Rocky Mountains (approximately east of 1058W; see

Fig. S6), the regression coefficient between P and Td

varies between 0.04 and 0.06 in 100-yr return period

extreme storms (Lepore et al. 2015). Specifically, this

coefficient is higher in the northeastern United States

(regions around the Great Lakes, ‘‘North’’ region in

Fig. S6), and lower in the southeastern United States

(‘‘South’’ in Fig. S6). This is consistent with our results

that PW is related to more extreme storms in the

northeastern United States, while the relationship is

weak in the southeastern United States (Fig. 4b). In

terms of CAPE, the regression analysis indicates that P

is most sensitive to CAPE in the northeastern United

States (regions around the Great Lakes, ‘‘North’’ in

Fig. S6), and the sensitivity decreases as it moves from

north to south. Such a gradient is also consistent with

Fig. 4a, where storms in the north are more related to

CAPE, but less so in the southeast.

Compared to previous studies, we eliminated the

biases introduced with different forms of regression. For

example, some studies suggest that intensity of rainfall is

positively related to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CAPE

p
(North and Erukhimova

2009), while others tried to regress rainfall intensity to

CAPE (Lepore et al. 2015). In our approach, we only

focus on the percentiles of CAPE values, so the re-

lationships derived (Fig. 4) are free from assuming dif-

ferent forms of regression. Our results also suggest that

the roles of these physical controls exhibit significant

spatial heterogeneity, and they may need to be consid-

ered at a local scale to achieve even more reliable

results.

FIG. 7. The (a) observed and (b) inferred binary trend of extreme 3-day precipitation, where (a) is as in Fig. 3a,

but without actual trend values. The inferred trend in (b) is based on the dominant control map (Fig. 5a) and the

trend in CAPE, PW, and wind (Fig. S2).AU5 Details on the computation of this plot are in section 2.
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c. Uncertainty analysis

While NARR is the highest-resolution reanalysis

available over the CONUS, the largest uncertainty in

this analysis still originates from its relatively coarse

resolution. It is known that such coarse resolution can-

not fully resolve some of the mesoscale convective sys-

tems and tropical/extratropical cyclones. Also, the

presentation of topography would lead to biases in the

simulated moisture flow from cold season extreme pre-

cipitation in mountain regions (Prein et al. 2013). To

check the potential biases in our results, we performed

the same analysis (but over only PWand 700-mb vertical

velocity) over a 4-km WRF simulation across the

CONUS during 2001–12 (Liu et al. 2017). As a refer-

ence, newmaps based on 2001–12 NARRdata were also

computed and shown inF9 Fig. 9. Figure 9a is the per-

centage of top 50 storms that are related to extreme PW,

and Fig. 9bAU2 is for vertical velocity. They are similar to

Figs. 4b and 4c, but representative of the 2001–12 period.

Figures 9c and 9d are the results from WRF simulation.

It shows that the PW pattern in the 4-km grid simulation

is similar to the NARR result, so bias correction of the

PW results is not necessary. For vertical wind, however,

the WRF simulation indicates that over the western

United States, fewer storms are related to vertical ve-

locity than that reflected in the NARR results. There-

fore, bias correction is required.

Based on Eq. (3), we can correct the wind percentage

map in Fig. 4c as

pct
NARR,bc

5 pct
NARR,197922015

1 pct
WRF,2001212

2 pct
NARR,2001212

. (3)

In Eq. (3), pctNARR,bc is the bias-corrected percentage,

pctNARR,197922015 is the NARR percentage in Fig. 4c,

pctWRF,2001212 is the percentage derived from WRF

(Fig. 9d), and pctNARR,2001212 is the percentage in

2001–12 NARR data (Fig. 9b). Using the bias-corrected

wind percentage map, we can generate a new dominant

control map, as shown in F10Fig. 10. Figure 10a shows less

dominant roles of vertical wind over the storms in the

western United States (excluding the West Coast). This

makes more sense, as the Pacific Ocean provides a

moisture source for the extreme precipitation in this

region. With the better presentation of the topographic

impact in the model, moisture tends to be lifted and

condensed as it travels above the Rocky Mountains.

Therefore, it is critical to have enoughmoisture retained

FIG. 8. Dominant atmospheric conditions in extreme 1- and 2-day precipitation analysis for (a),(b) condition among

wind/PW/CAPE and (c),(d) wind/RH/Tavg/Tdiff.
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in the airflow for the heavy precipitation to happen in

the western United States. The big patterns between

Fig. 10b and Fig. 5c are similar, though the better de-

scription of the Appalachian Mountains now results in

less wind control in this region.

d. Model-based PMP estimation

As mentioned earlier, the main motivation of our

study is the recent advances in PMP estimation using

numerical atmospheric models. Despite various efforts

to investigate how to use models to maximize the ex-

treme historical rainstorms to the PMP level (Ohara

et al. 2011; Ishida et al. 2015; Tan 2010), there has been

no general agreement reached so far within the com-

munity. Various maximization approaches have been

applied to various storms, but the extent to which they

maximize the storms differs greatly. Considering the

spatial variation of the physical controls shown in Figs. 5

FIG. 9. Impact of reanalysis resolution on the analysis of (a) PW and (b) wind, both derived from 2001–12 NARR

data. Analyses of (c) PW and (d) wind from a 4-kmWRF simulation in the 2001–12 duration (using ERA-Interim

data as initial and boundary conditions).

FIG. 10. Dominant meteorological conditions derived from NARR and a 4-km WRF simulation. Wind results (i.e.,

Fig. 4c) are corrected using a 4-kmWRF simulation (2001–12), and the other percentage results are as obtained from the

1979–2015 NARR analysis (Fig. 4). Details on the correction of wind results are described in section 4c.
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and 7, this is likely due to the different dominant con-

trols on the storms at different locations. For example,

Ohara et al. (2011) tested several methods over the

1997 January storm in central California (American

RiverWatershed) and found that the perturbation of the

horizontal wind convergence produced a much larger

‘‘PMP storm’’ than increasing the relative humidity to

100%. This result can be explained by Fig. 5a, where

central and southern areas of California are mainly

controlled by the vertical wind velocity. At the same

time, Ohara et al. (2017) found that increasing RH to

100% sometimes leads to decreased precipitation. This

can now also be explained by the dominant role of

vertical wind (rather than PW) at this location. At

wind-control locations, the disturbance of wind speed

would greatly change the rainfall magnitude, while at

PW-control locations rainfall magnitude will change

more under air moisture change. On the other hand, RH

is the only considered driver that gets maximized in the

model. This makes sense for the western United States

(excluding the West Coast area) if we look at Figs. 6c

and 6d, where RH dominates the western United States.

However, RHhas a physical upper bound (100%), and it

is often already 100% in the storm duration, so maxi-

mizing it cannot fully release the precipitation potential.

This may also explain why the model-based PMP esti-

mation using RH maximization tends to be lower than

the value from NOAA’s operational guideline Hydro-

meteorology Reports (HMRs; Tan 2010; Ohara et al.

2011). In HMRs, we maximize the precipitation using

PW, while RH is only a factor in PW. Therefore, it is

important to determine the key control of the rainstorms

over the study region and release this constraint in the

model accordingly.

Based on our analysis, we suggest that RH should be

the first factor to be maximized in model-based 3-day

PMP estimation. Since RH has a natural limit of 100%,

setting RH to 100% does not necessarily amplify the

storm to its upper bound. In this case, considering the

second factor would be useful: the wind field is an im-

portant factor to consider in the model. By setting the

wind field to its climatological maximum, precipitation

would be amplified to a reasonably higher amount. Such

numbers should make a safer and more physics-based

PMP estimate. For a more detailed PMP design, it may

be worthwhile to check the dominant controls at the

seasonal (or even monthly) scale and finer-resolution

regional climate simulations when available, and then

configure the models accordingly.

In numerical models, the RH maximization can be

achieved by setting the RH in the boundary condition to

100%. This is the same as what has been explored in

previous studies (Ohara et al. 2011; Ishida et al. 2015;

Tan 2010; Rastogi et al. 2017). Regarding the wind

maximization, since mass balance always needs to be

held, the following procedures are required:

1) For the 72-h storm duration, calculate the mean

700-mb vertical wind speed over the desired water-

shed (as Wevent).

2) Calculate the time series of 72-h averaged 700-mb

vertical wind speed over the same watershed over a

long term. Then themaximumvalue can be identified

as the climatological maxima (as Wmax).

3) Compute the maximization ratio as Wmax/Wevent.

4) When preparing the boundary data of the PMP

simulation, multiply this maximization ratio to the

whole 3Dwind field (i.e., both vertical and horizontal

winds) at all levels from reanalysis or climate model

data to create the maximized wind fields.

In this study, we have provided data-driven rationale

and guidance to engineers on what physical triggers

would make the most justification in configuring a nu-

merical model for estimating 3-day PMP. Based on

similarities between Figs. 5 and 8, such guidance is also

valid for 1- and 2-day PMP estimation. For PMP esti-

mation of other different durations, the frequency-based

analysis framework we introduced here can be used to

identify the key controlling factors.

5. Conclusions

We used NARR and ERA-Interim to investigate the

roles of general atmospheric conditions (instability,

moisture availability, wind convergence) and atmo-

spheric drivers (vertical wind, relative humidity, air

temperature) in extreme rainstorm events. These re-

lationships bring guidelines toward a physics-based

PMP estimation framework. Our conclusions are as

follows:

1) Extreme 3-day precipitation shows different trends

across the CONUS. The central United States

shows a significant increase during 1948–2010. The

extreme precipitation in the western United States

and part of the southeastern United States has a

decreasing trend over time, although the decrease in

the southeastern United States appears statistically

nonsignificant. This can be explained by a strong

relationship between extreme precipitation and ver-

tical wind velocity across the United States.

2) Both reanalysis datasets show that extreme storms

across much of the CONUS are closely related to

vertical wind velocity. Storms in the southwestern

United States are more related to moisture availabil-

ity and atmospheric instability.
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3) From the perspective of atmospheric driving factors,

relative humidity and vertical wind have a domain-

wide impact over extreme precipitation. The roles of

these factors do not exhibit strong seasonality.

4) The engineering andwater infrastructure community

can use numerical models to physically estimate

probable maximum precipitation after properly con-

sidering the existing major controls on extreme

storms (i.e., RH and wind). This will help to provide

more solid model-based PMP estimates.

For a physics-based PMP estimation framework

across the CONUS, we find two flaws in the RH maxi-

mization methods that have been proposed by many in

numerical modeling studies in the past: 1) RH may not

be the major factor that mostly relates to extreme pre-

cipitation, especially in the eastern United States, where

storm magnitudes are more related to the vertical wind

velocity, and 2) because of its natural upper bound

(;100%), it cannot maximize the extreme precipitation

to its maximum extent. Here we suggest that besides the

RH maximization, the vertical wind field maximization

is also required for a reliable PMP estimation. By gen-

erating the map on the spatial distribution of dominant

controls (Fig. 5), we also provide guidelines for the en-

gineering community on which factor should be priori-

tized in different regions across the CONUS.

Our study opens the way for physics-based 3-day PMP

estimation in the CONUS. At the same time, the

frequency-based analysis framework of the study can

also be applied to storm analysis at various durations

and in other regions where high-resolution climate re-

construction (such as the most recent ERA-5 reanalysis

product) is available. Our study provides a solid and

evidence-based guideline to engineers for modernizing

PMP estimation using numerical models and state of the

art on atmospheric scienceAU3 .
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