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Abstract 26 

The rapid decline of groundwater resources in South Asia due to excessive irrigation during dry 27 

season requires awareness of optimal on-field water requirements. Such information is currently 28 

provided on farmer cellphones through an operational Irrigation Advisory System (IAS). To 29 

minimize the cost of sending such irrigation advisory texts to farmers while maximizing impact of 30 

IAS on groundwater sustainability, we integrated Gravity Recovery and Climate Experiment 31 

(GRACE) data with Landsat Thermal Infrared (TIR) Imagery to target regions in greater need of 32 

the IAS service. We demonstrated the concept of an improved IAS over eight irrigation districts 33 

of the Ganges and Indus basins. The Surface Energy Balance Algorithm for Land (SEBAL) was 34 

used to monitor on-field water consumption (evapotranspiration-ET) over cropped areas using 35 

Landsat TIR data at plot-scale spatial resolution. Comparison of SEBAL ET with crop water 36 

demand from Penman-Monteith (FAO56) technique quantified the extent of over-irrigation at the 37 

plot scale and provided a tangible pathway to micro-target the IAS service only to farmers with 38 

the largest groundwater use footprint, thereby improving the impact of the IAS service further. 39 

Our results suggested that an operational IAS that integrates GRACE and Landsat TIR data on 40 

average can save about 85% (80 million m3) of groundwater per dry season for irrigation districts 41 

of Northern India and 87% (or 150 million m3) per year for irrigation districts of Eastern Pakistan. 42 

Keywords: Irrigation, groundwater, Gravity Recovery and Climate Experiment (GRACE), 43 

Landsat, thermal infrared, evapotranspiration 44 

  45 
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1. Introduction 46 

Groundwater, one of the most important freshwater resources, satisfies significant water demand 47 

required by irrigational (42%), domestic (36%), and industrial uses (23%) (Döll et al., 2012; 48 

Famiglietti, 2014; Taylor et al., 2013). It also sustains rivers during dry seasons, by providing base 49 

flow. However, a growing population requires increased agricultural productivity. This 50 

consequently triggers a significant and often unsustainable extraction of groundwater around the 51 

world (Siebert et al., 2015). The evident correlation of groundwater depletion with extensive 52 

irrigation activity is very distinct in South Asian countries where the monsoon weather system 53 

dominates the precipitation regime. The monsoon is a system with prevailing winds along a certain 54 

direction. It brings in bountiful amounts of rain (wet phase) followed by a reversal in wind 55 

direction resulting in no precipitation (dry phase) (Ramage, 1971). Each phase lasts at least 4-5 56 

months and the dry phase is markedly non-precipitating with low streamflow and dry soils. During 57 

the dry phase of the monsoon, irrigation activities for food production can be sustained only from 58 

groundwater recharged by the rains from previous wet phase.  59 

South, Southeast, and East Asia sustain extensive irrigation systems by relying mostly on 60 

groundwater pumped during the dry season, which is (hereafter) the period spanning from 61 

November to April (Hossain et al. 2017). Hence, the water and food security in South Asia is 62 

deeply rooted in groundwater resources of the transboundary aquifer system of Indus-Ganges-63 

Brahmaputra-Meghna (IGBM) rivers that supports a net cropping area of 1.14 million km2 64 

(Malakar et al., 2020; Mukherjee et al., 2015). For South and East Asia, the total annual water 65 

withdrawal is roughly 1981 km3, which is about 50 percent of world total (FAO, 2016). Agriculture 66 

requires around 82 percent of the total freshwater withdrawal in Asia, which is much higher than 67 

global agricultural water withdrawal (70 percent) (FAO, 2016). The highest water withdrawal in 68 
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South Asia is reported in India comprising of about 10400 m3/ha (1040000 m3/km2) of irrigated 69 

land (FAO, 2016). As a result of this high groundwater withdrawals, South Asia today experiences 70 

rapid groundwater depletion, predominantly in North-West (Ganges Basin) and South-East 71 

(Bengal basin) India, upper Indus Basin in Pakistan and Meghna basin in Bangladesh (MacDonald 72 

et al., 2016). Such extensive withdrawal of groundwater jeopardizes the water sustainability for 73 

the millions of farmers in South-Asia whose livelihood depends on crops produced during the dry 74 

season.  75 

 Rodell et al. (2018) identified the rate of depletion of total water storage (TWS) to be 76 

19.2 ± 1.1 km3/year (half the storage capacity of Three Gorges Dam in China) in Northern India 77 

resulting from groundwater irrigation. From 1996 to 2017 an increasing  trend of groundwater 78 

storage loss has been  reported over  the  lower Ganges basin varying from −48.83 to −2.27 cm/year 79 

during winter (or dry) seasons (November to April) (Rahman et al., 2020). According to GRACE 80 

TWS analysis, Indus basin has been losing groundwater storage at a rate of 1.5 km3/year even after 81 

accounting for monsoonal recharge (Iqbal et al., 2017, 2016). Piezometer-based investigations 82 

indicated a smaller but nevertheless non-negligible loss rate of 0.54 km3/year (Iqbal et al., 2016). 83 

However, the overall trend remains alarmingly unsustainable irrespective of data source or method 84 

used (Iqbal et al., 2016). A recent study also reported a net loss of about 1 cm/year groundwater 85 

storage from 2010 to 2017 in the upper Indus plain (Salam et al., 2020).  86 

In addition to the boom of groundwater-dependent irrigation, wastage of water by irrigating 87 

more than the crop water demand also contributes to this unsustainable groundwater depletion. For 88 

instance, the water requirements for rice in Punjab and Sindh Provinces of Pakistan are 89 

approximately 600 and 1400 mm, respectively; but the farmers routinely apply around 2200 mm 90 

resulting in a significant loss of groundwater, and an increase in fuel cost due to pumping from 91 
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deeper layers (Hossain et al. 2017). Therefore, a proper management of groundwater resources for 92 

agricultural uses is critical for a sustainable balance between groundwater supply and demand to 93 

ensure food security in the coming decades for South Asia (Malakar et al., 2020; Rahman et al., 94 

2020). A recent study by the Central Groundwater Board of India has reported that Western India 95 

is likely to run out of its groundwater in another 20 years (Singh, 2020). 96 

 Optimizing irrigation according to crop water need can play an important role in ensuring 97 

a more sustainable use of ground water. By ensuring that farmers pump groundwater during the 98 

dry season according to the demand for crop growth rather than the archaic wasteful practice of 99 

flood irrigation, an Irrigation Advisory Service (IAS) should be able to minimize the current and 100 

rampant groundwater wastage. There has already been anecdotal evidence that an operational IAS 101 

can achieve this based on recent implementation in Indus basin since 2016 102 

(http://www.pcrwr.gov.pk/advisory.php and http://www.pak-ias.org) and more recently in India 103 

(Hossain et al., 2020; http://www.i-pani.com), and Bangladesh (http://pani.hmrcweb.com). 104 

 To conserve groundwater and improve crop yield, one of the well-known IAS services for 105 

Pakistan Council of Research in Water Resources (PCRWR; 106 

http://www.pcrwr.gov.pk/advisory.php and http://www.pak-ias.org) was developed by 107 

Sustainability, Satellites, Water, and Environment (SASWE) research group of University of 108 

Washington (UW) in August 2016 (Hossain et al. 2017). This IAS is coined as  “smart” irrigation 109 

service and was operationalized for advising farmers on how much and when to irrigate based on 110 

crop water demand or evapotranspiration (ET) and forecast of precipitation and weather 111 

conditions. A proxy measure of the reference evapotranspiration rate (ETo), the crop water 112 

requirement for a crop, was computed using a method from Allen et al. (1998) which is known as 113 

Penman-Monteith (FAO 56) method. This technique was basically an alteration of a well-known 114 

http://www.pcrwr.gov.pk/advisory.php
http://www.pak-ias.org/
http://www.i-pani.com/
http://pani.hmrcweb.com/
http://www.pcrwr.gov.pk/advisory.php
http://www.pak-ias.org/
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equation reported in Monteith and Unsworth (1990) using temperature, humidity, wind speed, and 115 

solar radiation as inputs. The model outputs are nowcasts and forecasts of the need of irrigation 116 

and precipitation for each week. The input to the model is obtained from a Global Numerical 117 

Weather Prediction (NWP) modeling system known as the Global Forecast System (GFS) (see 118 

here: https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-119 

gfs). The nowcast weather variables from GFS produce nowcast of crop water demand, 120 

precipitation, and other farming-relevant conditions such as humidity, windspeed and temperature. 121 

Similarly, the forecast weather variables from GFS help produce forecast of the same variables. 122 

Lysimeter-based ET data were used by PCRWR to validate the nowcast inputs to indicate that the 123 

FAO56 based crop water demand (forecast and nowcast) was skillful enough to be used in IAS for 124 

farmers.  125 

 In this operationalized IAS, when supply (rainfall/recent irrigation) exceeds crop water 126 

demand, the farmers get advisory on their cellphones to skip or reduce irrigation. Similarly, when 127 

crop demand exceeds supply, farmers get the advisory to apply or increase irrigation. Such an IAS 128 

has also been successfully piloted over Kanpur in India under the name of Provision for Advisory 129 

on Necessary Irrigation (PANI) (Hossain et al., 2020; http://www.i-pani.com). PANI was launched 130 

at the start of the winter wheat season of October 2018 and irrigation and weather advisory services 131 

were provided to farmers until harvest in March 2019. After harvest, the survey reported that out 132 

of the 150 farmers, 128 (85 percent) provided valuable feedback on the effectiveness of PANI. 133 

(USAID Agrilinks, 2020). Most recently, the IAS has seen expansion to Bangladesh in 2019 on a 134 

pilot scale with 165 farmers (http://pani.hmrcweb.com). Starting with 700 farmers in Pakistan in 135 

2016, tens of thousands of farmers are now beneficiary of the services of IAS in these monsoon-136 

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
http://www.i-pani.com/
http://pani.hmrcweb.com/
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affected South Asian nations who are known to waste groundwater during the dry season when 137 

food production is critical.  138 

 According to a survey of randomly selected farmers carried out by PCRWR, it is speculated 139 

that the IAS can potentially save about 2.5 km3 of groundwater a year per 100,000 farmers in 140 

Pakistan (IAS, 2018). This is equivalent to 40% potential savings in irrigation water. In recent 141 

years, IAS had positive impacts on increase in yield of wheat in Pakistan and India of up to 500 142 

kg/ha for wheat with 80%, 85% and 78% usage rate by farmers in Pakistan, India, and Bangladesh, 143 

respectively (IAS, 2018). Many other countries have also adopted crop water demand-based 144 

irrigation advisory such as IAS. Examples are Castilla-La Mancha in Spain, Baixo Acaraú 145 

irrigation district in Brazil, and Australia. (Car et al., 2012; Corcoles et al., 2016; Ortega et al., 146 

2005). An assessment report on water use efficiency (WUE) of IAS in Spain was published for 147 

corn yield by comparing crop coefficients from regional IAS (demand) and satellite products 148 

(consumed). It evaluated the irrigation deficit and over-irrigation based on WUE and reported 149 

deficient irrigation during dry season and full or over-irrigation during wet season over their 150 

selected irrigation districts (Segovia-Cardozo et al., 2019).  151 

Despite the benefits, there is always room for improvement as IAS is a public service with 152 

an operational cost. In South Asian countries, this cost is maintained by governments, and therefore 153 

only a finite fraction of farmers can receive this service at the moment. These countries are not yet 154 

ready for a viable and universal service that is accessible to every single of the 130 million or more 155 

farmers of South Asia (Dixon et. al., 2001). Hence, one area of improvement for IAS is to optimize 156 

the targeting of the service exclusively to regions and farmers where groundwater consumption 157 

for irrigation needs to be more urgently managed so that the overall impact on sustainability is 158 

larger for the same limited service.  159 
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The objective of this study is to improve the existing IAS by integrating Gravity Recovery 160 

and Climate Experiment (GRACE) TWS anomaly data with Thermal Infrared (TIR) imagery from 161 

Landsat by prioritizing advisory texts only to over-irrigating farmers in rapidly depleting 162 

groundwater regions. The use of Landsat TIR data for tracking on-field agricultural water 163 

consumption is now well established (this is discussed in more detail in section 4). Large scale 164 

identification of groundwater depleted zones using GRACE TWS data have been reported in many 165 

studies (Bhanja et al., 2020; Castellazzi et al., 2018, 2016; Gao et al., 2020; Li et al., 2019; Richey 166 

et al., 2015; Rodell et al., 2018, 2009; Salam et al., 2020; Sarkar et al., 2020; Voss et al., 2013). 167 

Also, local scale investigation of groundwater level changes has been reported by Sun (2013) by 168 

downscaling GRACE TWS data. However, to the best of our knowledge, none of these studies 169 

incorporated groundwater depleted zone identification from GRACE data and integrated with 170 

Landsat TIR data for an operational IAS Resource-constrained nations in South Asia have limited 171 

capacity to maintain an irrigation advisory as a free service for all their farmers until a proper 172 

business model is developed. Thus, it is timely to investigate how the integration of satellite 173 

gravimetry with satellite TIR data can improve the efficiency of the IAS in terms of maximizing 174 

impact for the same outreach to farmers. 175 

 In this study, we identified the groundwater depleted regions using GRACE TWS during 176 

dry season. We assessed the irrigation scenarios over those identified zones at a local/district scale. 177 

We compared the water consumed by plants over those districts with the crop water demand. To 178 

determine the actual water consumption, we computed ET using Surface Energy Balance 179 

Algorithm for Land (SEBAL) (Bastiaanssen et al., 1998a, 1998b) and the crop water demand was 180 

computed by estimating the ET based on Penman-Monteith (FAO-56) technique. Finally, from 181 

this comparison we identified the regions with excessive over-irrigation and evaluated the percent 182 
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of ground water that could potentially be saved with proposed improved IAS. Finally, we proposed 183 

an improved IAS based on integration of GRACE gravimetry and Landsat TIR data for maximum 184 

reduction of groundwater waste for monsoon dominated regions around the world with extensive 185 

dry season irrigation practice.  186 

The key questions this study asks are as follows: 187 

1) What is the representative scale at which GRACE TWS data should be applied for 188 

integration with an operational IAS? 189 

2) To what extent we can independently verify GRACE-identified regions where groundwater 190 

is potentially declining due to excess irrigation during dry season? 191 

3) What is the potential impact of irrigation water saving with an IAS enhanced with GRACE 192 

and Landsat TIR satellite data? 193 

The rest of the paper is organized as follows. We describe the selected study sites in section 194 

2, data sources and methodology are introduced in sections 3 and 4, respectively and the results 195 

are discussed in section 5. Future direction of the work and conclusions are summarized in section 196 

6. 197 

2. Study Sites 198 

The IGBM basin spreads across the lush plains in Pakistan, India, Bangladesh, and Nepal; 199 

one of the world’s most important high yielding transboundary aquifer systems (Mukherjee et al., 200 

2015). In this study, we considered the Ganges and Indus basins from IGBM. Rapid depletion of 201 

groundwater has been observed over Uttar Pradesh (Ganges, India) and Punjab (Indus, Pakistan). 202 

In Uttar Pradesh, the net area of irrigation dependent on groundwater is approximately 106,410 203 

km2 (FAO, 2016). Uttar Pradesh is divided into many irrigation districts. Based on depth to water 204 

table (DTW) analysis we selected Kanpur Nagar (3,155 km²), Kanpur Dehat (3,021 km²), Agra 205 
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(4,027 km²), and Lucknow (2,530 km²) as these regions are suffering most from water scarcity 206 

during dry season (Figure 1a). Here we define dry season as the period from November to April. 207 

In Kanpur Nagar, the DTW was 8 m in 2002, which has now dropped to 20 m in 2020. Similarly, 208 

in Kanpur Dehat, Agra, and Lucknow DTW dropped from 8 m to 17 m, from 15 m to 30 m and 209 

from 7 m to 20 m, respectively (WRIS India; see https://indiawris.gov.in/wris/). 210 

In northeastern part of Punjab province in Pakistan, the declining groundwater tables are 211 

mostly noticed in areas with fresh groundwater (Mekonnen et al., 2016). Particularly, Eastern 212 

Punjab is a hotspot for groundwater depletion. The net irrigation area dependent on groundwater 213 

in Punjab province is about 42,930 km2 (FAO, 2016). For our study we selected four most 214 

vulnerable areas comprised of Sargodha (5,854 km²), Muzaffargarh (8,249 km2), Layyah (6,291 215 

km²), and Sheikhupra (3,030 km²) in Punjab based on DTW analysis (Figure 1b). 216 

 217 

Figure 1: Study sites showcasing (a) four irrigation districts (Kanpur Nagar, Kanpur Dehat, Agra, 218 
and Lucknow) selected within Ganges basin and (b) four irrigation districts (Sargodha, Layyah, 219 
Muzaffargarh, and Sheikhupura) selected within Indus basin. 220 

 221 

 222 

https://indiawris.gov.in/wris/
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3. Data 223 

3.1 GRACE TWS: Identifying groundwater depleted zones  224 

To rapidly identify the unsustainable groundwater depleted regions (during dry season) for 225 

a more efficient IAS, GRACE TWS anomaly data for the period of 2002 to 2016 were retrieved 226 

from a cloud computing catalog 227 

(https://developers.google.com/earthengine/datasets/catalog/NASA_GRACE_MASS_GRIDS_L228 

AND) hosted by Google Earth Engine (GEE) (Gorelick et al., 2017). GRACE Tellus (GRCTellus) 229 

Monthly Mass Grids provides monthly gravitational anomalies relative to a 2004-2010 time-mean 230 

baseline. The anomaly data confined in this dataset are units of "Equivalent Water Thickness" 231 

which represent the deviations of mass in terms of vertical extent of water in centimeters. The 232 

GRCTellus dataset is produced by three centers: the Center for Space Research at the University 233 

of Texas at Austin (CSR MASCON), NASA Jet Propulsion Laboratory (JPL) and German Space 234 

Agency (Geoforschungszentrum, GFZ). Each center is a part of the GRACE Ground System and 235 

generates Level-2 data (spherical harmonic fields) which are resampled to 1 degree in the GEE 236 

catalog. Here we used the CSR MASCON product with a resolution of 1 degree (~100 km).  237 

3.2 Landsat-7 Thermal IR Data: Estimation of ET 238 

To monitor water consumption of plants (ET), land surface temperature is an important 239 

component, which we can derive from satellite remote sensing data, specially where no ground 240 

data is available. For computing ET, we used TIR data from Landsat-7 ETM+ (Tier 1) as top of 241 

the atmosphere (TOA) radiation because TIR bands have a high spatial resolution of 60-100 m 242 

with bi-weekly temporal resolution (Senay et al., 2016). Among various ET estimation methods, 243 

in this study we used the SEBAL method for monitoring water consumption of plants (discussed 244 

https://developers.google.com/earthengine/datasets/catalog/NASA_GRACE_MASS_GRIDS_LAND
https://developers.google.com/earthengine/datasets/catalog/NASA_GRACE_MASS_GRIDS_LAND
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later in methodology). We imported Landsat-7 ETM+ (Tier 1) TOA TIR radiation and 245 

visible/near-infrared reflectance data from GEE which were radiometrically corrected following 246 

the procedure from Chander et. al. (2009). We did not perform further ambient atmospheric 247 

corrections for the TIR radiation, as our focus was exclusively on the dry season with very low 248 

atmospheric moisture content. We used an interpolation algorithm in GEE taking mean of pixels 249 

in a square kernel of radius 1 or mean of 2 pixels in neighborhood to fill the gaps in Landsat 7 250 

images. This interpolation technique did not impact the results as spatial variation of temperature 251 

or wind speed is not significantly different between two adjacent pixels of Landsat. The Blue 252 

(0.45 - 0.52 µm), Red (0.63 - 0.69 µm), Near Infrared (0.77 - 0.90 µm), Shortwave Infrared (1.55 253 

- 1.75 µm) bands were acquired at a resolution of 30 m and TIR band data (10.40 to 12.50 μm) 254 

was acquired at a resolution of 60 m (see 255 

https://developers.google.com/earthengine/datasets/catalog/LANDSAT_LE07_C01_T1_TOA).  256 

3.3 Meteorological Forcings 257 

For developing models to estimate crop water consumption and crop water demand, one 258 

of the important datasets is the meteorological forcing data. In this study we used the dataset 259 

from Global Land Data Assimilation System (GLDAS) (available at: 260 

https://developers.google.com/earthengine/datasets/catalog/NASA_GLDAS_V021_NOAH_G02261 

5_T3H). GLDAS combines satellite and ground based observed data; creates optimal fields of 262 

land surface states and fluxes. It provides 3 hourly data with a spatial resolution of 0.25 degree 263 

(~25 km). The GLDAS component inputs for both models (SEBAL and Penman-Monteith) were 264 

air temperature at 2 m, wind speed at 10 m, specific humidity, and pressure. For our purposes, 265 

using GEE, we aggregated 3 hourly data to daily data. 266 

 267 

https://developers.google.com/earthengine/datasets/catalog/LANDSAT_LE07_C01_T1_TOA
https://developers.google.com/earthengine/datasets/catalog/NASA_GLDAS_V021_NOAH_G025_T3H
https://developers.google.com/earthengine/datasets/catalog/NASA_GLDAS_V021_NOAH_G025_T3H
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3.4 Precipitation products and In-situ well data 268 

For precipitation, which is a key component of water budget model, we used three different 269 

products; Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), Tropical 270 

Rainfall Measuring Mission (TRMM) and Copernicus ERA5. CHIRPS is a 35+ year quasi-global 271 

rainfall data set, spanning 50°S-50°N (and all longitudes). It provides daily data at 0.05 degree (~5 272 

km) spatial resolution (see here: https://developers.google.com/earth-273 

engine/datasets/catalog/UCSB-CHG_CHIRPS_DAILY) . TRMM 3B42 dataset provides a 3 274 

hourly rainfall estimates at 0.25-degree (~25 km) resolution (see here: 275 

https://developers.google.com/earth-engine/datasets/catalog/TRMM_3B42). ERA5 dataset 276 

provides an atmospheric reanalysis of the global climate, a fifth-generation product of European 277 

Centre for Medium-Range Weather Forecasts (ECMWF). The reanalysis integrates the model data 278 

with complete and consistent observations from across the world into a global dataset. The daily 279 

total precipitation values in ERA5 are given as daily sums with a spatial resolution 0.25 degree 280 

(~25 km) (see here: https://developers.google.com/earth-281 

engine/datasets/catalog/ECMWF_ERA5_DAILY). We downscaled all three precipitation 282 

products to 100 m for spatial aggregation using bilinear resampling technique. We summed up the 283 

precipitation values of each dataset for getting the monthly accumulations. For example, in case 284 

of TRMM, we first aggregated the three-hourly precipitation to obtain the daily data. Next, we 285 

aggregated the daily precipitation values to obtain the monthly accumulated precipitation. Note 286 

that, these products were used separately without merging into a single product.   287 

 To understand if on-farm water consumption according to SEBAL ET during dry season 288 

is a proxy for groundwater withdrawals, we used in-situ DTW data. For irrigation districts within 289 

Ganges basin, we used a data portal named Water Resources Information System of India (WRIS 290 

https://developers.google.com/earth-engine/datasets/catalog/TRMM_3B42
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY
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India; see https://indiawris.gov.in/wris/) that uses data from Central Ground Water Board of India. 291 

For irrigation districts within Indus basin, we used sampled piezometer data provided by PCRWR 292 

(Iqbal et al., 2017). 293 

4. Methodology 294 

First, we identified the regions of rapid groundwater depletion by analyzing spatial and 295 

temporal trend of GRACE TWS anomaly from 2002-2016. Next, to find the appropriate scale for 296 

rapid zone identification, we compared GRACE TWS anomaly with water budget model derived 297 

TWS. Then, as mentioned earlier, we analyzed four irrigation districts each within Ganges and 298 

Indus basins. Given that wheat is the dominant crop during the dry season in those districts, for 299 

wheat we compared the actual water consumption and crop water demand using SEBAL and FAO 300 

56 Penman-Monteith method, respectively  and assessed the nature of ambient irrigation (under or 301 

over) in the selected irrigation districts. A scenario of over-irrigation was identified when actual 302 

water consumption (SEBAL ET) was found to be greater than the crop water demand (Penman-303 

Monteith ET). Similarly, when actual water consumption was found to be less than the crop water 304 

demand, the scenario was flagged as under-irrigation. Finally, we calculated the percent of over or 305 

under irrigation over those regions and calculated how much irrigated water can be potentially 306 

saved with an improved IAS during dry season. Figure 2 schematically summarizes the approaches 307 

followed to address our following objectives.  308 

https://indiawris.gov.in/wris/
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309 

Figure 2: Schematic summary of steps followed in methodology 310 

4.1 SEBAL ET  311 

 For quantifying actual water consumption (ET) variability where availability of ground-312 

based data is a constraint, various satellite-based methods are reported in literature. SEBAL and 313 

METRIC (Mapping Evapotranspiration at High Resolution and with Internalized Calibration) are 314 

such two widely-used techniques (Liou and Kar, 2014). In our study we implemented SEBAL 315 

which has already been effectively implemented in many studies to assess actual ET using satellite 316 

images (Ghaderi et al., 2020; Senay et al., 2016). SEBAL model solves the surface energy balance 317 

to compute ET using satellite images and weather data. Since the satellite image provides 318 

information for the overpass time only, SEBAL computes an instantaneous ET flux for the image 319 

time. A series of equations are incorporated in SEBAL model that compute net surface radiation, 320 

soil heat flux, and sensible heat flux to the air. The residual energy flux is then calculated by 321 

subtracting the soil and sensible heat fluxes from the net radiation at the surface. This residual 322 

energy (latent heat) enables liquid water to phase transition to water vapor, i.e., evapotranspiration. 323 
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Thus, for each pixel of the image, the ET flux is calculated as a residual of the surface energy 324 

budget equation: 325 

λET = Rn – G – H           (1) 326 

where λET is the latent heat flux (W/m2), Rn is the net radiation flux at the surface (W/m2), G is 327 

the soil heat flux (W/m2), and H is the sensible heat flux (W/m2).  328 

 We computed daily or 24-hour ET by assuming that the variations in instantaneous ET are 329 

not significant over the 24-hour period (Allen et. al. 2007). For monthly ET calculation, we 330 

calculated ET on the day of Landsat acquisition, and we considered same steady-state ET for 16 331 

days from that day to the day of next Landsat image availability. Next, we summed up the ET 332 

values for getting the monthly ET. This assumption of considering ET same for 16 days is feasible 333 

for crop water demand calculation as ET values are much stable during each growth stage of crops 334 

that lasts more than 15 days. Also, irrigation decisions in South Asia are often made according to 335 

growth stage variations or at weekly to bi-weekly timescales rather than sub-weekly. 336 

4.2 Penman-Monteith ET 337 

 Penman-Monteith ETo, which is a proxy to potential water demand for reference crop, was 338 

calculated over the same time period and districts following the steps from Allen et al., (1998). 339 

The equation for ETo is as follows: 340 

𝐸𝐸𝐸𝐸𝑜𝑜 =
0.408 ∆ (𝑅𝑅𝑛𝑛 − 𝐺𝐺) + 𝛾𝛾 900

𝑇𝑇 + 273  𝑢𝑢2 (𝑒𝑒𝑠𝑠 − 𝑒𝑒𝑎𝑎)

∆ + 𝛾𝛾 (1 + 0.34 𝑢𝑢2)        (2)  341 

where, 𝐸𝐸𝐸𝐸𝑜𝑜 is reference evapotranspiration (mm/day) 342 

𝑅𝑅𝑛𝑛 is net radiation (MJ m-2 day-1) 343 
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G is ground heat flux (MJ m-2 day-1), considered negligible (i.e., 0) here 344 

T is mean air temperature at 2 m height (˚C) 345 

𝑢𝑢2 is wind speed at 2 m height (m/s) 346 

𝑒𝑒𝑠𝑠 saturation vapor pressure (kPa) 347 

𝑒𝑒𝑎𝑎 actual vapor pressure (kPa) 348 

∆ is slope of saturation vapor pressure (kPa ˚C-1)     349 

𝛾𝛾 is psychrometric constant (kPa ˚C-1)  350 

ETo calculated using equation 2 is for a reference crop (grass of 0.12 m height) which is 351 

then converted for the actual crop growing in the selected districts. For this we considered the crop 352 

type, development stage, and the relative soil saturation (or stress). As wheat was the dominant 353 

crop in our study regions, we used the corresponding crop coefficient (Kc) referred in FAO, 2020 354 

and assumed soil water stress coefficient (Ks) of 0.5, which in our experience is representative of 355 

stress conditions during the dry season. We multiplied Kc and Ks with ETo to derive the crop 356 

water demand for wheat over the study regions. 357 

4.3 Spatial and temporal trend of GRACE TWS anomaly  358 

 To understand the trends in groundwater storage from 2002 to 2016, we fit a linear model. 359 

Considering January to December for CSR MASCON product of GRACE TWS anomaly over the 360 

entire time period, we developed a linear regression model. Here, we assumed that GRACE TWS 361 

anomaly is a strong proxy for groundwater storage change during dry season in monsoon climates 362 

based on the water budget equation as follows: 363 
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ΔS = P - Q - ET           (3) 364 

In above equation 3, ΔS, P, Q and ET are total/terrestrial water storage change, precipitation, 365 

surface run-off and evapotranspiration, respectively. The total storage change can be further 366 

broken down into the following four components.  367 

ΔS = ΔGWS + ΔSM + ΔSWE+ ΔSW        (4) 368 

Here, ΔGWS, ΔSM, ΔSWE, and ΔSW are storage change components for groundwater, soil 369 

moisture, snow water equivalent, and surface water, respectively. 370 

During dry season in South Asian countries, there is negligible precipitation or surface run-off. 371 

Hence, P and Q are near-zero and thus, ΔSM and ΔSW are also negligible. Rodell et. al. (2009) 372 

stated that the contribution of Himalayan glacier mass loss to GRACE TWS anomaly trend is 373 

minor. Given no snow-covered areas in the Gangetic and Indus plains of South Asian countries, 374 

ΔSWE is also equivalent to zero. Therefore, we are left with the simplified form for equation 4 for 375 

South Asia during dry season, i.e., ΔS = ΔGWS. This is the basis of our hypothesis for using 376 

GRACE TWS anomaly as a proxy for groundwater storage change during dry season, which we 377 

later demonstrate as having a sound basis. 378 

4.4Representative GRACE data scale for identification of groundwater depleted zones  379 

For identifying the representative scale at which GRACE can be used to rapidly identify 380 

the fast depleting zones, we compared GRACE TWS anomaly against the water budget model 381 

derived TWS anomaly. First, we divided the entire Ganges basin into 5 sub-basins based on the 382 

stream orders as shown in Figure 3.  We defined the stream order based on Strahler’s classification. 383 

The higher ordered sub-basins included all the lower order sub-basins. After sub-basin delineation, 384 

we developed the water budget model from 2002-2014 using equation 3 and implemented over 385 
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each sub-basin followed by estimating TWS. For model inputs, three different precipitation 386 

products (CHIRPS, TRMM and ERA5) were used to address the uncertainty embedded with 387 

satellite products, run-off from Variable Infiltration Capacity (VIC) (Liang et al., 1996; Siddique-388 

E-Akbor et al., 2014) model, and ET from SEBAL model (equation 1).  389 

 For the ET component of the water budget model (equation 3), we applied SEBAL using 390 

Landsat-7 satellite images. The SEBAL model also required the meteorological data including 391 

wind speed, surface pressure, specific humidity, and air temperature as inputs for solving the 392 

surface energy balance calculation (equation 1). We used GLDAS outputs as meteorological 393 

forcing input for the SEBAL model. To avoid the non-cropped areas, we used the crop map from 394 

Global Food Security Support Analysis Data (GFSAD) Crop Dominance Global 1 kilometer (km) 395 

(can be accessed here: https://lpdaac.usgs.gov/products/gfsad1kcmv001/).  396 

It is worth mentioning that there are alternate approaches for satellite-based ET estimation. 397 

For example, the VI-Ts method has been used to compute actual ET or crop water consumption 398 

(Tang et al., 2009). The spatial and temporal resolutions (250 to 1,000 m and 3 to 7 days, 399 

respectively) in that study were afforded by Moderate Resolution Imaging Spectroradiometer 400 

(MODIS). MODIS is a key instrument aboard the Terra (originally known as EOS AM-1) and 401 

Aqua (originally known as EOS PM-1) satellites (see: https://modis.gsfc.nasa.gov/about/). Tang 402 

et al. (2009) used different MODIS parameters to compute the crop water consumption and 403 

verified the results by modifying METRIC algorithm based on SEBAL. In our study, we used 404 

Landsat images (temporal frequency 16 days) which are not as frequent as MODIS. However, for 405 

the objective of our study, the spatial resolution (from Landsat) is more important than temporal 406 

frequency in general because farmers do not need to make irrigation decisions about their crops 407 

every day or week, especially for wheat.  408 

https://modis.gsfc.nasa.gov/about/
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Next, water budget derived TWS and GRACE TWS datasets was compared over each 409 

individual sub-basin. The desired scale was selected after analyzing the bias, root mean square 410 

error (RMSE), and Spearman’s rank coefficient between water budget derived TWS and GRACE 411 

TWS anomaly. 412 

4.5 Irrigation scenario assessment 413 

We quantified actual (on-farm) irrigation scenario over the selected regions to find if over-414 

irrigation was triggering groundwater depletion. First, we performed supervised classification 415 

technique (random forest classification scheme) to differentiate cropped and uncropped regions  416 

 417 

Figure 3: Delineation of sub-basins based on stream orders for water budget model development 418 
over Ganges basin. On the right, different colors incorporate to corresponding areas and respective 419 
scales of each sub-basin. 420 
 421 

within the selected irrigation districts. We used Landsat-7 images and trained the classification 422 

model using four land covers; crop, forest, water, and urban to derive the land use with crops only 423 

(the latter three were grouped as uncropped) as shown in Figures 4 and 5. Wheat being the 424 
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dominant crop from November to April (FAO, 2020) in the selected districts, we considered wheat 425 

growing over the entire cropped regions and proceeded with further analysis.  426 

 Next, we applied SEBAL and Penman-Monteith methods on the cropped regions from 427 

2002 to 2014 to obtain the actual water consumed by plants and water required, respectively. 428 

Finally, we used equation 5 to obtain the percentage of over or under irrigation happening over the 429 

selected districts comparing two sets of ETs. 430 

Percent of over/under irrigation =   431 

Actual water consumed (SEBAL ET)−Water Needed(Penman−Monteith ET)
Water Needed (Penman−Monteith ET)

  x 100                     (5) 432 

 433 

Figure 4: Crop maps over (a) Kanpur Nagar, (b) Kanpur Dehat, (c) Agra, and (d) Lucknow. Here, 434 
Green legend corresponds to the cropped areas. 435 
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 436 

Figure 5: Crop maps over (a) Sargodha, (b) Layyah, (c) Muzaffargarh, and (d) Sheikhupura. Here, 437 
Green legend corresponds to the cropped areas. 438 

5. Results and Discussions 439 

5.1 Spatial and temporal trend of GRACE TWS anomaly: 440 

Understanding the spatial and temporal trends of groundwater depletion is key to finding 441 

the vulnerable zones for precision targeting for an improved IAS. The spatial trend of groundwater 442 

depletion observed using regression model over Ganges basin from 2002 to 2016 is depicted in 443 

figure 6 (a). The GRACE TWS anomaly, already noted as a proxy for groundwater change during 444 

dry season, showed a maximum negative trend of 1.99 cm/year equivalent height of water. This 445 

means the maximum rate of groundwater depletion over the Ganges basin is 1.99 cm/year. The 446 

most alarming finding is the overall descending trend suggesting a continuous depletion over the 447 

basin regardless of wet or dry seasons. That indicates, even with the wet season recharge phase, 448 

overall (net) groundwater storage continues to decline. We studied the temporal trend of averaged 449 

TWS anomaly over the basin and observed a declining trend of 1.2 cm/year (figure 6 b). We found 450 

a maximum positive trend/groundwater recharge of 0.52 cm/year over the lower part of the basin. 451 
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This increasing trend probably reflects natural variability (increasing trend) of rainfall. In addition, 452 

the lower part of the Ganges basin where we observed positive trend lies within Madhya Pradesh. 453 

Madhya Pradesh experiences less intensive irrigation and less dependency on ground water for 454 

irrigation than Uttar Pradesh (where negative trend is observed) (Dhawan, 2017). Variations in soil 455 

type, crop type, and farmers’ behavior in different regions may have also led to the positive trend. 456 

Though we found a positive trend/groundwater recharge over the lower part of the basin, the 457 

overall temporal trend suggested a depletion for the entire basin (Figure 6).  458 

459 
Figure 6: (a) Spatial and (b) temporal trend of GRACE TWS anomaly over Ganges basin from 460 
2002 to 2016. The dark orange color in (a) represents the maximum negative rate of TWS 461 
anomaly (-1.99 cm/year) and the dark blue color represents the maximum positive rate of TWS 462 
anomaly (0.52 cm/year) 463 
 464 

5.2 Identifying GRACE Spatial Scale of Analysis  465 

Since we observed a negative trend of groundwater storage change over the Ganges basin 466 

(~80% area), we needed to find the scale at which GRACE can be incorporated to prioritize the 467 

zones for the improved IAS. We identified the representative scale by comparing GRACE TWS 468 
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anomaly against the water budget model derived TWS anomaly derived from independent datasets 469 

(mentioned earlier in section 4.2). To compare these two sets of data, we used bias, RMSE, and 470 

Spearman’s ranked coefficient as described in figure 7.  Our results suggested that from sub-basin 471 

3 (scale 600 km X 600 km), GRACE TWS anomaly matches closely with TWS from an 472 

independent water budget model. For example, the bias between the two TWS for sub-basins 1 473 

and 2 varies from 19% to 26% and 17% to 23%, respectively (considering different precipitation 474 

products). However, the bias varies from 3% to 7% only when we considered sub-basin 3. 475 

Similarly, the spearman’s ranked coefficient for sub-basins 1 and 2 varies from -0.36 to 0.05 and 476 

-0.35 to 0.05 respectively, whereas for sub-basin 3 the coefficient varies from 0.51 to 0.54. The 477 

RMSE over sub-basins 1 and 2 varies from 12.7 cm to 14.7 cm (~ 58 km3 to 67 km3) and 12.5 cm 478 

to 14.5 cm (~ 57 km3 to 66 km3) respectively, whereas over sub-basin 3 it varies from 10.2 cm to 479 

11.1 cm (~ 46 to 50 km3) only. As all the indices started to show better relationship between 480 

GRACE TWS and Water budget derived TWS on sub-basin 3, we decided to select the 481 

corresponding scale of 600 km X 600 km as the optimum scale to integrate GRACE TWS data 482 

with Landsat TIR data.  483 
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 484 

Figure 7: (a) Bias, (b) Spearman’s rank coefficient, and (c) RMSE between GRACE TWS and 485 
water budget TWS anomalies from 2002 to 2014. Different colors represent results for different 486 
precipitation products (blue: CHIRPS, orange: TRMM and green: ERA5) 487 
 488 

5.3 GRACE TWS Validation Using Water Budget Approach 489 

We further verified GRACE-identified regions where groundwater is potentially declining 490 

due to excessive dry season irrigation at the selected scale of 600 km X 600 km (sub-basin 3 of 491 

Ganges basin). We compared the dry (winter) season averaged GRACE TWS and water budget 492 

TWS anomalies from 2002 to 2014.  The results showed a similar decreasing pattern of GRACE 493 

TWS and water budget derived TWS anomalies, particularly from 2005 onwards (Figure 8). This 494 

similarity in trends between TWS derived from two sets of independent datasets support our 495 

hypothesis that GRACE TWS is a strong proxy for groundwater storage change during the dry 496 

season. The delta between two sets of TWS anomalies is expected considering the uncertainties 497 

involved in the water budget model. The blue curve in Figure 8 represents the water budget TWS 498 
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anomaly using SEBAL ET. It essentially represents the actual ground condition of what was 499 

happening from 2002 to 2014.  As SEBAL ET is the actual water consumption by plants, the 500 

storage change observed using SEBAL ET is a representation of actual storage change over the 501 

irrigated lands. As the decreasing storage pattern is clearly related to increasing SEBAL ET during 502 

dry season, we can postulate that the total storage or groundwater storage is going down due to 503 

increasing groundwater irrigation. A similar decreasing pattern indicates that dry season GRACE 504 

TWS is able to capture the signal of groundwater storage decline due to excessive dry season 505 

irrigation. We further verified using GLDAS-NOAH based TWS anomaly by comparing with 506 

SEBAL based and GRACE TWS anomaly (red curve). The dry season GLDAS based TWS 507 

anomaly resulted in a declining trend as well and the pattern of the curve agreed with other two 508 

TWS anomaly curves (Figure 8). 509 

 510 

Figure 8: Verification of GRACE-identified region over sub-basin 3 of Ganges basin (Figure 3) 511 
where groundwater is potentially declining due to excessive dry season irrigation using water 512 
budget derived TWS. Green line represents dry season GRACE TWS, Red line represents dry 513 
season GLDAS TWS, blue line represents dry season water budget derived TWS using SEBAL 514 
ET, and orange line represents water budget derived TWS using Penman-Monteith ET. 515 
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The orange curve in Figure 8 shows another set of water budget derived TWS obtained 516 

using Penman-Monteith ET instead of SEBAL ET. As discussed before, the Penman-Monteith ET 517 

is the crop water demand, hence the TWS we are getting using Penman-Monteith ET is 518 

representing the scenario if need based irrigation (i.e. irrigating according to crop water demand) 519 

had been undertaken hypothetically from 2002-2014. We observed that switching to need based 520 

irrigation over the selected scale can potentially arrest the current depletion trends of groundwater 521 

(net change becomes negligible; Figure 8). We found that there is no declining trend of TWS when 522 

Penman-Monteith ET (need-based irrigation) is used in lieu of actual (SEBAL) ET that represents 523 

today’s rampant waste of groundwater. Thus, we can postulate that it is theoretically possible to 524 

save extensive amounts of irrigation water during dry season by prioritizing the critical zones 525 

based on an IAS that can facilitate crop water need-based irrigation. We should note that, before 526 

using SEBAL ET and Penman-Monteith ET for our study, we had carried out an evaluation of 527 

SEBAL (observed) ET and Penman-Monteith ET using ground truth data over a location in 528 

Bangladesh called Gazipur where we had access to in-situ and quality controlled lysimeter data. 529 

This location is home to Bangladesh Agricultural Research Institute (BARI- Coordinates: 530 

90.415024, 23.987559) in Bangladesh. Details on this evaluation  are described in the 531 

supplementary section. 532 

5.4 Verification of SEBAL ET over cropped regions 533 

Our proposed integration of GRACE TWS and LANDSAT TIR data in an operational IAS 534 

is valid when we compare the relationship between SEBAL ET and groundwater table data. Before 535 

quantifying the impact of improved IAS, we verified the actual water consumption (ET) according 536 

to SEBAL method using DTW data (mentioned in section 3.4) to prove that the actual water 537 
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consumption (SEBAL ET) is a proxy to groundwater table decline over dry season irrigated 538 

regions.  539 

 The correlation coefficients of SEBAL ET and DTW over the cropped regions of Kanpur 540 

Nagar, Kanpur Dehat, Agra, and Lucknow of Northern India are 0.76, 0.71, 0.79 and 0.75, 541 

respectively (Figure 9). Similarly, the correlation coefficients over the cropped regions of 542 

Sargodha, Layyah, Muzaffargarh, and Sheikhupura in Eastern Pakistan are 0.87, 0.79, 0.75 and 543 

0.85, respectively (figure 10). These positive correlations indicate that with increasing ET (crop 544 

water consumption), the DTW increases consistently (water table lowers). Such consistent 545 

correlation provides strong evidence that actual water consumption (SEBAL ET) is a strong proxy 546 

for groundwater table decline during dry season over irrigated landscapes of South Asia. 547 

 548 

Figure 9: Correlation between SEBAL ET and depth to water table (DTW) during dry season 549 
(2002 to 2014) over cropped regions of (a) Kanpur Nagar, (b) Kanpur Dehat, (c) Agra, and (d) 550 
Lucknow. Each circle represents a dry season. 551 
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 552 

Figure 10: Correlation between SEBAL ET and depth to water table (DTW) during dry season 553 
(2005 to 2013) over cropped regions of (a) Sargodha, (b) Layyah, (c) Muzaffargarh, and (d) 554 
Sheikhupura. Each circle represents a dry season. 555 

  556 

To further prove the role of SEBAL ET as a proxy for groundwater table change, we 557 

compared the DTW data over non-cropped regions (i.e. “control” or “placebo” regions where no 558 

crops are grown) of selected districts (Kanpur Nagar, Agra, and Lucknow) with SEBAL ET. We 559 

reported a low negative and near-zero correlation (Figure 11). For Kanpur Nagar, Agra, and 560 

Lucknow, the correlation coefficients of SEBAL ET and DTW are -0.17, -0.31, -0.03, respectively 561 

over non-cropped regions (figure 11). These correlations indicate that with increasing DTW 562 

(decreasing groundwater table), actual ET is not increasing over non-cropped (i.e., non-irrigated) 563 

regions. As the control points are over urbanized areas, we can speculate that the groundwater 564 

table is getting extracted to lesser amounts for non-agricultural purposes.   565 

 566 

 567 
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5.5 Potential irrigation water savings during dry season with IAS 568 

The ultimate goal of this study was to validate if significant amount of water can be saved 569 

during dry season using need-based irrigation advisory for the targeted zones identified by GRACE 570 

and Landsat TIR data. Hence, we compared the actual water consumption by plants and water 571 

required for crop growth and calculated the percentages of over/under irrigation over the selected 572 

irrigation districts. The percentages of over-irrigation demonstrated by our results represent the 573 

potential savings of groundwater if there was an IAS service in place during dry seasons from 2002 574 

to 2014 in the irrigation districts. The spatial variation of percentages over/under irrigations over 575 

those 8 irrigation districts are shown in figures 12 and 13. Different colors in the map, represent 576 

different range of percentages. Red represents the areas with over-irrigation greater than 100% 577 

(severe over-irrigation). The orange, yellow, and green colors indicate the areas with over-578 

irrigation varying between 50-100% (moderate over-irrigation), 0-50% (mild over-irrigation) and 579 

less than 0% (under irrigation), respectively. We observed that there are extensive areas within 580 

each irrigation district that are suffering from severe or moderate over-irrigation.  581 

 582 

(a) 
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 583 

 584 
 585 

 586 

Figure 11: Correlation between SEBAL ET and DTW during dry season over control regions 587 
(non-cropped) of (a) Kanpur Nagar, (b) Agra, and (c) Lucknow. 588 

 589 

(b) 

(c) 
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Next, we summarized our multi-year analysis of ET data to understand the pattern of 590 

average irrigation scenario for each month of the growing season during the dry season (Figures 591 

14 and 15). The results suggested a similar pattern of over-irrigation over the selected districts. 592 

The higher percentages of over-irrigation (median and 75th percentile greater than 100) associated 593 

with wheat were observed at the beginning of dry season (November, December and, January) 594 

with maximum variability and then again in April. For instance, in Figure 14 (a), for Indian 595 

irrigation districts, the median value during November is approximately 150% and the variability 596 

of 25th and 75th percentiles are around 130% and 170%, respectively. The medians and variabilities 597 

are much lower during February and March (below 100%). The median value (~80%) and 598 

variabilities of 25th and 75th percentiles (~30% to 150%) again increased during April. All other 599 

districts showed similar patterns, with expected variabilities due to variation in soil type, soil 600 

moisture condition, weather conditions and farmers’ irrigation practice.  601 
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 602 

 603 

Figure 12: Spatial variation of over/under irrigation (January 2013) over (a) Kanpur Nagar, (b) 604 
Kanpur Dehat, (c) Agra, and (d) Lucknow in India. Colors showing red, orange, yellow, and green 605 
represent percentages greater than 100 (severe over-irrigation), 50-100 (moderate over-irrigation), 606 
0-50 (mild over-irrigation), less than 0 (under irrigation), respectively. Grey color represents the 607 
uncropped areas. The scale of the data used is 60mX60m from Landsat TIR bands. 608 

 609 
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 610 

Figure 13: Spatial variation of over/under irrigation (January 2013) over (a) Sargodha, (b) Layyah, 611 
(c) Muzaffargarh, and (d) Sheikhupura in Pakistan. Colors showing red, orange, yellow, and green 612 
represent percentages greater than 100 (severe over-irrigation), 50-100 (moderate over-irrigation), 613 
0-50 (mild over-irrigation), less than 0 (under irrigation), respectively. Grey color represents the 614 
uncropped areas. The scale of the data used is 60mX60m from Landsat TIR bands. 615 
  616 

 Given the traditional irrigation practice in South Asia, we are speculating that the higher 617 

percentages of over-irrigation at the beginning of dry (winter) season is due to over watering the 618 

seeds and young plants or watering more frequently than needed due to the initially-dry soils. 619 

Because of this excess/frequent watering, the monthly sum of SEBAL ET (actual water 620 

consumption) is higher, which in turn gives us the higher percentage of over-irrigation. In April, 621 

as the crop is ready for harvest, a high percentage of over-irrigation may be an effect of some other 622 

anticipated effects. For example, there could be an overlap of the rice-growing season that begins 623 
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in April. In some districts of India there is winter rice that grows simultaneously with wheat and 624 

in some districts of Pakistan sugarcane starts growing from April (FAO, 2020). Due to 625 

unavailability of high-resolution and time-varying crop maps, we considered only wheat grown all 626 

over the cropped regions on targeted districts. Thus, Penman-Monteith ET provided much smaller 627 

values than what it should be, whereas SEBAL ET estimated the actual water consumption. This 628 

may potentially result in a high over-irrigation percentage not entirely attributable to the harvested 629 

stage of wheat in April. In addition, we assumed Ks = 0.5 for estimating the crop water demand 630 

which might be different in the actual scenario based on the soil moisture condition and the pre-631 

monsoon thunderstorms that are common in April. We also estimated SEBAL and Penman-632 

Monteith ETs averaged over the entire cropped regions where plot types, farmer’s behavior in 633 

decision-making (to irrigate or not to irrigate) may vary and can introduce variability in the 634 

estimated percentages in each district. 635 

  636 

Figure 14: Percentages of over-irrigation (considering wheat) during dry season over (a) Kanpur 637 
Nagar, (b) Kanpur Dehat, (c) Agra, and (d) Lucknow. The orange lines of the boxplots correspond 638 
to the median values of percentages of over-irrigation. 639 
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 640 

Figure 15: Percentages of over-irrigation (considering wheat) during dry season over (a) 641 
Sargodha, (b) Layyah, (c) Muzaffargarh, and (d) Sheikhupura. The orange lines of the boxplots 642 
correspond to the median values of percentages of over-irrigation. 643 

 644 

We evaluated that the multi-year assessment of irrigation corresponded to an average 645 

amount of up to 85% (~80 million m3), 80% (~90 million m3), 85%  (~ 95 million m3), and 87% 646 

(~ 65 million m3) groundwater that could be potentially saved during dry season over Kanpur 647 

Nagar, Kanpur Dehat, Agra, and Lucknow, respectively if farmers followed the IAS advisory. 648 

Similarly, an average amount of up to 97% (~160 million m3), 77% (~140 million m3), 78% (~ 649 

155 million m3), and 95% (~ 150 million m3) groundwater could be potentially saved during dry 650 

season over Sargodha, Layyah, Muzaffargarh, and Sheikhupura, respectively. Hence, with an 651 

improved IAS, an average amount of 85% (80 million m3) and 87% (150 million m3) of 652 

groundwater could be saved during a dry season in districts of Northern India and Eastern Pakistan, 653 

respectively. It should be noted that this potential saving (> 80%) is much larger than the earlier 654 

surveyed savings of 40% of groundwater with the current IAS that does not precision-target 655 

regions based on groundwater waste footprint. 656 
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6. Conclusions  657 

According to our study, the improvement of an existing operational IAS may help reduce 658 

the excessive pumping (during dry season) of groundwater in South Asia where agricultural 659 

expansion remains a critical threat to groundwater sustainability. Proper use of an improved IAS 660 

service that can target in a precise manner the most over-irrigating regions, given the limited 661 

bandwidth for outreach, can reduce even further the cost of both fuel for pumping and irrigation 662 

advisory texts. In this study, we have argued that an operational IAS can even be more effective if 663 

we integrate the GRACE TWS and Landsat TIR data to strategically target regions with more 664 

alarming rates of depletion, followed by advising specific farmers and their plots (at scale of 60 m 665 

X 60 m) on how much to reduce pumping.  666 

Our results demonstrated the importance of GRACE TWS data to cost-effectively and 667 

rapidly identify the most critical regions of unsustainable groundwater decline due to excessive 668 

dry season irrigation. The rate of groundwater decline during the dry season may vary from year 669 

to year and is difficult to monitor due to lack of in-situ monitoring in South Asia. To maximize the 670 

impact of IAS, we focused on a local/district scale and selected eight irrigation districts from 671 

Ganges and Indus basins based on the DTW analysis. We compared the relationship of actual 672 

water consumption of crops based on SEBAL method with groundwater table data to verify the 673 

idea of using GRACE TWS and LANDSAT TIR data in an operational IAS. Strong correlation 674 

ranging from 0.71 to 0.79 and 0.75 to 0.87 were found over the Ganges and Indus Basins’ districts, 675 

respectively. Such consistent correlations provide strong evidence on integration of LANDSAT 676 

TIR data to monitor the extent of over-irrigation in an IAS to advise farmers where and when to 677 

reduce pumping and stabilize groundwater tables in future. However, a quick identification of over 678 

irrigation over a large spatial scale is the first step to taking corrective measures. Once it is 679 
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established that significant over-irrigation is taking place over a large region (as might be 680 

potentially indicated by GRACE data), water managers can then zoom in and apply more localized 681 

diagnostics (such as Landsat based ET water tracking for over-irrigation or other alternatives). For 682 

example, in those large regions, once the hot spots are further verified with Landsat and other 683 

location information, one can then take very localized corrective measures such as growing rice 684 

over raised beds. Studies indicate that such technique result in significant water savings (Soomro 685 

et. al 2015). 686 

  Advantage of using freely available global satellite observations at high spatial and 687 

temporal resolutions makes our proposed improved IAS conceptually transferable to any region in 688 

the world where unsustainable dry season irrigation is suspected. Farmers can benefit from such 689 

satellite based precision-targeting IAS by observing how extensive the groundwater waste is when 690 

compared to crop water need. The IAS advisory may then encourage farmers to pump less based 691 

on crop water needs. Monitoring of SEBAL ET can also help detect behavioral change of farmers 692 

in reducing over-irrigation during dry season. Finally, follow up evaluation of GRACE TWS over 693 

a larger spatial scale and longer follow-up time period can be explored to understand the 694 

effectiveness of an improved IAS that has been in continuous service and whether there is merit 695 

in continuing the IAS if there is no tangible impact for national water agencies.  696 

We believe that with such an improved IAS operationalized, the net savings in groundwater 697 

can allow the aquifers the necessary breathing space to recharge a little more with each year’s 698 

monsoon rainfall in South Asia. As our first practical trial, we are planning to improve the existing 699 

IAS in Pakistan with our proposed methodology to save groundwater resources cost effectively 700 

and track the long-term impact of this improved IAS. We plan to develop a cloud computing-based 701 

tool where GRACE TWS data will be integrated with Landsat TIR in the existing IAS used by 702 
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PCRWR of Pakistan. This tool will empower PCRWR to find the vulnerable groundwater zones 703 

much more rapidly at a scale of 600 km X 600 km (or smaller if necessary). The tool will then 704 

help PCRWR zoom in those zones to identify a much higher resolution map on the extent of over-705 

irrigation at the farmer or plot scale using Landsat TIR at 60m X 60m. Such a tool will then make 706 

it easier for PCRWR to prioritize zones, farmers and plots that need to be sent irrigation advisory 707 

given that only a finite and small fraction of the 4 million farmers of Pakistan can receive such a 708 

service today. We hope to report the experience of developing and implementing such a tool for 709 

prime time use by a stakeholder in a forthcoming publication.  710 
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Introduction  

This supporting information provides detail on evaluation of the SEBAL ET and Penman-
Monteith ET results using ground truth data that has been referred in subsection 5.3 of 
the main article. 
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Text S1. 
We have carried out an evaluation of SEBAL (observed) ET and Penman-Monteith ET 
using ground truth data over a location in Bangladesh called Gazipur where we had 
access to in-situ and quality controlled lysimeter data. This location is home to 
Bangladesh Agricultural Research Institute (BARI- Coordinates: 90.415024, 23.987559) in 
Bangladesh. We were provided lysimeter data for 2017 and 2018 for a number of crops.  

First, we collected length of crop growth period, crop coefficients, and total water 
use based on lysimeter data from BARI. We considered wheat, maize and sunflower with 
an average 120 days (December to March) growing period for these three crops. Then 
we calculated Penman ET (cropwater demand) and SEBAL ET (observed ET) for the time 
periods of 2017 and 2018. Figure S1 below shows the comparison between SEBAL ET and 
in-situ lysimeter based total water use from BARI data. Figure S2 shows comparison 
between Penman-Monteith ET and in-situ lysimeter based total water use from BARI 
data. For 2017 and 2018, the % errors between SEBAL ET and lysimeter based total water 
use, and Penman-Monteith ET and lysimeter based total water use are provided in table 
S1. We see that for wheat and maize, Penman-Monteith ET matches well with total water 
use. This indicates that our Penman ET estimation method is robust based on the input 
data that is used. The % errors in case of SEBAL (actual ET) are understandably larger but 
the trend is similar. SEBAL ET is an areal average over 100 X 100 m pixel and it is quite 
likely that other land use and crops are within that pixel centered around the BARI 
coordinates. The correlation between Penman-Monteith ET and lysimeter based total 
water use was found to be very strong. For 2017 and 2018, the correlation between 
Penman-Monteith ET for three crops and lysimeter based water use are 0.88 and 0.87, 
respectively.  

In another study reported in Hossain et. al. (2020), we demonstrate robust 
validation of ET estimation techniques for Kanpur city in the Gangetic plains of India. In 
Kanpur, we had automatic weather stations (AWS) and carried out an ET-based irrigation 
advisory scheme during 2018-2019 for 150 winter wheat farmers. There, we evaluated 
weekly crop water demand calculated using Penman-Monteith ET based on 
meteorological variables from Global Forecasts System (GFS) and those obtained from 
in-situ measurements from AWS (figure S3 below). We see clearly that the GFS-based 
Penman estimation technique matches closely with that based on weather and radiation 
data from an AWS. The results suggested that there is a good agreement between these 
two datasets with 6.96 mm RMSE and 0.98 mm bias per week.  
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Figure S1. Comparison of SEBAL ET and lysimeter based total water use over the 
growing season for 2017 and 2018 at BARI field station. 

 

 

Figure S2. Comparison of Penman-Monteith ET and lysimeter based total water use over 
the growing season of 2017 and 2018 at BARI field station. 
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Figure S3. Comparison of weekly actual Penman-Monteith ET based on GFS and AWS 
data in Kanpur, India in 2018. L1-L7 represents the weekly total using GFS data. 

 
 

Year Crops % error between Penman-
Monteith ET and lysimeter 

based total water use  

% error between SEBAL 
ET and lysimeter based 

total water use 
2017 Wheat 6.80 40.74 

 Maize 9.88 16.92 
 Sunflower 20.01 46.15 

2018 Wheat 2.28 29.63 
 Maize 4.59 7.69 
 Sunflower 15.65 34.62 

 

Table S1. % errors between SEBAL ET and lysimeter based total water use, and Penman-
Monteith ET and in-situ lysimeter based total water use data at the BARI field station.   
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