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Abstract The volume of water stored in seasonal wetlands is a fundamental but difficult to measure
variable for developing a physical understanding of wetland behavior. For seasonal wetlands that are a
major source of water for rice and fish production, this physical understanding is key to planning for
water‐food security and ecosystem services. This study quantified variations in volumetric storage for the
numerous seasonal wetlands of northeastern Bangladesh, locally known as “haors.” These haors receive
transboundary runoff from densely vegetated and mountainous terrain in India and face persistent
monsoonal cloud cover as they become full. We estimated volumetric storage for 13 haors by using
extensive remote sensing data on water surface extent and elevation that was complemented with
citizen‐contributed gauge data. Assuming a trapezoidal bathymetry, an area‐volume relationship was
developed for selected haors. This relationship was assumed to be valid for extrapolating volumetric
estimations over all the haors in the region. Results suggested that as haors get filled with the onset of
monsoon rains, total estimated storage relative to the lowest observable level varied from 6.5 (±0.4) km3 in
May to 30.9 (±2.0) km3 in July (peak of monsoon). Choosing a rectangular bathymetry can lead to 47%
higher estimates compared to trapezoidal cross section. Estimating this intra‐annual/interannual increase
in storage is important for the region to plan water management policies that balance the human and
ecosystem needs. Our analytical approach has potential for application to wetlands worldwide in light of the
upcoming Surface Water and Ocean Topography (SWOT) mission.

1. Introduction

Wetlands, among the world's most productive environments, are defined by U.S. Geological Survey as
transitional areas between permanently flooded deep‐water environments and well‐drained uplands.
Wetlands serve as cradles of biological diversity and provide water and productivity for countless plants
and animal species to thrive (Amezaga et al., 2002; Parish & Looi, 1999). In addition to supporting ground-
water recharge, flood control and ecosystems, wetlands also act as natural water purifiers and enhance
groundwater quality (Bullock Q5and Acreman, 2003; Kamal et al., 2018; Kaplan & Avdan, 2018; Mitsch &
Gosselink, 2000; Ogawa Q6& Male, 1986).

The seasonal wetlands in northeastern Bangladesh, locally termed as “haors,” are of specific significance
as they are a source of rich biodiversity and livelihood for about 20 million inhabitants. These water
bodies exhibit strong seasonality in storage that peaks during the Monsoon months of August–
September. A productive fisheries economy is created when the low‐elevation land is inundated with
transboundary runoff from Indian mountains (Kamruzzaman & Shaw, 2018). As flood waters recede dur-
ing the dry season (November to April), water levels drop to expose the rich alluvial soils around the
haor margins. This soil is optimally primed for rice cultivation (Bennett et al., 1995). Thus, the haor
region experiences extensive dry season rice cultivation from November to April that provide nearly
one fourth of total rice production for Bangladesh. The haors are also strongly connected to groundwater
aquifers by acting as recharge points. With rising concerns regarding impacts of changes in climate and
land use on hydrology in South Asia (Dwarakish & Ganasri, 2015; Turner Q7& Annamalai, 2012;
Wijesekara et al., 2012), accurate mapping and monitoring of the haors in a feasible and cost‐effective
way is now timely.
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Efforts to monitor wetlands and lakes (hereafter used interchangeably) have generally used satellite remote
sensing due to limited availability of in situ gauges, inaccessibility of wetlands and slow dissemination of
ground‐based data. Optical and synthetic aperture radar (SAR) remote sensing data have been used exten-
sively to detect and map the areal extent of surface waters (Huang et al., 2018; Kaplan & Avdan, 2018),
including those in Bangladesh (Dewan et al., 2007; Hossain, 2013). Popular optical satellite missions used
for surface water detection include Landsat (Chen Q8et al., 2014; Gao Q9et al., 2016; Pardo

Q10

‐Pascual et al., 2012),
Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites
(Brakenridge & Anderson, 2006; Chen et al., 2013; Peng et al., 2005), and Visible Infrared Imaging
Radiometer Suite onboard Suomi National Polar‐orbiting Partnership (Suomi NPP‐VIIRS) (Huang
et al., 2015). The European Space Agency's Sentinel‐2 mission also provides relatively high‐resolution multi-
spectral imagery which can be used tomap surface water (Du et al., 2016; Yang Q11et al., 2017). However, optical
sensors are unable to penetrate clouds and thus are not suitable for use in South Asian environments during
the monsoon season. In contrast, SAR data such as that from the Sentinel‐1 satellite overcomes the cloud
interference issue and works during both the day and night for water detection (Shen et al., 2019; White
et al., 2015).

Applications of current optical andmicrowave imagers to the study of lakes are limited, however, as they can
only estimate the spatial extent, or area, of the water bodies. On the other hand, satellite radar altimeters,
originally developed for oceanographic studies (Brown & Cheney, 1983), can provide estimates of lake water
surface elevations by measuring the two‐way travel time of radar pulses reflected from the water surface
(Birkett & Beckley, 2010). Radar altimetry missions in service include Cryosat‐2, HY‐2, SARAL/Altika,
Jason‐3, and Sentinel‐3A and Sentinel‐3B (Wang, 2019). The uncertainty of present altimetry missions
ranges within a few centimeters for bigger lakes but increases to tens of centimeters for rivers and smaller
lakes (Crétaux et al., 2018; Villadsen et al., 2016). Their long repeat cycle (minimum being 10 days) makes
the altimeter susceptible to miss key hydrological events (Sulistioadi et al., 2015). Furthermore, the limited
spatial coverage of nadir‐pointing altimeters allows monitoring of elevation for only a small set of wetlands.
This is where the power of citizen science can complement satellite remote sensing to provide a more com-
plete view of wetland dynamics. Recent projects have demonstrated the potential for citizen scientists to
accurately monitor surface water bodies (Lowry Q12& Feinen, 2012; Lowry et al., 2019; Strobl et al., 2019).
One such project, Lake Observations by Citizen Scientists & Satellites (LOCSS), is designed to harness citizen
science to acquire water elevation for lakes in multiple countries (https://www.locss.org/). Water surface
elevations are measured by volunteers reading simple lake gauges that are then shared with the project
via text message or other means. Such citizen‐contributed lake height data provide a viable alternative to
a traditional ground‐based system that requires a larger institutional capacity for maintenance and monitor-
ing, when automated gauges are absent or sparsely distributed.

While information on wetland areal extent and water surface elevation is possible to obtain from the satellite
missions and citizen science data, the key unknown for developing a process‐based understanding of haor
hydrology is the volume of water stored in these seasonal water bodies. Volume is a significant water balance
indicator and has implications for water‐food security and ecosystem services in northeastern Bangladesh.
Knowing the volumetric storage in the haor systems can help plan for uncertainty in available water for
water security (Gaupp et al., 2015). A few studies have derived changes in lake volume using simultaneous
analysis of area and water level (Chipman, 2019; Smith & Pavelsky, 2009). Crétaux et al. (2016) used succes-
sive measurements of area and elevation to determine volume variation assuming a pyramidal bathymetry
of lakes in Tibetan Plateau. Tong et al. (2016) derived time series of water volume by using a combination of
multimission altimetry and remotely sensed images for Lake Victoria. Studies have also used digital eleva-
tion models (DEM) along with remote sensing imagery for the same purpose (Yang Q13et al., 2017). Finally,
changes in water storage in large lakes have also been inferred from interferometric radar (InSAR) measure-
ments of the displacement of the surrounding terrain (Zhao et al., 2016) and from satellite gravimetry mis-
sions such as the Gravity Recovery and Climate Experiment (GRACE) (Ni et al., 2017).

Most of the studies on lake volume estimation have considered large lakes or wetlands and those specifically
located in relatively dry and arid climates. Studies on seasonal wetlands are still limited due to scarcity of
synchronous radar altimeter data, difficulty in acquiring high‐resolution images of inundation extent and
inconsistent ground data. A small artificial lake in France was studied by Baup et al. (2014) using altimetry
and optical images, but consistent studies of volume variations in smaller water bodies from satellite imagery
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remain scarce. The haors of Bangladesh are particularly challenging for space‐based monitoring. They exhi-
bit highly dynamic responses to a strong seasonal cycle under the tropical seasonal monsoon climate. The
wetland surfaces usually host an abundance of dense vegetation, often forming a thick layer of
free‐floating plants obstructing the inundation beneath from being accurately mapped from space
(Ahmad et al., 2019). The haors are spread over the basin of Northeast Bangladesh (referred to as the “haor
basin” hereafter) in large numbers. As the basin's hydrology is dominated by seasonal transboundary runoff,
the haors often merge to form larger water bodies with the onset of monsoon season. The highly transient
nature of their maximum spatial extent and depth presents another formidable challenge in their monitor-
ing and mapping and impedes effective management of water resources.

The present study addresses these challenges using the state‐of‐the‐art advancements in satellite remote sen-
sing while harnessing the power of citizen scientists in collecting ground‐based information on water
heights. This study aims to determine the value of using citizen science data and remote sensing on seasonal
water bodies to understand the total volumetric storage and volume change in the monsoonal and trans-
boundary runoff‐dominated region of Northeastern Bangladesh.

In an effort to estimate volume storage across all the haors in the basin, we incorporated a variety of satellite
products at different wavelengths to obtain the spatial extent (using microwave satellite products) and ver-
tical depth (using radar altimetry) for 13 haors. We then estimated two variables of hydrologic significance
for the region, (i) volume of water stored by the haor relative to its lowest observable level and (ii) volume of
water moving through the haor system in a water year. Because only a limited set of haors can be studied
using current satellite missions and citizen science data, an algorithm was developed to delineate each haor
individually and obtain their representative areas from satellite imagery. An area versus volume relationship
was established over the selected 13 haors. This relationship, assumed to hold true for all haors of the basin,
was then used to provide a statistical estimate of the cumulative volume storage and volume change across
the entire haor basin. The computational and data storage constraints were addressed in the study by using
the Google Earth Engine (GEE) cloud‐based computing platform (Gorelick Q14et al., 2016). Thus, our study was
able to quantify a previously elusive but fundamental insight on the volumetric dynamics of the haors that is
critical for planning of water‐food security, ecosystem services, and adapting to changes from human
impacts and climate.

The rest of the paper is organized as follows. In section 2, we describe the selected sites for satellite‐ and citi-
zen science‐based analysis and necessary data sets. This is followed by a description of the methodology in
section 3. The results on estimates of volumetric variables for the haor basin are presented in section 4, fol-
lowed by discussion and concluding remarks in section 5.

2. Study Sites and Data Sets
2.1. Selected Lakes

The extent of the haor basin that is the focus of this study is shown in Figure F11.Within the basin, specific sites
were selected for the purpose of establishing our volume estimation approach. Under the LOCSS project, two
lakes in the haor basin, Korchar and Dekhar haors, are currently monitored for water levels by citizen scien-
tists (see https://www.locss.org/region/bangladesh). As data over only two haors and a single water year of
2019 have been acquired until now, additional sites are naturally needed for establishing a reliable volume
estimation approach. This was made possible by the use of satellite radar altimeters. Haors located along the
altimeter passes (described in section 2.2) were chosen as virtual stations for water level monitoring. The
characteristics and sources of water levels for the selected haors and the period of availability of altimeter
data are summarized in Table T11. Figure 1 shows the locations of haors and altimeter paths. Annual mean
area of selected haors is 390 km2 covering 6.6% of all haors in the basin with an area of 5,900 km2. The areas
of selected haors cover a reasonable range of all the existing haor areas, albeit very small haors (<1 km2)
could not be considered due to limitations in monitoring them using altimetry or LOCSS (see Figure S1 in
the supporting information).

2.2. Data Sources

The primary source for mapping lake surface area was C‐band synthetic aperture radar ground‐range
detected (SAR GRD) microwave satellite imagery from Sentinel‐1A with a spatial resolution of 10 m and
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6‐day revisit period. A SAR product was used due to its ability to penetrate clouds and, in some cases,
vegetation, as required in the tropical monsoonal climate of Bangladesh. The images were retrieved for a
4‐year time period spanning 2016 to 2019. For water depths, in addition to LOCSS data, two altimeter mis-
sions, Jason‐3 and Sentinel‐3 were used. The Jason‐3 nadir altimeter is the follow‐on mission to
TOPEX/Poseidon (T/P) and Jason‐1/Jason‐2, distributed by CNES (Centre National d'Études Spatiales)
AVISO (Archiving, Validation and Interpretation of Satellite Oceanographic Data). The 20‐Hz
Geophysical Data Record (GDR) of the Jason‐3 altimeter has a repeat cycle of 10 days and passes over the
haor basin to provide potential virtual stations. The Ku‐band data sets from cycle 0 to cycle 142 (dated 12
February 2016 to 27 December 2019) were downloaded and processed to extract water elevations.

The Sentinel‐3 satellite mission, managed by the European Space Agency (ESA) and the European
Organization for the Exploitation of Meteorological Satellites (EUMETSAT), has a repeat cycle of 27 days.

The SAR Altimeter (SRAL) instrument onboard Sentinel‐3 is a
dual‐frequency (Ku‐ and C‐band) nadir‐looking radar altimeter providing
estimates of sea surface height and surface wind speed at the global scale.
The SRAL Non‐Time‐Critical (NTC) Land Level 2 products were selected
for processing. Sentinel‐3A data from 12March 2016 to 24 December 2019
(Cycles 1–52) for Relative Orbit Numbers 96 and 375, and Sentinel‐3B
data from 27 December 2018 to 13 Dec 2019 (Cycles 20–33) for Relative
Orbit Numbers 154 and 375 were used in the study. The data were down-
loaded through Copernicus Online Data Access (https://scihub.coperni-
cus.eu/dhus/). Enhanced measurement data for the SRAL product,
which contains necessary parameters to reprocess the data (Yang Q15et al.,
2019), were used for processing the water levels.

To assess the quality of haor classification and volume storage estimates,
we used high‐resolution imagery in visible and NIR bands from Planet
(formally known as Planet Labs) (Planet Q16Team, 2018). The platform has
a constellation of more than 170 active CubeSats, that provides daily glo-
bal imaging in the visible and NIR bands at 3‐m resolution (Planet Q17

Imagery Product Specification, 2017). The Level 3A PlanetScope Ortho
Tile Product from the Planet Explorer imagery exploration tool was used

Table 1
Details for the Selected 13 Haors (11 on Altimeter Path and Two From
LOCSS Observations) and Their Extents for Volume Estimation Analysis

S. No. Haor ID
Source of
elevation

Time
period

Maximum
area (km2)

1. Haor 1 Sentinel‐3A 2016–19 4.1
2. Haor 2 Sentinel‐3A 2016–19 14.6
3. Haor 3 Sentinel‐3A 2016–19 90.5
4. Haor 4 Sentinel‐3A 2016–19 100.8
5. Haor 5 Sentinel‐3B 2019 100.1
6. Haor 6 Sentinel‐3B 2019 96.3
7. Haor 7 Sentinel‐3B 2019 97.6
8. Haor 8 Sentinel‐3B 2019 35.7
9. Haor 9 Jason‐3 2016–19 54.9
10. Haor 10 Jason‐3 2016–19 95.1
11. Haor 11 Jason‐3 2016–19 18.5
12. Korchar LOCSS 2019 wya 72.0
13. Dekhar LOCSS 2019 wya 3.9

aRefers to water year of 2019.

Figure 1. (a) Haors selected over the northeast region of Bangladesh for the volume estimation analysis, also showing
the different altimeter passes used for elevation data in addition to that from citizen science. (b) Footprint of the
selected extent for haor basin.
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for classifying the haors and estimating their volume storage. We have used the same data to validate
inundation extent measurements as in a previous study over the same region (Ahmad et al., 2019).

The JavaScript API of the GEE platform was used for processing the Sentinel‐1 SAR remote sensing product,
which is available from the GEE data catalog. The volume estimation approach was developed and imple-
mented using the MATLAB Image Processing Toolbox.

3. Methods

An overview of the methodology followed is shown in Figure F22. The haor basin's volumetric storage esti-
mation consists of three key components—(i) deriving volume for haors using available data on area and
elevation, (ii) estimating volume (storage and change) for all the haors across the basin, and (iii) compar-
ison of results against high spatial resolution data. The following sections describe each component in
detail.

3.1. Haor Volume Using LOCSS Data and Remote Sensing

Deriving haor volume requires simultaneous knowledge of two state variables: haor area and elevation.
Microwave remote sensing was used to estimate the area, while LOCSS and satellite radar altimetry were
employed to obtain the elevation of haors. Sections 3.1.1 and 3.1.2 provide details on the methodology for
deriving these variables while section 3.1.3 outlines the procedure for validating volume estimates.
3.1.1. Haor Area
A water classification technique was applied to Sentinel 1 SAR GRD imagery at 10‐m spatial resolution
which relies on the low backscatter from smooth surfaces of water bodies. Co‐polarized Sentinel‐1 scenes
with vertical (VV) transmitter‐receiver polarization (vertical transmitted and vertical received) were selected
from the GEE data catalog. The scenes in the catalog are multilooked, processed to remove thermal noise,
radiometrically calibrated, orthorectified, and georeferenced. However, the quality of the radar product
degrades with the signal dependent on granular interference, called “speckle.” Speckle is primarily caused
by the phenomenon of interference of the returning wave at the transducer aperture. To reduce this interfer-
ence, a focal median filter with 30‐m window (large enough to capture speckle) was applied to smooth the
image. Median filters are shown to perform better thanmean or Gaussian filters, in general, for high levels of
speckle in SAR images (KlogoGriffith et al., 2013). The SAR look angle was bounded within 31.7° to 45.4° to

Figure 2. Overview of the methodology for volume estimation in the haor basin using LOCSS and remote sensing
products.
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avoid coarse spatial resolution at lower angles and small signal‐to‐noise ratios at higher angles (Nagler
et al., 2016). Water in the postprocessed image was then classified using backscatter‐based thresholding.
Pixel values with backscatter value less than a threshold of−13 dB were assigned the water class, as standing
water exhibits levels of backscatter ranging from −24.3 to −12.6 dB (Liu, 2016). The algorithm is similar to
that proposed by Ahmad et al. (2019) in their fusion approach, except no optical imagery could be used here
due to high interference from clouds over the haor basin. The accuracy of water detection using the fusion
approach was reported between 85.8% and 98.7%, and Kappa coefficient between 0.61 and 0.83 by Ahmad
et al. (2019). Using this algorithm, an area time series was obtained for the selected haors to be later used
for volume calculation (see Figure F77).
3.1.2. Haor Elevation
The elevation of haors was obtained using multiple sources. The LOCSS project has gathered
citizen‐contributed water height data over Korchar and Dekhar haors (see Figure 1) over a single water
year (at the time of writing). Because a single water year does not provide enough data to derive a
robust volume‐area relationship, two radar altimeters, Jason‐3 and Sentinel‐3 were used to monitor
additional haors. In order to assess the sensitivity of our results to sensor differences, we also compared
results from the two altimeters. The procedure to extract water elevation from these altimeters is
described next.
3.1.2.1. Jason‐3 Water Level Extraction
The altimeter measures transit time of the transmitted microwave pulse after being reflected back from the
water surface. The range, or distance between altimeter and water surface, is estimated from the round‐trip
travel time. While the on‐board tracker continuously computes themidpoint of waveform's leading edge, the
limited observation time and contamination from nonwater bodies inside radar footprint leads to a compu-
tational error. Hence, we employ a waveform retracking algorithm called ice retracking (Ice‐1 retracker) to
correct the estimated range from on‐board tracker (Wang, 2019). The ice‐retracked range is included in the
distributed Jason‐3 GDR data files. The ice‐retracked range, Rmeas, was then corrected for certain atmo-
spheric and geophysical correction parameters, given by

Rcorr ¼ Rmeas þ ∑CJason3 (1)

∑CJason3 ¼ Cdry þ Cwet þ Ciono þ Cpole þ Cearth (2)

where Rcorr is the corrected range, while Cwet, Cdry, and Ciono are the wet tropospheric, dry tropospheric
and ionospheric corrections. Cpole and Cearth are polar tide and solid earth corrections, respectively. The
corrected range is then converted to the water height h relative to the WGS 84 (World Geodetic Survey)
referenced ellipsoid using the altimeter height Halt. This is followed by a transformation from ellipsoidal
to orthometric height using geoid height, HEGM assuming reference as EGM 2008 (Earth Gravitational
Model), given by

h ¼ Halt − Rcorr − HEGM (3)

Minimum and maximum latitude bounds corresponding to the selected haors were specified along the
altimeter pass to extract the height values across the haor. These height retrievals were averaged later to
minimize the ensuing uncertainty.
3.1.2.2. Sentinel‐3 Water Level Extraction
Extracting water levels from Sentinel‐3 follows a similar procedure as explained for Jason‐3 processing. The
range correction is given as

∑CSentinel3 ¼ Cdry þ Cwet þ Ciono þ Cearth þ Cpole (4)

where the abbreviations are explained in section 3.1.2.1. To obtain the altimeter range using waveform
retracking, we employ a robust retracking algorithm called Off Center of Gravity (OCOG). The OCOG
retracked range is included in the enhanced measurement data file of Sentinel‐3. As the Jason‐3 water
level extraction procedure has been established by Biswas et al. (2019), Sentinel‐3 elevations were vali-
dated against those derived using Jason‐3. The OCOG retracker in Sentinel‐3 data corresponds to the
Ice‐1 retracker used in Jason‐3 GDR (Crétaux et al., 2018).
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The variables in the Jason‐3 and Sentinel‐3 data files that were used for the required corrections to
extract water levels are summarized in Table S2 in the supporting information. The LOCSS/altimeter‐
based elevations and SAR‐based area estimates were acquired to minimize the difference between their
dates of acquisition. The mean difference in acquisition dates between the area and altimeter‐derived
elevation measurements was around 8.5 days. For haors where citizen scientists‐derived (LOCSS)
elevation was used, the difference was almost zero because of the near‐daily frequency of LOCSS
measurements.
3.1.3. Estimates of Volume Storage and Volume Change
Once the haor area and elevations are acquired on synchronous dates, variables that are hydrologically sig-
nificant to the haor basin are estimated. These include (a) total volume of water storage across all the haors
over a water year relative to their respective lowest observable levels, and (b) maximum seasonal volume
change in the haors i.e. amount of water moving through the haor system in the water year. The haor volume
is obtained by assuming a trapezoidal cross section owing to haors' relatively flat bathymetry in a terrain that
is already very flat. The assumption of flat bathymetry is further corroborated by the depth‐area relationship,
which for a number of selected haors reveal flat‐bottomed trapezoidal cross section (see Figure S2 of support-
ing information). To understand if this assumption regarding haor cross sections introduces nonnegligible
uncertainty, we also derived and compared volume estimates assuming a rectangular cross section.
Details of the comparison are provided in the supporting information (section S2).

The information on exact bottom topography of the haors was unavailable, which led us to estimate the
volume storage with respect to the lowest observable level of the haors. Storage relative to the lowest level
also addresses the differences in datum of elevation observed from altimeters and LOCSS gages. The lowest
levels (hmin) of the haors were obtained over the period of record observed using altimeters or LOCSS (see
Figure F33a). Thus, at a particular time, t, the volume stored, Vt, above the lowest level is given as

Vt ¼ ht − hminð Þ *
At þ Amin

2
(5)

where ht is the elevation obtained from Equation 3. Over a full water year, the maximum volume stored by
a haor can thus be estimated as

Vstored ¼ max Vtð Þ (6a)

Vstored ¼ hmax − hminð Þ *
Amax þ Amin

2
(6b)

where the maximum elevation (hmax) and maximum area (Amax) are obtained over all the days of a water
year when the elevation and area observations were acquired. A similar volume estimation model was
used by Baup et al. (2014) but assuming a triangular geometric shape for the lake's bathymetry. A trian-
gular bathymetry was more appropriate the lake studied by Baup et al. because it was located in a region
of much higher topographic relief.

The maximum volume change over a water year was then calculated as the maximum change in volume
over consecutive acquisitions over the year. This signifies the amount of water that is moving through the
haor system as surface water evaporation, groundwater recharge, exchange with connecting rivers, or

Figure 3. Illustration of (a) total volume stored relative to the lowest observable levels (light blue shaded area), and
(b) maximum volume change over a calendar year for a typical haor.
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human use. The volume change is relevant when accumulated over all the haors, in particular for the overall
groundwater recharge in the basin that controls the groundwater‐based irrigation for rice cultivation. At any
time step t, the change in volume stored from the previous acquisition date (t − 1) is given as

ΔVt ¼ ht − ht − 1ð Þ*At þ At − 1

2
(7)

The maximum change in haor volume (Vchange) was thus formulated as

Vchange ¼ max ΔVtð Þ (8)

where ht is the haor level at time step t. An illustration of haor volume storage and change is provided in
Figure 3.

3.2. Estimating Volume for All Haors in the Basin

Because the altimeter and LOCSS elevation data are limited in temporal and spatial extent, a
regression‐based approach was developed to map volumetric storage estimation across all the haors. The
approach requires identifying haor boundaries to arrive at the probability distribution of their areas (sec-
tion 3.2.2). This is followed by developing a statistical relationship between haor areas and their respective
volumes estimated from section 3.1. Mapping this relationship over the areal distribution of all the haors
provides statistically estimated total volume stored by the basin (section 3.2.3).
3.2.1. Water Delineation Using SAR Image
The first step toward estimating the cumulative storage in the entire haor basin is to classify the extent and
count of all the haors. The procedure starts with delineating water bodies in the basin using SAR imagery
over a season where most haors are in the early stage of development. As the season becomes wetter with
the onset of monsoon rains and inundation expands, the adjacent haors merge to form large water bodies,
making it difficult to classify the extent and boundaries of individual haors. Thus, the water delineation
technique as described in section 3.1.1 was implemented over the entire haor basin for the premonsoon
season (month of May 2019) when the haors just start to form. The year 2019 was a normal precipitation
year, with annual precipitation comparable to the long‐term climatology (Figure S5, supporting informa-
tion). Sentinel‐1 scenes mosaicked over the entire basin were used to classify the water area. It is worth
mentioning here that although imagery for a single day was used to classify the haors, the algorithm
was designed so as to account for the variations in haor extent over the year and generate an “average”
extent of each haor in the basin. Figure F44 shows the evolution of open water in the basin, that also
includes nonhaors such as rivers, classified using Sentinel‐1 data during four different hydrological
regimes.
3.2.2. Detection of Haor Extents—CoCoAH Technique
After obtaining the delineated open water in the basin using SAR imagery, the next stage is to identify the
individual haor boundaries to use them for volumetric storage estimation. The remote sensing imagery used
to classify the haors only provides a snapshot of the state of haors representative of the conditions at that
moment. This poses a challenge in demarcating the haor extent with certainty as the inundation changes

Figure 4. Evolution of open water (including haors) in the basin classified using Sentinel‐1 SAR data during four
different hydrological regimes and the respective area inundated by haors.
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during intraseasonal and interseasonal transition of hydrological regimes. To address the issue and generate
robust haor extents, we implement here a novel algorithm based on the principles of digital image
processing. This technique is termed as ‘Connected Components Analysis for Haors’ (CoCoAH). The
individual steps involved in the proposed technique are shown in Figure F55 for sample SAR imagery over
the haor basin.
3.2.2.1. Image Processing
CoCoAH first starts with converting the delineated water product into a binary image consisting of pixels
that are labeled as logical ones (water) and zeros (nonwater). Next, to address the imperfect and dynamic
nature of SAR‐delineated water, morphological operators of erosion and dilation were applied to the binary
image. The erosion operation erodes away the boundaries of water bodies to improve upon their edges and
removes the noise caused by SAR speckle. Implementation of erosion requires specifying a binary valued
neighborhood, called kernel. The value of the output pixel is the minimum value of all pixels in the kernel.
A disk‐shaped kernel with radius of 10 pixels, which corresponds to roughly 100 m, was selected. This radius
is well suited for the study region because it is much smaller than the typical haor size, yet large enough to
remove speckle noise. Next, the dilation operation fills up small holes (nonwater pixels) surrounded by a
group of water pixels. The combined effect of the two operators, also termed as image opening, is to remove
noises while retaining the shape and size of substantive features in the image.

The resulting image is then processed to find all the connected components that are potential candidates for
being assigned as haors. MATLAB's bwconncomp function was incorporated to find pixels that were con-
nected with neighboring pixels. An eight‐connected neighborhood was used which assigns adjoining pixels
to same object.
3.2.2.2. Postprocessing
The connected component procedure results in a set of potential haors with varying shapes and sizes, but not
all the connected objects can be labeled as haors. To arrive at the final set of haors, objects that are unlikely to
be haors such as rivers, narrow channels, and smaller patches of water need to be discarded. This was
achieved by performing a filtering operation based on three different properties of the connected compo-
nent. These include circularity, eccentricity and object area. Circularity of a feature is defined as

Figure 5. Overview of the steps involved in the Connected Components Analysis for Haors (CoCoAH) to classify haor
boundaries.
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Circularity ¼ Perimeter

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π · Area
p (9)

while the eccentricity is given by

Eccentricity ¼ distance between foci
major axis length

(10)

Rivers and other narrow channels exhibit low circularity and high eccen-
tricity, while for haors, the circularity is generally high with low eccentri-

city. Also, objects with very small area are potential noise/temporary water, unlikely to be haors. Typical
values of these properties for haors and rivers are shown in Figure S3 in the supporting information.
Based on this observation, thresholds were selected for each property to label the objects as haors versus non-
haors. These threshold‐based rules are tabulated in Table T22. As a final step, image filling was performed to
remove any remaining holes (missed by the water delineation algorithm over the SAR imagery) within
the objects labeled as haors to produce a robust extent for each haor. Based on the classified haor boundaries,
a probability distribution function (PDF) was derived for areal extent of all the haors.
3.2.3. Volume‐Area Relationship
Because it is not feasible to obtain elevation estimates for all the haors in the region with currently available
remote sensing products, volume estimations for haors selected in section 3.1 were used to derive a statistical

Table 2
Threshold‐Based Rules for Labeling Haors Imposed on the Properties of
Area, Eccentricity, and Circularity of Connected Components

Property Area (km2) Eccentricity Circularity

Rule 1 Area ≥ 20 <0.925 no condition
Rule 2 0.2 < Area < 20 <0.95 >0.11

Note. Rules are mutually exclusive and either one getting satisfied for a
water body labels it as a haor.

Figure 6. (a) Haors selected for validating (comparing) elevation extraction procedure from Sentinel‐3B against Jason‐3.
(b) Validation of Sentinel‐3 water level retrievals against Jason‐3 for the two haors used for validation.
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volume versus area relationship (see Figure F1111). To account for the inter-
annual variability and uncertainty in hydrological response of the haors,
we used volumetric estimates for each available year to develop this rela-
tionship. We obtained uncertainty estimates in the regression coefficient
of the least squares fit to derive the area‐volume relationship with 95%
confidence interval. The uncertainty in regression coefficient allows to
consider the dispersion of scatter plot while fitting the regression relation-
ship, although, it does not explicitly model the biases or errors in acquired

sample points of volume or area. Details of deriving the uncertainty estimates are provided in the supporting
information (section S1). This relation was then used to extrapolate volumes for all the remaining haors in
the region using their respective areas obtained from the CoCoAH technique.

3.3. Assessment of Volume Estimates

The accuracy of the overall estimated haor volume was assessed using high‐resolution (3 m) PlanetScope
imagery, combined with the satellite altimetry data already described in section 3.1.2. No accuracy assess-
ment of elevation data in individual haors was possible due to a lack of in situ measurements in the region
or other sources of validation data. The Planet imagery has its own limitation as a reference, such as the pro-
duct's optical nature, which can lead to biases in the derived water volume (Houborg & McCabe, 2018).
Nevertheless, the high spatial resolution imagery is the best option available to assess the accuracy of volume
variations associated with different methods of haor classification and inundation extent calculation.
PlanetScope scenes with four bands in the visible and Near Infrared (NIR) wavelengths were downloaded
over a portion of haor basin for two different days representing evolving stages of haors (growing to fully
mature) in the basin (see Figure 4). To minimize biases, we acquired cloud‐free scenes on days synchronous
with the respective acquisition dates of area and elevation measurements.

To delineate water in the acquired Planet scenes, we performed supervised classification on each image
using maximum likelihood classification technique, similar to that used in our previous study (Ahmad
et al., 2019). Training was performed by manually labeling a set of pixels as water and nonwater. The
CoCoAH technique was then applied over the classified reference Planet imagery to delineate the haor
boundaries and obtain the statistical distribution of their respective areas. Finally, using the volume‐area
relationship developed earlier, the total volume across all haors was obtained and compared with that from
the SAR‐based volume estimates over the same region. Additionally, spatial maps were visually compared to
evaluate spatial consistency of classification.

Another source of validation for the remote sensing‐based estimates were the haors identified from the offi-
cial master plan of the haor basin in northeastern Bangladesh (Master Plan of Haor Area Volume II,
Summary Report, 2012 Q18). This institutional master plan identifies a total of 373 haors in the northeast region
and tabulates their respective areas. It does not, however, include volume estimates. We derived haor
volumes from the stated areas of haors in the plan using the developed area‐volume relationships from sec-
tion 3.2.3. Because the haors included in the master plan represent the mature stage of development, we
compared the overall volumetric storage estimate against results from remote sensing (SAR) imagery for
the wettest of the 3 days selected in the present study (14 July 2019).

4. Results
4.1. Haor Volume Using LOCSS and Remote Sensing

The area obtained from backscatter‐based thresholding on Sentinel‐1 imagery for the 13 selected haors were
used in conjunction with the elevation retrievals from LOCSS and altimetry to estimate haor volume. Results
for respective elevation, area, and volume estimates are described in the following sections.
4.1.1. Assessment of Sentinel‐3 Elevation Extraction
The procedure for extracting water levels from Sentinel‐3 data was compared against the retrievals from
Jason‐3 for haors crossed by both the altimeter tracks. Two such haors are shown in Figure F66a. One of these
haors varies in areal extent from 1.3 to 9.5 km2 and the other from 0.6 to 6.1 km2 over the course of dry and
wet seasons. The heights from Jason‐3 were validated by Biswas et al. (2019) over 12 virtual stations in
Southeast Asia out of which one of the stations, Annapurnaghat on the Barak River of India, is located on

Table 3
Metrics for Comparison of Sentinel‐3 and Jason‐3Water Level Retrievals for
Two Haors

Metric Val‐Haor 1 Val‐Haor 2

RMSE (m) 0.47 0.67
Mean absolute error (MAE) (m) 0.34 0.55
Pearson's correlation 0.92 0.86
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a river system directly connected to the haors. The comparison allows us to assess the sensitivity of elevation
measurements to differences in sensor characteristics. Because Sentinel‐3B passes in close proximity to
Jason‐3, the assessment was performed for the year 2019, when Sentinel‐3B data were available.

The water levels extracted from the two sources are shown in Figure 6b for both the haors. The metrics of
root‐mean‐square error (RMSE), mean absolute error (MAE), and Pearson's correlation used for comparison
are summarized in Table T33.
4.1.2. Area and Elevation Extraction
The time series for area from Sentinel‐1 SAR imagery and elevation from LOCSS/Jason‐3/Sentinel‐3A/
Sentinel‐3B altimeters for selected haors are shown in Figure 7. The elevations in Figure 7 are shown relative
to the lowest observable levels of the respective haors. The Sentinel‐3B and LOCSS elevations are available
over the year 2019 while Jason‐3 and Sentinel‐3A were acquired over 2016–2019.

Figure 7. Area (km2; left axis) and elevation above lowest observable level of haors (m; right axis) extracted using remote
sensing or LOCSS data for selected haors (see Figure 1 and Table 1 for locations).

Figure 8. Volume stored (in black) and volume change (in blue) derived using SAR‐based area and citizen science
elevation data for 2019 for two haors monitored under LOCSS project.
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4.1.3. Volumetric Storage Estimation
Using the area and elevation estimates, the total volume stored and maximum volume change in each haor
over each water year was derived using Equations 5–8. The time series of the volume stored and volume
change over the water year of 2019 for haors of LOCSS project are shown in Figure F88.

As mentioned earlier, the volume change signifies the total flux of water from haors through surface water
evaporation, groundwater recharge, exchange with river, and human use, while gain in storage occurs with
rainfall events over the monsoon season. For the other haors along the altimeter passes (refer to Figure 1 for
pass locations), the volume storage estimates are shown in Figure F99. We do not show the respective volume
changes for these haors for the sake of brevity. Interannual variations in the haor volume storage and
volume changes over the available period of observations (2016–2019 for Sentinel‐3A/Jason‐3, 2019 for
Sentinel‐3B/LOCSS) are shown in Figure S4 in the supporting information.

The large differences in volumetric storage across the selected haors suggest that, aside from the dominant
seasonal signal apparent in all haors, the basin contains haors with varying hydrological signatures. These
differences reflect variations in hydrologic processes driving haor storage and also govern the basin's variable
groundwater recharge and livelihood patterns.

4.2. Volume Estimation for Entire Haor Basin

Based on the limited set of haors available for volumetric storage estimation via altimetry, SAR imagery, and
citizen science data, the next step is to scale up the estimates to the entire haor basin. This starts with the
detection of haor boundaries in the basin using CoCoAH to obtain their areal extents (section 4.2.1) and then
develop an empirical relationship between area and volume based on the volume estimates over haors from
section 4.1 (see section 4.2.2). Using the relationship, the volumetric storage was derived for all the haors in
the basin (section 4.2.3).

Figure 9. Volumetric storage derived using SAR‐based area and altimeter‐based elevation for haors relative to lowest observable levels selected along the altimeter
passes of (a) Sentinel‐3A, (b) Sentinel‐3B, and (c) Jason‐3 (see Figure 1 and Table 1 for the location of haors passed by each sensor).

Figure 10. Resulting classified haors (right panel; b) using the CoCoAH technique based on delineated water from
Sentinel‐1 SAR imagery (left panel; a). The colors are randomly assigned to the classified haors.
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4.2.1. CoCoAH for Haor Detection
The baseline for the CoCoAH technique was established by implementing it over the haor basin on 22 May
2019 when the haors were still in the growing stage. Following the stepwise procedure described in
section 3.1.2, the resulting classified haors are shown in Figure F1010.

The results obtained on haor extent detection were used to derive the statistical distribution of areas for all
the detected haors. A total of 760 haors were detected by the CoCoAH technique for the selected date when
the haors were in the formative stages at the onset of the monsoon season.
4.2.2. Volume‐Area Relationship
Based on the volume estimates for individual haors from section 4.1 for each available water year, a total of
34 points for area and volume storage/change were plotted to reveal a strong linear relationship. The inter-
cept for the empirical relationship was set to zero to ensure physically feasible volume estimates for haors
with smaller areas. To include uncertainty estimates, 95% confidence intervals have also been plotted for
coefficient (slope) of the least squares fit (also see supporting information section S1). Figure 11 shows this
relationship of area with haor volume storage and change.

The area and volumetric storage exhibit strong linear dependence, with a correlation of 0.93. This relation-
ship underlines the relatively flat bathymetry of the haors in the basin that causes the volume to increase
linearly with the spatial extent of haor. The volume change across the season follows a similar linear rela-
tionship with the area of haors but with higher uncertainty. Haors for which water surface height was mea-
sured using citizen science and using satellite altimetry fall along the same best fit lines in Figure 11,
suggesting that both methods provide consistent data for estimating haor volume.
4.2.3. Volumetric Estimates for All Haors and Their Seasonal Variability
Using this relationship and delineated haor extents from CoCoAH technique, we estimated volume for all
the detected haors. The analysis resulted in a cumulative volume of 6.5 ± 0.4 km3 across the 760 detected

Figure 11. Relationship of haor area with the respective volume storage (left panel) and volume change (right panel)
shown for haors with different sources of elevation measurements. Area between red dashed lines represent 95%
confidence bounds for regression coefficients.

Figure 12. (a) PDF and (b) CDF of area and total volume storage over the classified 760 haors in the basin for 22May 2019.
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haors during the onset of the wet season. The corresponding cumulative volume change was 5.1 ± 0.5 km3.
The statistical probability and cumulative distribution functions (PDF and CDF, respectively) of the haor
area and resulting volume storage over the haors is shown in Figure F1212.

To capture the intraseasonal variability of volumetric estimates for haors during the monsoon season, the
analysis was repeated for three other days. These days were representative of the different stages (early,
growing, or mature) of haor's annual lifecycle. The resulting haor extents for different stages and the statis-
tical distribution of area and volume storage are shown in Figure F1313. Cumulative haor volume storage is also
shown for all the classified haors in the basin.

The cumulative volume relative to the lowest observable level increases to 30.9 ± 2.0 km3 (corresponding to
the mature stage in July considered here) as the haors develop over the course of water year. To put the fig-
ures in perspective, such a volumetric storage exceeds the volume of all but 10 lakes in the United States and
is equal to the active storage held behind the Three Gorges Dam or three Grand Coulee Dams. As the season

Figure 13. Classified haors (left panels), PDF (middle panels), and CDF (right panels) of area and volume storage over different days representing evolving stages
of haor. Cumulative volume storage relative to the lowest observable level (with volume change in brackets) is shown below the distribution plots. Colors are
randomly assigned to the classified haors.
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becomes wetter, the adjacent haors merge to form a large water body, flooding a major portion of the basin.
This also leads to an increase in the cumulative volume storage in the basin by almost 5 times when the haors
are in their mature stage.

4.3. Comparison Against Higher Resolution Data

The sensitivity of estimated haor volumes to area estimates from Sentinel‐1 was assessed using areas calcu-
lated from PlanetScope imagery. Planet images were acquired for two different days ‐ one during the early
stage in May 2019 and another after the haors fully develop in August 2019. Due to computational limita-
tions in acquiring Planet scenes over the entire Haor basin, a smaller subset of the basin was selected for
the analysis where potential cloud‐free scenes were available. The mosaicked products are shown in
Figure F1414.

The CoCoAH analysis was performed on the Planet images after delineating water using supervised classi-
fication. The resulting haor extents were used as reference to assess the volume estimation based on SAR
imageries over the closest synchronous days. The comparison of classified haor extents, estimated volume

Figure 14. False Color Composite of mosaicked Planet images acquired on (a) 15 May 2019 (early stage) and (b) 26
August 2019 (developed stage) over footprints as shown in (c) over haor basin.

Figure 15. Comparison of haor classification based on SAR (Sentinel‐1) and Planet imageries over two different days in terms of haor extents and PDF of haor
area and volume storage. Cumulative volume storage is shown below the histograms with respective volume change in parentheses. Colors are randomly
assigned to the classified haors.
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storage and volume change on the 2 days are shown in Figure F1515.
Table 3 summarizes the absolute and percentage errors in
Sentinel‐1 based haor extents when compared with extents from
Planet imageries.

Although both the SAR and high‐resolution Planet‐derived volume
estimates have inherent limitations, the resulting volume estimates
from the two sources were found to be comparable. The SAR esti-
mates are somewhat higher than the Planet estimates, which might
be explained by the larger impact of vegetation on Planet imagery
than on Sentinel‐1 imagery. The statistical distribution (PDF) of haor

areas and volumes also matches closely. The errors reduce as the haors evolve into the wetter season. It
should be noted here that the assessment is dependent on the accuracy of supervised classification per-
formed over the Planet imagery, as established by Ahmad et al. (2019).

Finally, we compared the volumetric estimates against the available government records in the master plan
for the haor basin. Using the area‐volume relationships derived in Figure 11, the total volume stored in the
basin from master plan was found to be 33.0 ± 1.7 km3, while that from the SAR‐based haor classification
(for the wettest day) was 30.8 ± 1.6 km3. This signifies that the SAR‐based inundation closely approximates
the figures reported in the master plan over the wet seasons when most of the haors are fully evolved. The
difference between the two methods is small despite the fact that the measurements of haor area were
acquired over different time periods. However, the large number of haors classified from SAR imagery in
comparison to the master plan are due to a higher frequency of haors with low volumes produced by our
technique (see Figure 13 for the distribution of remotely sensed haor volumes). The errors between
SAR‐based inundated extent and that recorded in the Master Plan are also summarized in Table T44.

5. Discussion and Conclusions

This study presented a cost‐effective approach using citizen science and satellite remote sensing data to esti-
mate the volume of water stored in seasonal wetlands impacted by transboundary runoff. Total volumetric
storage and change in these seasonal wetlands or haors carry fundamental hydrological significance for
developing physical understanding of wetland processes and also controls livelihoods and ecosystems in
the region. The set of haors under the combined sampling of citizens and satellites revealed a consistently
strong linear dependence between the haor's areal extent and its volumetric storage. Over the selected ana-
lysis days in water year 2019, the total haor volume storage, relative to the lowest observable level, ranged
from 6.5 (± 0.4) to 30.9 (± 2.0) km3 as the haors formed and expanded during the monsoon season. To
put this in perspective, the volumetric storage during the wettest season is comparable to the active storage
held behind the Three Gorges Dams in China or three Grand Coulee Dams in the United States.

The empirical relationship derived here to scale up the volume estimates over a larger number of haors based
on citizen science, satellite data, and automated classification provides a practical approach for implement-
ing the same over numerous other small and large wetlands around the globe. Our study indicates that the
potential of synergistically using citizen science and remote sensing data is encouraging, as demonstrated
here over northeastern Bangladesh, because it is able to reveal a previously unknown insight on volumetric
storage with a high degree of confidence. We should stress that there has been no reported study, to the best
of our knowledge, performed on such a large number of highly dynamic floodplain lakes or wetlands to
determine their volumetric storage and temporal variation over multiple years.

The findings presented here have implications for ecosystem‐sensitive and livelihood‐centric water manage-
ment policies in the region. Given the existing gaps in terms of utilizing the abundant natural resources
(Master Plan of Haor Area Volume I, 2012), information on the amount of water storage over the water year
can help inform better policies of water use for rice and fish production while maintaining ecosystem ser-
vices. One of the potential direct consequences of our ability to report on volumetric storage and change
is improvement in irrigation practices that usually take place during the dry season using groundwater
recharged from the preceding monsoon season. During the wet season, the total storage provides an idea
of the amount of groundwater recharge and can help determine the available supply of sustainable ground-
water for irrigation during dry season. The survival and breeding of aquatic species also depend heavily on

Table 4
Quantitative Assessment of Haor Classification Based on Sentinel‐1 Imageries

Date of acquisition Reference Absolute error (km3) Percentage error

15 May 2019 Planet 0.8 40.0%
26 August 2019 Planet 1.1 20.7%
16 July 2019 Master Plan 2.2 6.7%

Note. Errors (absolute and percentage) are calculated using haor volumes
derived from Planet imageries and Master plan from government records as
reference.
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the amount of water stored by these haors (Thilsted & Wahab, 2014). Incorporating volume estimates in
water resource management policies can not only result in smarter water use practices for humans but also
improve ecosystem services.

The accuracy of the volumetric estimates depends upon the confidence in remote sensing based areal
extents, performance of image processing in delineating the haors, and elevation measurements from radar
altimeters and citizen scientists. The choice of haor cross section is critical for the volumetric estimates and
can introduce significant uncertainty. Our investigation on the impact of bathymetry revealed that a rectan-
gular cross section can result in up to 47% higher volumetric storage compared to a trapezoidal (refer to sec-
tion S2 and Table S1 in the supporting information). Hence, it is critical for studies on such flat‐bottomed
seasonal haors to err on the side of caution and assume a trapezoidal cross section (which is corroborated
by the depth‐area relationships shown in Figure S2) for conservative volumetric estimates.

The side‐looking geometry and the requirement for specular reflection can result in misclassification of
water due to the presence of vegetation (e.g., hyacinth) on water or due to its uneven surface. Another source
of uncertainty is the choice of rules and thresholds imposed upon the properties of connected components to
filter haors from water bodies unlikely to be haors. The altimeter elevation extraction procedure introduces
biases from the errors in the geoid height model as well as imperfect geophysical and atmospheric correc-
tions. Other sources of uncertainty include errors due to different time samplings between the satellite mis-
sions used, the linear relationship between area and volume for the observed haors and the assumption that
this relationship could be used for all unobserved haors.

While there are no previous studies to specifically derive the volume estimate of wetlands in Bangladesh, we
compared our results with those found by Baup et al. (2014) over a single lake with mean extent of 0.52 km2

in southwest France. The study derived an empirical second‐degree polynomial relationship between
volume and lake area with a correlation of 0.90, in comparison to the correlation of 0.93 obtained in our
study using linear fit over multiple haors. While the study of Baup et al. (2014) has key differences in terms
of altimeter mission used (Envisat) and lake size (<1 km2), the comparison is still valuable in underscoring
the need to develop improved relationships between lake volume and area. Further, comparing the lake
volume variations, Crétaux et al. (2016) reported a cumulative volume storage of around 40 km3 over 11
lakes in Tibetan Plateau during a period of 20 years. Comparing this to a similar volume change of haor basin
but at a seasonal scale in our study signifies the highly dynamic behavior of these haors in the tropical mon-
soon climate.

The concept presented on synergistic use of elevations from citizen science and remote sensing with
satellite‐based area measurements will be of particular interest in the near future with the launch of new
satellite missions. The most relevant of the future missions is the Surface Water and Ocean Topography
(SWOT) mission scheduled to launch in 2022. The SWOTmission is expected to provide simultaneous water
surface elevation and inundation extent data over nearly the entire global land surface (Biancamaria
et al., 2016). Because SWOT is a wide‐swath altimeter, it will provide an unprecedented data set on variations
in lake area, height, and volume that can be used with the proposed approach to estimate volume storage
and change at high temporal frequency for numerous small and large lakes/wetlands. While this study
observed storage variations in 13 haors and inferred variations in hundreds of others, SWOT will directly
observe variations in all but the smallest haors studied here. Another satellite mission planned for launched
is NASA‐ISRO (Indian Space Research Organization) Synthetic Aperture Radar (NISAR) (Rosen et al., 2016,
2017). The mission includes an L‐band imagery that promises to precisely measure changes in surface water
heights under vegetation (Alsdorf et al., 2000, 2005) and groundwater storage as well as to map the lake
extents. A combination of SWOT and NISAR has the potential to allow accurate space‐based monitoring
of water resources for monsoonal environments of South Asia as well as for global scale applications.

Data Availability Statement

Citizen science data are available online (at www.locss.org). All other data used in this study are publicly
available. Satellite remote sensing data from Jason‐3 altimeter platform are available from Physical
Oceanography DAAC (PO.DAAC) online (at https://podaac.jpl.nasa.gov/dataset/JASON_3_L2_OST_
OGDR_GPS). Sentinel‐3 altimeter data are available online (from https://sentinel.esa.int/web/sentinel/sen-
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tinel‐data‐access). Landsat data were acquired from Google Earth Engine repository. Planetscope optical
data were downloaded from planet.com after making a request.
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