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Elevation Changes From Satellite Radar Altimetry
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Abstract—Limited access to in-situ water level data for lakes and4
reservoirs have been a major setback for regional and global stud-5
ies of reservoirs, surface water storage changes, and monitoring6
the hydrologic cycle. Processing satellite radar altimetry data over7
inland water bodies on a large scale has been a cumbersome task8
primarily due to the removal of contaminated measurements as a9
result of surrounding land. In this study, we proposed a new algo-10
rithm to automatically generate time series from raw satellite radar11
altimetry data without user intervention. With this method, users12
with a little knowledge on the field can now independently process13
radar altimetry for diverse applications. The method is based on14
K-means clustering, interquartile range, and statistical analysis of15
the dataset for outlier detection. Jason-2 and Envisat radar altime-16
try data were used to demonstrate the capability of this algorithm.17
A total of 37 satellite crossings over 30 lakes and reservoirs located18
in the U.S., Brazil, and Nigeria were used based on the availability19
of in-situ data. We compared the results against in-situ data and20
root-mean-square error values ranged from 0.09 to 1.20 m. We

Q1
21

also confirmed the potential of this algorithm over rivers and wet-22
lands using the southern Congo River and Everglades wetlands in23
Florida, respectively. Finally, the different retracking algorithms24
in Envisat; Ice-1, Ice-2, Ocean, and Sea-Ice were compared using25
the proposed algorithm. Ice-1 performed best for generating water26
level time series for in-land water bodies and the result is consistent27
with previous studies.

Q2
28

Index Terms—Lakes, outlier detection, reservoirs, satellite al-29
timetry, water level.30

I. INTRODUCTION31

S EVERAL studies have demonstrated the capability of satel-32

lite altimetry in monitoring water level changes over rivers33

[3], [4], lakes and reservoirs [5], [6], and floodplains and wet-34

lands [7]–[9]. Monitoring lake level variation is an indicator of35

global climate change and ecological issues [10]. Further studies36

on this indicator were performed on the Qinghai-Tibetan Plateau37

by Lee et al. [11] on the nexus between lake level variation38
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and its corresponding effect on climate change [12]. Tarpanelli 39

et al. [13] integrated satellite altimetry and moderate resolution 40

imaging spectroradiometer to estimate discharge in rivers. In 41

addition, recent studies by Hossain et al. [14] and Biancamaria 42

et al. [4] have demonstrated the capability of satellite altimetry 43

in transboundary flood forecasting downstream for adoption by 44

the stakeholder agencies in strategic water resource manage- 45

ment. Such scientific applications can mitigate the loss of lives 46

and properties of vulnerable local residents downstream [14]. 47

Nonetheless, Gao et al. [15] highlighted that access to water 48

level data has been a major challenge in the global studies of 49

reservoirs. Alsdorf et al. [16] also stated the limited access 50

to in-situ data for hydrologic studies due to the impracticable 51

cost of installation over all major water bodies. Hence, satellite 52

altimetry is commonly used as a surrogate for in-situ gauge as 53

a remote sensing technique to generate water level time series. 54

Currently, there have been several altimetry satellites 55

launched into orbit to observe water level for environ- 56

mental studies. These include but are not limited to: 57

ERS-1/2, Envisat, TOPEX/Poseidon, Jason-1, 2, and 3, 58

SARAL/AltiKa, and Sentinel-3. The surface water ocean to- 59

pography (SWOT) mission, scheduled to be launched in 2021 60

(https://swot.cnes.fr/en/SWOT/index.htm), is a Ka-band swath 61

mapping interferometer that will provide simultaneous mea- 62

surements of water elevation and inundated area for inland water 63

bodies [17], [18]. From these observations, surface water storage 64

changes over water bodies whose area exceeds 250 m × 250 m 65

(lakes, reservoirs, and wetlands) can be readily calculated [19]. 66

Despite the recent advances in satellite altimetry and its di- 67

verse applications, there has not been sufficient research on au- 68

tomated data processing to harness the opportunities created by 69

the massive amount of streaming data from multiple altimetry 70

satellites. Such research on automation of accurate height ex- 71

traction can pave the way for engaging a broader community of 72

scientists and stakeholders that need this fundamentally elusive 73

water information from space for a wide variety of scientific and 74

environmental applications. However, satellite altimetry obser- 75

vations have their accuracy reduced by the presence of outliers 76

due to the contamination of nonwater features within the al- 77

timetry footprint [20]. According to Birkett and Beckley [21], a 78

manual approach of outlier removal has to be adopted for qual- 79

ity control in addition to land mask flags. A manual removal 80

of outliers is time consuming, and limits a global generation of 81

reservoir elevation profiles. 82

Recently, there have been attempts to automate the outlier 83

removal in satellite altimetry data. For example, Huang et al. 84
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Fig. 1. Map of the study area. Table I shows the names of each reservoir and lakes in the map. The red and cyan lines show Envisat and Jason-2 tracks,
respectively, over study areas.

[22] removed outliers from ICESat data using threshold values85

of reflectivity in the ICESat product and digital elevation model86

(DEM) from shuttle radar topography mission (SRTM) to de-87

tect outliers. Thus, this method relies on ancillary dataset, i.e.,88

DEM, to effectively remove outliers. Another method of outlier89

detection in satellite altimetry was developed by Schwatke et al.90

[23] which involves extensive pre- and postprocessing including91

a Kalman filter approach. This method is robust but not signif-92

icantly better than the less complex and yet effective method93

proposed in this study as discussed later in Section II. Nielsen94

et al. [24] removed outliers from CryoSat-2 by using a combined95

distribution of Cauchy and Gaussian distribution to represent the96

observations in order to remove outliers.97

In this study, we have developed and demonstrated a new ap-98

proach and algorithm to automatically generate water level time99

series for lakes and reservoirs without user intervention or the100

use of ancillary data. This algorithm can also be used to generate101

water level time series for rivers and floodplains. It is based on a102

combination of K-means clustering, interquartile range (IQR),103

and statistical error computation. Developing algorithms, such104

as the one proposed in this study, is critical toward lake and105

reservoir monitoring at the regional and global scales.106

We performed a quantitative assessment of the result using107

root-mean-square error (RMSE) and R2 to validate the proposed108

algorithm. This algorithm can also be used to generate time109

series for other altimeters, such as SARAL/AltiKa, Senntinel-3,110

and Jason-3.111

II. DATA AND METHODOLOGY112

A. Data113

In this study, we used Jason-2 and Envisat altimetry satellite114

data to demonstrate the capability and consistence of this algo-115

rithm using 37 satellite crossings over 30 reservoirs in Brazil,116

Nigeria, and the U.S. chosen based on the availability of in-situ117

data.118

We obtained the gauge data for the reservoirs in U.S. from 119

the U.S. Geological Survey website (https://waterdata.usgs. 120

gov/nwis/), while the in-situ data in Brazil and Nigeria are not 121

publicly available. 122

Fig. 1 shows the location of the different lakes and reservoirs 123

with their corresponding names cited in Table I. The next sec- 124

tions give a summary of the altimetry satellites information used 125

in this study. For more detailed information, readers are referred 126

to the Jason-2 handbook [25] and Envisat handbook [26]. 127

1) Environmental Satellite (Envisat) Data: Envisat was built 128

by the European Space Agency and launched into orbit in March 129

2002. Envisat has an orbital period of 35 days thereby provid- 130

ing a dense satellite track over inland and open water bod- 131

ies. It has an orbital inclination of 98.55° and was designed to 132

measure the earth’s atmosphere and surface. In this study, we 133

used the 18-Hz along-track range data in the geophysical data 134

record (GDR) product which is publicly provided by the Centre 135

National d’Etudes Spatiales (CNES) data center (https://aviso- 136

data-center.cnes.fr/). Further detail about the data processing is 137

given later in this paper. 138

2) Jason-2 Data: The Jason-2 satellite was launched in June 139

2008 as a continued mission on TOPEX/Poseidon and Jason-1. 140

Jason-2 follows the same orbital track as TOPEX/Poseidon and 141

Jason-1 with a temporal repeat of approximately ten days. In 142

this study, we obtained the 20-Hz along-track range data in the 143

GDR product [25]. We downloaded the dataset from the CNES 144

archive (ftp://avisoftp.cnes.fr/AVISO/pub/jason-2/gdr_d/). The 145

next section gives more details on the data extraction and pro- 146

cessing. 147

B. Methodology 148

1) Clustering: Clustering is the processing of classifying 149

datasets into different groups based on a measure of proxim- 150

ity [27]. The process of grouping datasets into different clusters 151

can be further explored to detect outliers in our measurements. 152
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TABLE I
R2 AND RMSES OF 37 SATELLITE CROSSING OVER LAKES AND RESERVOIRS IN BRAZIL, NIGERIA, AND THE U.S

Study Area Country R2 RMSE Track Satellite Crossing
(m) Length (km)

1 Capivara Reservoir Brazil 0.97 0.34 248 Envisat 4.86
2 Emboracacao Reservoir Brazil 1.00 0.36 620 Envisat 18.89
3 Furnas Reservoir Brazil 1.00 0.12 549 Envisat 9.33
4 G. B. Munhoz Brazil 0.99 0.64 435 Envisat 0.64
5 Ilha Solteira Reservoir Brazil 0.99 0.09 792 Envisat 22.05
6 Ita Reservoir Brazil 0.59 1.10 248 Envisat 0.97
7 Itaipu Reservoir Brazil 0.73 0.24 607 Envisat 27.36
8 Itumbiara Reservoir Brazil 0.93 1.20 177 Envisat 7.56
9 Jurumirim Reservoir Brazil 0.75 1.08 620 Envisat 5.15
10 Marimbondo Reservoir Brazil 0.97 0.73 162 Envisat 5.95
11 Ponte Nova Reservoir Brazil 0.95 0.57 76 Envisat 10.46
12 Promissao Reservoir Brazil 0.84 0.34 263 Envisat 5.38
13 Sao Simao Reservoir Brazil 0.79 0.70 263 Envisat 5.09
14 Serra da Mesa Reservoir Brazil 1.00 0.13 706 Envisat 17.7
15 Sobradinho Reservoir Brazil 0.99 0.32 663 Envisat 25.75
16 Tres Irmaos Brazil 0.56 0.61 792 Envisat 7.72
17 Tres Marias Reservoir Brazil 1.00 0.11 463 Envisat 54.56
18 Tucurui Reservoir Brazil 1.00 0.11 420 Envisat 71.13
19a Kainji Reservoir Nigeria 1.00 0.23 874 Envisat 47.57
19b Kainji Reservoir Nigeria 0.99 0.27 135 Jason-2 28.77
20 Beaver Creek Reservoir U.S. 0.92 0.13 76 Jason-2 2.29
21a Devils Lake U.S. 0.66 0.35 93 Jason-2 6.61
21b Devils Lake U.S. 0.68 0.19 151 Envisat 8.85
21c Devils Lake U.S. 0.76 0.21 196 Envisat 11.07
22 Falls Lake U.S. 0.72 0.32 738 Envisat 2.38
23 Lake Okeechobee U.S. 0.92 0.21 465 Envisat 53.16
24 Lake Salvador U.S. 0.51 0.12 981 Envisat 10.78
25 Monroe Lake U.S. 0.89 0.12 167 Jason-2 4.46
26 Rathbun Lake U.S. 0.95 0.27 682 Envisat 5.35
27a Sam Rayburn Reservoir U.S. 0.83 0.33 596 Envisat 4.79
27b Sam Rayburn Reservoir U.S. 0.92 0.23 695 Envisat 13.72
27c Sam Rayburn Reservoir U.S. 0.99 0.17 41 Jason-2 12.2
28 Upper Klamath Lake U.S. 0.39 0.46 942 Envisat 7.14
29a Upper red Lake U.S. 0.45 0.21 940 Envisat 23.17
29b Upper red Lake U.S. 0.56 0.16 895 Envisat 23.55
30a Wheeler Lake U.S. 0.38 0.59 710 Envisat 5.62
30b Wheeler Lake U.S. 0.50 0.45 723 Envisat 6.72

Several studies [28]–[30] have been done using clustering pat-153

tern for outlier detection.154

Without prior knowledge of the dataset as in the case of a155

discriminant analysis of clusters, the method of using an unsu-156

pervised method of classification in outlier detection can, there-157

fore, be a daunting task. Hence, it is important to understand158

the definition of outliers in details. Hawkins defines outlier as159

measurements with anomaly from the rest of the dataset [31].160

2) K-Means: K-means clustering has been used in many161

studies to detect outliers [29], [30]. The K-means clustering is162

an unsupervised method of classification based on a predefined163

number of classes [32]. The K-means clustering is an iterative164

algorithm that partitions a dataset into K numbers of classes.165

Fig. 2 shows the schematic flowchart of K-means algorithm.166

Let n represents the number of points to be classified and K167

is the number of clusters. First, the user specifies the value of168

K (K is a positive integer) as the only input parameter, then K169

number of points are randomly selected as initialization centroid170

(mean of observations in a cluster) of the K number of clusters.171

Second, the remaining points (n − K) are assigned to a cluster172

based on their proximity (Euclidean distance to the centroid of173

a cluster) to the centroid of the initialization cluster until the174

sum of squared distance to the centroid of each cluster has been 175

minimized 176

min
∑

x∈Cj

||x − µj ||2 (1)

where Cj is the cluster j, x is the data points that belongs to 177

cluster j, and µj is the centroid of cluster j. 178

Finally, note that during each iteration, the centroid (mean) of 179

each cluster is recomputed and points are moved from one clus- 180

ter to another. At the end of the iteration, K clusters would have 181

been achieved. Hartigan and Wong [33] describe the process as 182

assigning points to a cluster and minimizing the sum of squared 183

distances within each cluster. This concept was explored due 184

to its competitive advantage of speed [30] to partition satellite 185

altimetry observations to generate water level time series of 186

reservoirs and lakes. 187

However, some of the known limitations of the classical K- 188

means algorithm is its sensitivity to the initialization centroid 189

which could affect the classification of points [34] and more 190

so, all observations are equally weighted [35]. We used the 191

“K-means” function in MATLAB software (R2015a) which im- 192

plements the K-means++ algorithm to initialize the centroid. 193
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TABLE I
CONTINUED

Water
Level

Latitude
Range

Longitude
Range

No. of Cycles
Before

No. of Cycles
After

Percentage (%)
of Complete

Percentage (%)
of Complete

Amplitude
(m)

Min. Max. Min. Max. Cycle Left Data Left

1 7.76 −22.8251 −22.7740 −51.0461 −51.0330 84 77 92 48
2 24.04 −18.5156 −18.3490 −47.8502 −47.8128 82 82 100 39
3 7.51 −20.8696 −20.8337 −46.1536 −46.1626 82 81 99 55
4 31.40 −26.1268 −26.1198 −51.3120 −51.3138 71 42 59 48
5 2.97 −20.3897 −20.1954 −51.1703 −51.1260 82 80 98 54
6 6.57 −27.2765 −27.2668 −52.1743 −52.1720 67 40 60 49
7 2.09 −25.2639 −25.0062 −54.4071 −54.4737 82 78 95 45
8 16.47 −18.3463 −18.2761 −48.9116 −48.9292 80 79 99 13
9 7.81 −23.2873 −23.2398 −49.0070 −48.9960 81 80 99 29
10 14.57 −20.2323 −20.1759 −48.9793 −48.9644 81 68 84 49
11 16.43 −19.2065 −19.1005 −47.2949 −47.2692 82 69 84 34
12 3.51 −21.4015 −21.3541 −49.6179 −49.6294 82 82 100 58
13 6.75 −18.7098 −18.6622 −50.2628 −50.2734 81 72 89 38
14 24.18 −14.3088 −13.9810 −48.3063 −48.2309 83 80 96 33
15 8.22 −10.0323 −9.7824 −42.2011 −42.2697 80 80 100 49
16 3.67 −20.6790 −20.6067 −51.2455 −51.2258 82 82 100 40
17 14.71 −18.6125 −18.2409 −45.2577 −45.3437 84 82 98 50
18 18.86 −4.3937 −3.7565 −49.6760 49.5356 82 80 98 28
19a 11.62 10.0174 10.5254 4.5242 4.6401 81 81 100 38
19b 11.02 10.3247 10.6316 4.4453 4.5555 258 250 97 50
20 2.52 36.0169 36.0318 −78.6829 −78.6924 256 255 100 92
21a 2.81 48.0429 48.0730 −98.8333 −98.7960 258 253 98 72
21b 1.60 48.0002 48.0648 −99.0040 −98.9805 83 81 98 80
21c 2.04 48.0376 48.0924 −99.0475 −99.0661 82 75 91 67
22 2.55 36.0106 36.0287 −78.7459 −78.7427 80 71 89 67
23 2.71 26.7036 27.0926 −80.7825 −80.8900 83 83 100 78
24 0.86 29.7090 29.7944 −90.2019 −90.2242 83 79 95 51
25 1.70 28.8124 28.8457 −81.2537 −81.2366 260 260 100 87
26 5.64 40.8401 40.8780 −93.0243 −93.0126 82 77 94 65
27a 3.78 31.3172 31.3578 −94.4668 −94.4559 85 85 100 47
27b 3.09 31.0875 31.1989 −94.1694 −94.1990 79 78 99 45
27c 6.51 31.0963 31.2107 −94.2329 −94.1797 258 258 100 68
28 2.63 42.4185 42.4638 −121.9484 −121.9328 84 78 93 50
29a 1.36 48.0679 48.2126 −94.6680 −94.6060 85 78 92 86
29b 1.05 48.0580 48.2011 −94.7474 −94.8070 82 72 88 80
30a 3.72 34.6481 34.6965 −87.0534 −87.0423 83 81 98 33
30b 2.79 34.7419 34.7917 −87.3018 −87.3147 79 71 90 55

Arthur and Vassilvitskii [36] developed the K-means++ algo-194

rithm and compared their method of choosing the initialization195

centroid to the random method used in classical K-means. They196

concluded that the K-means++ increased the stability of the197

classical K-means method. In this study, we did not explicitly198

verify this claim, however, repeated computation of RMSE over199

our study areas yielded a consistent result. Hence, we could in-200

fer that the limitations due to the initialization centroid has been201

addressed in the “K-means” function in MATLAB.202

3) Data Extraction and Processing: Prior to extracting203

Jason-2 and Envisat data over the study areas, we overlaid the204

nominal altimetry tracks over Google earth image to determine205

an estimate of the latitude range of the overlap (see Table I,206

Fig. 3(b)) to truncate the dataset. It is imperative to note that207

some of the reservoirs used in this study (most especially in208

Brazil) has more than one satellite crossing. In such cases, we209

selected the longest track over the reservoir.210

While extracting the water elevation data from the raw file,211

we discarded measurements with retracked range quality flags,212

and defaulted latitude and longitude values as recommended213

in [21]. This was necessary to ensure that the outliers detected 214

were not due to the failure to remove the measurements that 215

have been flagged either due to instrument error or data quality 216

checks. 217

In this study, we used the Ice-1 retracked range measurement 218

for Envisat, which is considered most suitable for inland water 219

[3], and Ice retracked range for Jason-2 [37]. The equation below 220

was used to compute the elevation above the reference datum: 221

Hcorr = Alt − [R − ΔR + Awet + Adry

+ Aiono + Tp + TE + TL ] (2)

where Hcorr is the corrected elevation, Alt is the satellite altitude 222

above the reference ellipsoid, R is the measured range to the 223

surface of the water; Awet , Adry , Aiono are the corrections for the 224

wet troposphere, dry troposphere, and ionosphere, respectively; 225

TP , TE ,, TL are corrections for pole, earth, and loading tides, 226

respectively, and ΔR is the retracked range correction. 227

In case of Jason-2, we subtracted 0.7 m from Hcorr to con- 228

vert the reference from Topex ellipsoid (Jason-2) to WGS-84 229
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Fig. 2. K-means Flowchart modified from [1].

ellipsoid [38], [39] for consistency. Finally, this Hcorr refer-230

enced to WGS-84 ellipsoid was subsequently passed into the231

algorithm. The next section gives a detailed explanation of the232

algorithm.233

4) Outlier Removal: Prior to generating the time series from234

the cycles, we do not have a priori information on the range235

of the elevation of the reservoirs. Consequently, it becomes236

challenging to mask the elevation without using any ancillary237

data. This section explains in details the algorithm used for the238

automated generation of altimetry time series. Fig. 4 shows the239

flowchart of the outlier removal algorithm that was implemented240

in this study.241

a) For clarity, the complete dataset in this context refers to242

all height measurements within the delineated lake or reservoir243

boundary for all cycles, while the sample dataset refers to the244

cycle under consideration. The first phase of the outlier removal245

after the data extraction was the removal of outliers from the246

complete dataset using the equations shown in (4) and (5) to247

remove extraneous outliers. Q1 and Q3 represent the first and248

third quartiles of the data, respectively, and IQR is computed249

from the difference between Q3 and Q1250

IQR = Q3 − Q1 (3)

Lower = Q1 − 1.5 · IQR (4)

Upper = Q3 + 1.5 · IQR. (5)

For illustration, Kainji reservoir in Nigeria with Jason-2 Pass251

135 (see Fig. 3(a)) dataset was used to explain this step. The252

lower (see (4)) and the upper limits (see (5)) of the complete253

dataset were 132.58 and 199.22 m, respectively. Measurements254

above and below the computed upper and lower limits, respec-255

tively, were removed.256

b) The second phase of this algorithm was performed on the 257

sample dataset, i.e., each cycle. In this stage, the K-means clus- 258

tering was used to identify the clusters. As earlier mentioned 259

in Section I, a priori knowledge of the number of clusters is 260

necessary. Then, the critical question arises; what is the appro- 261

priate K value for this algorithm? We here set K as 2. This value 262

was used because the measurements could either be classified 263

as “good” or “bad.” Note that the “good” or “bad” referred here 264

does not inherently mean water and land signals, respectively. 265

This phase was iterative till the statistical range (SR, difference 266

between maximum and minimum height) of the heights was 267

within a specified threshold of 5 m. Further explanations will be 268

provided later in Section II-B 5 on the choice of this threshold 269

value. 270

While the SR of the height was above the set threshold, the 271

cluster with fewer observations was discarded. This process can 272

be referred to as the majority vote based on the assumption 273

that the larger cluster has a higher likelihood of being the right 274

measurement. At the end of this iteration, one cluster would 275

have been achieved. 276

c) Finally, the mean was computed from the cluster from 277

the previous section and the deviation from the mean was 278

also computed. At each iteration, the largest deviation from 279

the mean was computed and removed until the standard devi- 280

ation (std) threshold of 0.3 m was achieved. We discussed in 281

details the choice of the threshold value of 0.3 m std and 5 m 282

SR in Section II-B5. Finally, the average along-track height was 283

then computed and used in the time series. These processing 284

steps were repeated for all the cycles to generate the time-series 285

plot. 286

5) SR and Standard Deviation Threshold: Using Jason-2, 287

Pass 135 over the Kainji reservoir (see Fig. 3(b)) as an illus- 288

tration, Fig. 5(a) shows that the RMSE, which was computed 289

using in-situ gauge, is more sensitive to the SR of the height 290

compared to the standard deviation used in the flowchart. Al- 291

though we could obtain a lower RMSE by choosing a lower 292

range and standard deviation, the tradeoff can be seen in 293

Fig. 5(b) and (c), where the percentage of outliers detected 294

increases as the RMSE reduces. Fig. 5(b) shows that a lower 295

range and standard deviation results in fewer samples of dataset 296

after outliers have been removed. For instance, if we used a SR 297

of 5 m and a std of 0.3 m in the algorithm (see Fig. 4, flowchart), 298

the RMSE obtained from Fig. 5(a) is approximately 0.2 m and 299

the corresponding percentage data detected as outliers is ap- 300

proximately 30% (see Fig. 5(b) and (c)). On the other hand, 301

if a SR of 8 m and std of 0.8 m were used in the algorithm, 302

we obtain RMSE of about 0.4 m with an average data loss of 303

approximately 20%. 304

Hence, for this paper, we decided to choose a conservative 305

value of 0.3 and 5 m for the standard deviation and range, 306

respectively, to process both the Envisat and Jason-2 time series. 307

Note that the threshold values of 0.3 and 5 m are not necessarily 308

optimal to obtain the best RMSE. Hence, users can modify these 309

values to obtain a desired time series taking cognizance of the 310

tradeoff in percentage of outliers and RMSE. The plots in Fig. 5 311

might be slightly different for different reservoirs, but the overall 312

trend is expected to be consistent. 313



IEE
E P

ro
of

6 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

Fig. 3. (a) Upper and lower limits for outlier removal from the complete dataset of Kainji reservoir, Jason-2 Pass 135. (b) SRTM DEM over the Kainji reservoir,
Nigeria. The black line represents Jason-2 Pass 135.

Fig. 4. Schematic diagram for the automatic generation of time series and
outlier removal.

III. RESULT314

In order to validate the water level time series generated using315

the proposed algorithm, we obtained the daily in-situ data for316

the lakes and reservoirs (see Section II-A).317

The daily in-situ gauge data was downsampled to correspond318

to the date of the satellite passes and the difference between319

the resampled in-situ and the altimetry water level time series320

was computed. The mean difference was used to reduce the321

in-situ gauge to the altimetry water level for comparisons [40].322

In addition, we performed a quantitative assessment of the water323

level time series of the algorithm using RMSE as the metrics.324

We compared the altimetry water level time series to the325

gauge observations of reservoirs and lakes (Fig. 6 corresponds326

to Nigeria, Fig. 7 to Brazil, and Fig. 8 to U.S.). The error bar for327

the altimetry water level was not shown in the figures for clarity328

in illustration. However, recall from the algorithm description329

that the maximum standard deviation for each cycle was limited330

to 0.3 m.331

In addition, from Figs. 6–8, we can also infer the stability of 332

the proposed algorithm under varying climatic conditions and 333

possible dam-controlled operations that can potentially com- 334

promise on the outlier detection capability. It is important to 335

evaluate the stability of outlier detection algorithms based on 336

the factors listed below as they can potentially affect the dis- 337

tribution of measurements which can lead to false detection as 338

outliers 339

1) First, protracted increase or decrease in time-series 340

trend: The continuous increase or decrease in water level can 341

be attributed to prolonged flooding or drought, respectively. 342

Fig. 7(1B) captures the extended drought period in Emboraca- 343

cao reservoir, Brazil from 2010 with 100% of the dates (cy- 344

cles) retained (see Table I). On the other hand, Fig. 8(4C) 345

shows a protracted increase in the water level for the period 346

of November 2014–July 2015 of approximately 21.09–24.44 347

m. Prior to 2014, the maximum water level from 2008 was 348

22.42 m. Despite the continuous increase in the water level, 349

the proposed algorithm retained 100% (see Table I) of the 350

dates (cycles) after outlier detection without any error due to 351

commission. 352

2) Second, momentary flood or drought: Figs. 7(1C), 7(6C), 353

and 8(4C) show the drought approximately in year 2007, 2003, 354

and 2012, respectively. The percentage number of dates after 355

the outlier detection was 99%, 98%, and 100% for Figs. 7(1C), 356

7(6C), and 8(4C), respectively. 357

3) Third, impoundment due to reservoir operations: Although 358

we do not have information to substantiate the impoundment on 359

the reservoirs, from Fig. 7 (4B, 5B, 6B), we can hypothetically 360

state that the sudden increase which is then accompanied by a 361

steady time series simulates the impoundment of reservoirs. A 362

close examination of Tres Marias and Serra da Mesa reservoir in 363

Fig. 7(6B) and (5B), respectively, shows a continuous increase 364

in the water level from 2002 to 2006 before reaching a steady 365

state. Despite this change in reservoir water levels, the proposed 366

algorithm retains 98% and 96% of the available dates (cycles) 367

over Tres Marias and Serra da Mesa reservoir, respectively (see 368

Table I). 369



IEE
E P

ro
of

OKEOWO et al.: AUTOMATED GENERATION OF LAKES AND RESERVOIRS WATER ELEVATION CHANGES 7

Fig. 5 Analysis of Jason-2, Pass 135 data (Kainji reservoir) in choosing a threshold value: (a) 3-D surface plot showing how RMSE, range, and standard
deviation in the outlier detection algorithm varies. (b) Corresponding effect of range and standard deviation on the average percentage of data after outlier removal.
(c) Percentage of outliers removed and its variation with respect to RMSE.

Fig. 6. Comparison of in-situ gauge observation (red) and altimetry-derived (Jason-2: green, Envisat: blue) water level of Kainji reservoir, Nigeria referenced to
WGS 84 Ellipsoid.

4) Finally, what if there are no errors in the observation? The370

analyses in this section is incomplete without considering the371

tendency of false detection of dates (cycles) as outliers when372

the actual observations do not contain outliers, i.e., the error due373

to commission. Consequently, we examine the Beaver Creek374

reservoir (see Table I), which is deemed most appropriate for375

this analysis since it has the highest percentage (92%) of data376

after the outlier detection. A case of no outlier in the dataset377

implies that 100% of the data should be retained after running378

through the outlier algorithm. Nonetheless, we explained earlier379

in Section II-B5 how the choice of the threshold used in the al-380

gorithm impacts the percentage of dataset after outlier detection.381

Hence, if the raw dataset is within the thresholds then, 100%382

of the complete dataset will eventually be used without any383

observations detected as outliers. In conclusion, the proposed384

algorithm is not susceptible to error due to commission.385

The different scenarios exemplified above do not intend to386

generalize on the performance of the proposed algorithm in387

those circumstances but to highlight its flexibility and effective-388

ness in handling such unique conditions.389

Table I shows the summary of the quantitative assessment390

of all the reservoirs used in this study. It can be observed that391

most of the reservoirs have high R2 and good RMSE value. 392

Nonetheless, some of the lakes can be observed to have low R2 393

(0.4–0.5), but good RMSE value (0.16–0.59 m). In general, the 394

lakes with low R2 values also had low water level fluctuation, 395

as shown in Table I. We performed further investigation (see 396

Section IV) to ascertain the reason for the poor RMSE of 1.2 m 397

obtained in the Itumbiara reservoir with over 80% of the data 398

detected as outlier. 399

Table II shows RMSE values computed for four different 400

retracking algorithms applied to Envisat GDR to evaluate the 401

performance of the proposed algorithm. Using the RMSEs, the 402

ranks of the retracking algorithms were determined for the lakes 403

and reservoirs. The rank was based on a scale of 1–4 which, 404

represents the retracking algorithms; 1 being the lowest or the 405

best RMSE value, while 4 represents the highest or worst RMSE 406

value. It can be observed from Table III below that Ice-1 retrack- 407

ing algorithm outperformed the other retrackers over the study 408

regions with an average rank of 1.3 which represents 77.8% of 409

the 26 Envisat crossings used in this study. This is consistent 410

with the study done by Frappart et al. [3] and Da Silva et al. 411

[41] that Ice-1 retracked range is the best. Ocean retracking 412

algorithm has the least performance with an average rank of 413
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Fig. 7. Comparison of in-situ gauge observation (red) and altimetry-derived (Envisat) water level (blue) of 18 reservoirs and lakes in Brazil.

3.4. Hence, Ice-1 retracking algorithm shows more consistent414

performance in studying the in-land water bodies.415

IV. DISCUSSION416

A. Time Series and Algorithm Analyses417

The high RMSE values reported on some of the reservoirs418

could be attributed to diverse reasons; contamination of the al-419

timetry measurements due to orbital error, retracking error [42],420

surrounding topography [10], etc. It is challenging to isolate 421

these sources of errors or attribute it to the shortcoming of the 422

algorithm. 423

Consequently, we performed in-depth analyses over the 424

Itumbiara reservoir which has the worst RMSE of 1.2 m and 425

the Kainji reservoir with a relatively good RMSE of 0.27 m to 426

investigate the selection pattern of the proposed algorithm. For 427

both reservoirs, we evaluated the first high and low water cycles 428

of the time series indicated in Fig. 9. 429
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Fig. 8. Comparison of in-situ gauge observation (red) and altimetry-derived (Envisat: blue, Jason-2: green) water level of 11 lakes in the U.S.

Fig. 10(a) and (c) shows the dispersion of the measured height430

over the Itumbiara reservoir both in the first high and low wa-431

ter cycles, respectively. Previous studies have indicated that432

the complexity in shape of inland water bodies and the con-433

tamination due to surrounding topography affect the quality of434

radar altimetry measurements [10]. The Landsat 8 image used435

at the background shows the complexity of the lake boundary.436

Hence, it is speculated that the high RMSE of 1.2 m obtained437

in Itumbiara is due to the aforementioned reasons. In addition, 438

Fig. 10(d) shows fewer observations in the low water period 439

than Fig. 10(b) due to the data quality checks described in 440

Section II-B3. 441

Fig. 11(a) and (c) over the Kainji reservoir shows clearly two 442

different clusters from visual inspection. The data gaps in the 443

satellite altimetry track in Fig. 11(d) are due to the land mask 444

and quality flags. We further examined the spatial distribution 445
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TABLE II
RMSE VALUES OF 26 ENVISAT SATELLITE CROSSINGS OVER LAKES AND

RESERVOIRS IN THE U.S. AND BRAZIL USING ICE-1, ICE-2, OCEAN, AND

SEA-ICE RETRACKING ALGORITHMS

RMSE (m)

Country Ice-1 Ice-2 Ocean Sea-Ice

Ilha Solteira Reservoir Brazil 0.09 0.14 0.26 0.17
Tucurui Reservoir Brazil 0.10 0.11 0.45 0.13
Tres Marias Reservoir Brazil 0.12 0.18 0.33 0.22
Furnas Reservoir Brazil 0.12 0.27 0.28 0.30
Serra da Mesa Reservoir Brazil 0.13 0.20 0.35 0.23
Itaipu Reservoir Brazil 0.24 0.41 0.44 0.49
Sobradinho Reservoir Brazil 0.32 0.28 0.57 0.34
Emboracacao Reservoir Brazil 0.33 0.44 0.74 0.64
Promissao Reservoir Brazil 0.34 0.59 0.53 0.62
Ponte Nova Reservoir Brazil 0.56 2.81 0.68 0.45
Tres Irmaos Brazil 0.61 0.50 0.66 0.51
G. B. Munhoz Brazil 0.64 0.58 6.95 0.61
Sao Simao Reservoir Brazil 0.70 0.92 0.99 1.42
Lake Salvador US 0.12 0.28 0.23 0.36
Upper red Lake US 0.16 0.27 0.31 0.28
Devils Lake US 0.19 0.33 0.40 0.35
Devils Lake US 0.21 0.34 0.40 0.49
Upper red Lake US 0.21 0.31 0.37 0.33
Lake Okeechobee US 0.21 0.22 0.22 0.22
Sam Rayburn Reservoir US 0.23 0.23 0.31 0.27
Rathbun Lake US 0.27 0.29 0.47 0.20
Falls Lake US 0.32 0.36 0.42 0.37
Sam Rayburn US 0.33 0.59 0.39 0.52
Upper Klamath Lake US 0.47 0.75 0.93 0.93
Wheeler Lake US 0.48 0.52 0.52 0.54
Wheeler Lake US 0.61 0.76 0.69 0.75

TABLE III
MEAN RANK BASED ON THE RMS ERROR OF THE 26 ENVISAT PASSES OVER

LAKES AND RESERVOIRS IN THE U.S. AND BRAZIL

Ice-1 Ice-2 Ocean Sea-Ice

Mean Rank 1.3 2.3 3.4 3.0
First Rank (%) 77.8 11.1 0.0 11.1

of the outliers based on the high and low water elevation using446

Landsat 8 images that coincides with the water level. Pass 135447

shown in Fig. 11(b) and (d) is the ascending ground track and448

Jason-2 tracking unit may remain locked to the reservoir shore449

as it crosses from land to open water which resulted into error450

in water elevation measurements [21]. The phenomenon per-451

haps explains why most of the outliers are located on the lower452

part of the track which is further worsened by the proximity453

to land. In summary, during the low water period in cycle 1,454

see Fig. 11(d), more observations were detected as outlier com-455

pared to the high water period in Fig. 11(b).456

In order to substantiate the need to remove outliers from457

the complete dataset, further critical analyses were performed458

over the Kainji Reservoir using Jason-2, Pass 135 cycles 57459

and 10 (see Fig. 12) as an example. First, Fig. 12(a) shows the460

histogram distribution of elevation measurements in cycle 57.461

Without prior knowledge of the elevation, a quick glance at462

this cycle visually or using any clustering algorithm will detect463

measurements between 160 and 180 m, as the outliers represent464

only 14% of the dataset in the cycle. This was due to the highest 465

frequency of the measurements being within 220–240-m range, 466

which corresponds to a greater proportion of the sample dataset. 467

Recall from Fig. 9(a) that the actual elevation is below 163 m. 468

Hence, Fig. 12(a) and (b) shows a classic example of the need to 469

perform the removal of outliers in the complete dataset before 470

removing outliers in the sample dataset (each cycle). 471

Similarly, Jason-2, Pass 135 cycle 10 from Fig. 12(b) shows 472

that none of the measurements observed was within the elevation 473

range of 150–163 m (see Fig. 9(a)). Thus, performing outlier 474

detection on the complete dataset will eliminate all the measure- 475

ments in this cycle. The measurements would have otherwise 476

been averaged if the outlier detection was only performed on 477

this cycle or sample dataset without due consideration of the 478

complete dataset as a significant indicator of the outliers. 479

Sulistioadi et al. [20] described the process of removing out- 480

liers in altimetry measurements by simply using IQR. How- 481

ever, this method may not effectively remove the outliers in 482

the dataset. We examined some scenarios to further substantiate 483

the shortcoming of using IQR exclusively in removing outliers. 484

Fig. 13 shows the water level time series generated using the 485

IQR. These scenarios are not uncommon when the IQR method 486

is used depending on the noise level of the radar altimetry 487

measurement. When compared with the result of the algo- 488

rithm in Table I, Figs. 7 and 8, we observe a significant im- 489

provement and consistence in the proposed algorithm from the 490

RMSEs. 491

Furthermore, we explored the potential of using the altime- 492

ter’s backscattering coefficients (BC) to aid in the detection 493

of outliers using the Kainji reservoir (Jason-2, Pass 135) by 494

examining the distribution pattern of the altimeter BC. From 495

Fig. 14(a), it can be observed that the pattern of the time series 496

is clear and outliers are distinguishable. In order to analyze the 497

dataset, we set an arbitrary threshold of 170 m which clearly 498

discriminates the noise from the time-series pattern observed 499

over all cycles. Fig. 14(b) shows the histogram distribution of 500

Jason-2 BC below (red line) and above (blue color) the arbitrar- 501

ily set threshold of 170 m. It can be observed that the highest 502

frequency is within the range of 20 dB which has an overlap 503

with the range of BC from elevations above 170 m. Therefore, 504

if we used 20 dB as a threshold to distinguish between true 505

elevations and outliers, 49.5% of the complete dataset will be 506

classified as outliers. This represents 34% of the probable true 507

elevation measurement, i.e., the measurements below arbitrary 508

170 m earlier mentioned. Moreover, Birkett and Beckley [21] 509

stated that the BC is a highly variable quantity which indi- 510

cates conditions, such as wind and ice, and this was also rein- 511

forced by Kleinherenbrink et al. [43]. As a result, we did not 512

incorporate BC as a part of the outlier detection criteria in our 513

algorithm. 514

Finally, using the result shown in Table I, we investigated the 515

relationship between the RMSEs and the lengths of the satellite 516

crossings on the reservoirs as in Fig. 15. We infer that small 517

satellite crossings have a larger tendency to have high RMSE 518

when compared to its longer counterpart. However, it can be seen 519

from the scatter plot that lower RMSEs can also be obtained in 520

case of short cross lengths. 521
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Fig. 9. (a) Cycles 1 and 9 correspond to the low and high water seasons, respectively, of the Kainji Reservoir from Jason-2 Pass 135. (b) Cycles 46 and 52
correspond to the high and low water seasons, respectively, of the Itumbiara Reservoir from Envisat Pass 177.

Fig. 10. Itumbiara Reservoir, Brazil: The red and blue represent the outliers detected and the averaged measurements, respectively. (a) High Water, Cycle 46
(March 20, 2006): Distribution of outliers and averaged measurements. (b) High Water, Cycle 46: Spatial distribution of outliers and averaged measurements.
Background is Landsat-8 true color image acquired on March 31, 2016. (c) Low Water Cycle 52 (October 15, 2006): Distribution of outliers and averaged
measurements. (d) Low Water Cycle 52: Spatial distribution of outliers and averaged measurements. Background is Landsat-8 true color image acquired on
October 7, 2015.

B. Prospect of the Proposed Algorithm Over River522

and Wetlands523

Since the algorithm is not restrained by the type of inland524

water body, we took a further step in testing the prospect of the525

algorithm over a river and wetland. Based on the availability526

of in-situ data, we used the Congo River in Africa and the527

Everglades wetland in Florida [2]. Yuan et al. [2] validated528

the performance of Envisat altimetry over the aforementioned529

locations.530

Fig. 16 shows the result obtained using our proposed al- 531

gorithm in generating water level time series. We compared 532

the result with in-situ gauge and obtained RMSE and R2 of 533

0.44 and 0.88, respectively, over the Congo River. On the other 534

hand, in the Everglades wetland, we obtained RMSE and R2 of 535

0.11 and 0.73, respectively. Yuan et al. [2] reported an RMSE 536

of 0.35 m and R2 of 0.95 in the Congo River and RMSE of 537

0.12 m and R2 of 0.83 over the Everglades wetland, 538

Florida. The results obtained using the proposed algorithm is 539
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Fig. 11. Kainji Reservoir, Nigeria: The red and blue represents the outliers detected and the averaged measurements, respectively. (a) High Water, Cycle 9
(October 4, 2008): Distribution of outliers and averaged measurements. Background is Landsat-8 true color image acquired on November 22, 2015. (b) High Water,
Cycle 9: Spatial distribution of outliers and averaged measurements. (c) Low Water Cycle 1 (July 17, 2008): Distribution of outliers and averaged measurements.
(d) Low Water Cycle 1: Spatial distribution of outliers and averaged measurements. Background is Landsat-8 true color image acquired on July 1, 2015.

Fig. 12. (a) Histogram distribution of elevation measurements of Jason-2, Pass-135 Cycle 57. (b) Histogram distribution of elevation measurements of Jason-2
Pass-135 Cycle 10.

comparable to the manual approach with 100% of dates (cy-540

cles) retained in both cases in the Congo River, while 98% of541

dates (cycles) in the Everglades wetland. These results show the542

prospect of this algorithm over rivers and wetlands. However, an543

extensive study was not performed on other areas to verify this544

claim.545

C. Comparison of the Proposed Algorithm With Global Water 546

Level Web Databases 547

In order to show the competitiveness of the proposed algor- 548

ithm, we compared the result of the algorithm with the time 549

series publicly available from the websites of Database 550
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Fig. 13. Satellite altimetry water level time series derived from conventional IQR outlier editing. Red and blue colors represent in-situ observation and
altimetry-derived (Envisat and Jason-2) water level, respectively.

Fig. 14. Analyses of Kainji reservoir, Jason-2 Pass 135. (a) Data plots of the elevation measurements before outlier removal for all cycles over the Kainji
reservoir. (b) Histogram distribution of Jason-2’s BC before outlier removal of all elevation measurements from all cycles over the Kainji reservoir. The red bars
show all BC above the threshold line of 170 m in (a) while the blue bars show BC below the threshold of 170 m.

Fig. 15. Scatter plot of RMSEs and lengths of satellite crossings over
reservoirs.

for Hydrological Time Series of Inland Waters (DAHITI) [23] 551

(http://dahiti.dgfi.tum.de/en/), Hydroweb [6] (http://hydroweb. 552

theia-land.fr/), River and Lake (http://tethys.eaprs.cse.dmu.ac. 553

uk/RiverLake/shared/main), and U.S. Department of Agri- 554

culture (USDA, http://www.pecad.fas.usda.gov/cropexplorer 555

/global_reservoir/) [12]. A detailed description of the data 556

processing methods used in each of the altimetry time series 557

web database can be found in the references. Since the 558

aforementioned websites did not have the time series for all 559

the lakes and reservoirs used in this study, we have limited our 560

comparison to the common lakes and reservoirs. 561
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Fig. 16. Water level time series generated using the proposed algorithm in blue, manual method used by Yuan et al. [2] in green, and in-situ data in red. (a)
Congo River, Envisat Pass 143 4.300° S 15.499°W. (b) Everglades Wetland in Florida. Envisat Pass 194, 25.515° N 80.910°W.

TABLE IV
STATISTICAL COMPARISON OF RIVER AND LAKE, USDA, DAHITI, HYDROWEB, AND THE PROPOSED ALGORITHM W.R.T In-Situ GAUGE MEASUREMENTS

Number of available Altimetry Web Database Proposed Algorithm

Number of remaining Number of remaining

Dates (Cycles) Lake/Reservoir RMSE R2 Dates (Cycles) Source RMSE R2 Dates (Cycles)

82 Emborcacao 1.32 0.94 72 USDA 0.36 1.00 82
82 Tucurui 0.32 1.00 74 USDA 0.11 1.00 80
83 Okeechobee 0.21 0.91 78 USDA 0.21 0.92 83
82 Kainji 1.22 0.90 76 USDA 0.23 1.00 81
82 Ilha Solteira 0.21 0.93 NA DAHITI 0.09 0.99 80
83 Okeechobee 0.19 0.92 NA DAHITI 0.21 0.92 83
81 Kainji 0.26 0.99 NA DAHITI 0.23 1.00 81
84 Tres Marias 0.36 0.98 79 HydroWeb 0.11 1.00 82
82 Ilha Solteira 0.36 0.84 60 HydroWeb 0.09 0.99 80
81 Kainji 0.42 0.99 81 HydroWeb 0.23 1.00 81
82 Furnas 0.60 0.95 81 HydroWeb 0.12 1.00 81
82 Tucurui 0.72 0.98 74 HydroWeb 0.11 1.00 80
82 Tucurui 0.16 1.00 76 River & Lake 0.11 1.00 80
81 Kainji 0.58 0.98 78 River & Lake 0.23 1.00 81

The number of available dates in DAHITI is not applicable (NA) due to the temporal resampling of the time series.

Fig. 17 shows a comparison of DAHITI, Hydroweb, River and562

Lake, and USDA with the in-situ gauge data. From Table IV, we563

observe that RMSEs obtained from our proposed algorithm in564

most cases outperformed the existing publicly available altime-565

try time series based on the limited common samples used for566

comparison. The proposed algorithm is not aimed as a surrogate567

to the web time series, but a supplementary tool for stakehold-568

ers to process any inland water body of their choice without569

limitations due to availability of public dataset. It is also impor-570

tant to emphasize on the reproducibility and the simplicity of571

the proposed algorithm compared to the convoluted method, for572

example, used in DAHITI without compromising on accuracy.573

In addition, we also compared the number of cycles (dates)574

deleted either by error of omission or commission in the pro-575

cess of removing outlier (see Table IV). Except in Hydroweb576

(Tucurui and Kainji), the proposed algorithm consistently has577

more number of dates without compromising on higher accu-578

racy of the lakes (see Table IV). We are unable to compare 579

the number of dates in the proposed algorithm with DAHITI 580

product due to its temporal resampling. 581

The next section highlights some of the limitations we ob- 582

served in our proposed algorithm. 583

D. Limitations of the Proposed Algorithm 584

We observed some limitations in the algorithm during the data 585

processing. First, in some rare cases, where the two clusters 586

from the K-means have equal number of observations, then 587

the selection due to the majority vote becomes random. For 588

future work, further improvement in the selection criteria should 589

include the variance of each cluster. This is based on the premise 590

that the outliers have a larger variance when compared to the 591

actual observations. 592

Furthermore, from Fig. 8(1B), between years 2011 and 2012, 593

we can observe an outlier at an elevation of approximately 594
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Fig. 17. Comparison of in-situ and other publicly available web database (dashed red lines: in situ, cyan circles: DAHITI, green circles: HydroWeb, black circles:
USDA, and the blue line: River and Lake water level time series) over the common lakes and reservoirs.
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417 m. Although this is not a common occurrence in the pro-595

posed algorithm, we suggest computing the elevation difference596

between successive dates (cycles) to detect such significant dif-597

ference.598

Finally, in a case where the percentage of the outliers is599

significantly more than the actual observations, the algorithm600

is more likely to fail. In such cases, a more advanced method,601

such as a machine learning approach, can be used for outlier602

detection. This limitation due to the percentage of outlier is not603

peculiar to this algorithm as Schwatke et al. [23] also suggested604

that more than 50% of the observations should be over water to605

effectively detect outliers. Nonetheless, Troitskaya et al. [44]606

stated that using adaptive retracking will significantly increase607

the number of valid observations, which potentially increases608

the accuracy of measurements.609

V. CONCLUSION610

We have been able to successfully demonstrate and validate611

the results of the automated altimetry time-series algorithm us-612

ing 37 Jason-2 and Envisat satellite altimetry crossings, repre-613

senting 30 reservoirs located in the U.S., Brazil, and Nigeria.614

The result of the automated times series was compared to the615

in-situ gauge data and the RMSE computed ranges from 0.09 to616

1.20 m. Interestingly, we did observe that small satellite crossing617

length over in-land waterbodies also have a tendency to have a618

lower or higher RMSE. We were able to use the algorithm619

to generate water level time series for a reservoir length of620

0.64 km to several kilometers with low RMSE. The result of621

this algorithm is consistent and capable of processing water622

level of lakes and reservoirs at a regional and global scale with a623

high degree of reliability. The algorithm can also be extended to624

generate water level time series using SARAL/AltiKa data and625

recent altimeters such as Jason-3 and Sentinel-3. This study has626

also reinforced a previous study [3] that Ice-1 retracked range is627

most suitable for inland water body studies using Envisat data.628

Finally, the automated time-series generation algorithm will629

be developed into an open-source tool for the general user com-630

munity to increase the use of altimetry time-series data in study-631

ing the anthropogenic impacts on the water cycle [45], effects of632

climate change at a regional or global scale [12], as well as im-633

proving existing hydrologic models [46]. Hence, users will have634

the flexibility in processing and investigating any in-land water635

body of their interest that has an altimeter overpass. It should636

also be noted that users can try applying different thresholds of637

SR and std and generate the best time series on their discretion638

over water bodies of their interest where in-situ data may not639

exist to compute the RMSE and outlier percentage as done in640

Fig. 5.641

Overall, the algorithm has increased efficiency in processing642

radar altimetry data and eliminated inconsistency in data pro-643

cessing. Finally, this algorithm is not limited to studying lakes644

and reservoirs in regional and global scale but can be potentially645

applied to rivers and wetlands.646
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