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ABSTRACT

14 This study presents a scheme for co-optimizing the long-term (seasonal) reservoir operating objectives with the short-term (daily) objectives
15 for multi-dam networks to maximize hydropower generation. Long-term optimal reservoir storage provides temporal space to optimize
16 operation of the dams at short-term based on forecasted reservoir inflow. This study asks if there is an added benefit of co-optimization of
17 operations at long- and short-term scales for hydropower generation. The multi-objective optimization problem at both the temporal scales
18 was simultaneously solved considering Pareto optimality between conflicting objectives. Constraints pertaining to flood control, dam safety,
19 and environmental flow were imposed. The proposed scheme was implemented over a network of Blue Mesa, Morrow Point, and Crystal
20 dams in the Upper Colorado Basin. Ensemble forecast forcings from publicly available numerical weather prediction and climate models
21 were used as inputs for the daily and monthly scale inflow forecasts. The results show improvements of 41%, 27%, and 15% in hydropower
22 generation using the co-optimization during wet, moderate, and dry years, respectively, against a benchmark that neglects inflow forecasts.
23 This study demonstrates added benefit of co-optimizing the operations for hydropower generation based on short- and long-term forecasted
24 reservoir inflow. Given that most dams today operate as a network in a river basin, we recommend moving away from single dam and single
25 time scale optimization to a multiple-dam with long- and short-term scale co-optimization-based operations to make renewable energy gen-
26 eration more efficient.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5124097

27 I. INTRODUCTION
28 One of the least expensive and stable sources of energy with sig-
29 nificant operational flexibility and instant power generation capability
30 is conventional hydropower (Holmes and Papay, 2011). Hydropower
31 has experienced comparatively fewer periods of fluctuations in yield,
32 unlike wind or solar, which are dependent on geographic location and
33 ambient weather conditions (DOE, 2016). To reduce the dependence
34 on fossil fuels and promote the use of clean and renewable energy
35 sources, the operations of hydropower dams (used here interchange-
36 ably with “reservoirs”) need to play a critical and central role.
37 Hydropower dams that already exist are not getting phased out glob-
38 ally anytime soon despite the well-known costs to the environment
39 and ecosystem services (Ligon et al., 1995; Tilt et al., 2009). Thus, effi-
40 ciently managing such a resource has the potential to not only expand
41 clean (i.e., non-fossil fuel) energy generation but also provide resilience
42 against extreme hydrological events, drought management, and flood
43 protection (Yang et al., 2017). As the growing population’s demand

44for water and the resulting water stress continues to increase, building
45newer dam infrastructure is not a fool-proof solution and is much
46debated in the literature (Manyari and de Carvalho, Jr., 2007; Tilt
47et al., 2009). Rather, if the existing dams are operated more efficiently,
48higher energy benefits can be achieved without building new hydro-
49power dams. In other words, improved performance of hydropower
50operations can generate more energy from fewer dams, while provid-
51ing the planned hydropower systems with smarter expansion plans
52(Marques and Tilmant, 2013).
53Researchers and policy makers, over the past century, have been
54attempting to improve the reservoir operations to better satisfy the
55demands of stakeholders. A major challenge toward improving the
56operational effectiveness of reservoirs is to integrate the forecast of
57weather and climate information with real-time operating policies
58(Dong et al., 2006). A distinction is generally made concerning the tem-
59poral scale of forecasts where short-term forecasts (daily to weekly
60scale) are incorporated to optimize for short-term (tactical) operational
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61 purposes while medium to long-term forecasts (monthly or seasonal
62 scale) are used for long-term (strategic) objectives (Anghileri et al.,
63 2016). Although this is a common notion for using forecast informa-
64 tion to optimize reservoir operations, it suffers from drawbacks. Losses
65 can occur to the specified operating purpose due to optimization
66 addressing only the short or long-term objectives but not both
67 (Sreekanth et al., 2012). Real-time operations typically rely on forecasts
68 with a horizon of only a few days because of degrading skill in forecasts
69 with the increasing lead time (Celeste et al., 2008). However, relying
70 only on the short-term forecasts for reservoir operation optimization
71 results in a short-sighted policy that does not dovetail the longer-term
72 goals. Such release decisions optimal over short-term are prone to
73 sub-optimality when the performance is assessed over the seasonal or
74 annual scale (Xu et al., 2015; Sreekanth et al., 2012). Likewise, when the
75 optimization problem addresses only the long-term planning of the res-
76 ervoir operations, it uses seasonal hydro-climatic information that can
77 introduce large inflow uncertainty at shorter time scales. Bias in long-
78 term forecasts of inflow and conflicts between long and short-term
79 operation goals can again lead to a suboptimal policy over the long-
80 term as well as over episodic extreme events (Xu et al., 2015).
81 Therefore, it is imperative now to achieve a balance between the imme-
82 diate and potential future benefits, satisfying both the short and long-
83 term optimality in operations. Large dams that operate as a network
84 can optimize their monthly storage and release based on seasonal
85 (long-term) forecast of inflow. Such long-term optimization provides
86 temporal solution space to optimize and tailor the operations of the
87 dams at short-term (daily) scales based on reservoir inflow using
88 weather-forecasts. We demonstrate this concept schematically in Fig. 1.
89 Dams are seldom operated individually and are usually con-
90 nected in a network, often to form a multi-reservoir system with a cas-
91 cade of reservoirs in series and occasionally in parallel. Operating the
92 entire system in coordination with each dam is essential for improving
93 the operational efficiency and maximizing the overall benefits to the
94 stakeholder with conflicting interest (Xu et al., 2015). Joint operation
95 considers the storage variation in each linked reservoir and

96subsequently results in a set of optimal releases with simultaneous
97evaluation of numerous trade-offs in the best interest of each reservoir.
98Operating rule curves are often used to guide the operations of system
99of dams outlining the reservoir storage targets to be met at specific
100times of the year. The rules are historically developed by respective
101operating agencies using historical reservoir inflows, physical con-
102straints (e.g., downstream channel capacity), and historical operating
103objectives (Anghileri et al., 2016). A number of reservoir planning and
104operation studies have optimized the rules based on the operating pur-
105pose and type of reservoir network. Lund and Guzman (1999)
106reviewed a variety of derived real-time operating policies for multiple
107reservoir networks operated for water supply, flood control, hydro-
108power, water quality, and recreation and presented conceptual optimal
109rules for series and parallel reservoir networks. Marques and Tilmant
110(2013) underscored the economic value of coordination in a large-
111scale multi-reservoir system in Brazil. Zhou et al. (2016) derived
112optimal operating rules for a multi-reservoir system in China by com-
113bining the water and power operating rules to coordinate operations.
114However, most of these published rules are static “thumb rules” that
115cannot be relied upon when the circumstances change. For example,
116during extreme events of unprecedented magnitude, relying upon
117such rules does not guarantee the best degree of resilience or down-
118stream safety. This necessitates a scheme of operations, which is
119dynamically updated at shorter timescales and adjusts itself accord-
120ingly without the need to refer to static rules.
121The dimensionality problem in optimizing larger systems is tack-
122led using the aggregation of multiple reservoirs to convert into an
123equivalent single-reservoir optimization problem (Liu et al., 2011).
124This is then followed by a disaggregation scheme to obtain solutions
125for single reservoirs (Saad et al., 1994). Fang et al. (2014) proposed the
126hedging rule based on an aggregated reservoir and the storage alloca-
127tion rule to specify release from each reservoir. Archibald et al. (1997)
128included a two-dimensional representation of the rest of the system to
129the equivalent aggregated reservoir. Another commonly applied
130approach is to optimize the released and stored energy instead of the

FIG. 1. Schematic showing the concept of co-optimization where the long-term optimal goals are dovetailed with the short-term optimal reservoir operations. Blue bars (L1, …,
Ln) are long-term forecast horizon units (or lead times) for obtaining storages optimized for long-term benefits, while yellow bars (S1, …, Sn) denote the short-term optimization
horizon. The corresponding short-term optimal operations (gray arrows) result in the levels (yellow circles) that are also optimal with the long-term goals (blue circles). The co-
optimization uses temporal solution space to tailor the short-term operating policy within the long-term horizon.
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131 objective or cost function. For example, Becker and Yeh (1974) and Li
132 et al. (2012) proposed the optimal operation model that minimized
133 the loss of released or stored energy. Furthermore, a general rule for
134 increasing hydropower is to prioritize storage in reservoirs with the
135 highest energy production (Marques and Tilmant, 2013). However,
136 such an approach is biased as the most “efficient” reservoir that needs
137 the least amount of release per unit energy generated always gets more
138 load, leading to faster storage depletion and reducing its productivity
139 (Xu et al., 2015).
140 A vast majority of literature on deriving optimal operation rules
141 has paid attention to either short-term or long-term forecast-based
142 optimization. The value of long-term inflow forecasts (monthly to sea-
143 sonal scale) has been demonstrated for flood control operations
144 (Anghileri et al., 2016), hydropower operations (Hamlet et al., 2002;
145 Block, 2011; Maurer and Lettenmaier, 2004; Alemu et al., 2011), irriga-
146 tion and water supply (Sankarasubramanian, 2009; Georgakakos et al.,
147 2005), and drought management (Golembesky et al., 2009). On the
148 other hand, a few of the studies on short-term (daily to weekly) fore-
149 casts, specifically for hydropower maximization, include Ahmad et al.
150 (2020), Monteiro et al. (2013), Madsen et al. (2009), and Fan et al.
151 (2016). There are only a handful of studies that have focused on inte-
152 grating the long-term optimization module with the short-term (daily)
153 operations as a co-optimization strategy.
154 One of the first efforts to integrate the optimization models at dif-
155 ferent temporal scales was proposed by Becker et al. (1976) and Yeh
156 (1979) for the operation of the California Central Valley Project. The
157 procedure optimizes a monthly model over one year and uses the
158 monthly ending storages into a daily model followed by using the daily
159 releases into an hourly model. Georgakakos (2006) used a similar con-
160 cept for developing the multilayer operation model for Nile Basin.
161 Dong et al. (2006) assessed the effect of flow forecasting quality on the
162 benefits of single-reservoir operation. The ending monthly storage
163 from a long-term optimization model was input as constraints to the
164 short-term daily model. However, the long-term model uses the
165 monthly average of the observed flow series, which results in a single
166 static long-term policy and is not updated as the optimization pro-
167 gresses in time. Also, different levels of noise were added synthetically
168 to the observed inflow to obtain the short-term forecasts. Synthetic
169 forecasts render the optimization results sensitive to the added noise,
170 which are not representative of the actual value in the concept when it
171 is operationalized. Celeste et al. (2008) integrated daily and monthly
172 optimization models over a single reservoir operated for water supply.
173 A deficit term was obtained from the long-term release policy repre-
174 senting how well the demands are met so as to trigger hedging during
175 the short-term operations. This approach does not guide the short-
176 term policy at each time step of the optimization horizon; rather, the
177 operations are only affected when the deficit exceeds a certain thresh-
178 old. Sreekanth et al. (2012) generated synthetic forecast flows to dem-
179 onstrate the nesting of long-term optimization with the short-term
180 model at a time step of five days over a single reservoir in South India.
181 Simple linear constraints were used for using the information from the
182 long-term model into the short-term optimization procedure. Xu et al.
183 (2015) established a short-term operation model first to minimize the
184 operation cost, and then the non-dominated set of solutions was used
185 as input to a long-term model to select the best strategy for both the
186 temporal scales. Again, historical inflows were used to represent the
187 possible flow scenarios to occur in the future.

188Given the history of multi-reservoir optimization, there still
189remain a few gaps that necessitate attention from the scientific
190community:

191(a) there are hardly any studies that integrate the short and long-
192term operating objectives simultaneously as a co-
193optimization problem while updating the optimal polices at
194both time scales for a multi-reservoir system, specifically for
195hydropower operations;
196(b) the existing studies on co-optimization at the two timescales
197have only used synthetically generated forecasts by adding
198noise to the observed inflow time series, which does not rep-
199resent the true value in such a concept when applied opera-
200tionally; and
201(c) although there have been efforts to study the effect of the
202quality of flow forecasts on the resulting optimal policy, no
203comprehensive framework has been developed to assess the
204added value in co-optimization of the operating policy at
205short and long-term scales against a conventional baseline
206with no optimization for multiple dam networks.

207To address these unresolved issues for hydropower generation in
208the context of renewable energy sustainability, the present study uses a
209real-time weather forecasting model at short-term (daily) and a sea-
210sonal climatic model at long-term (monthly) temporal scales to obtain
211flow forecasts for the co-optimization model.
212The specific research questions addressed here are (1) what is the
213added value of co-optimization in time and space dimension over a
214multi-dam network operated for hydropower operations? (2) How
215sensitive is the optimal reservoir operating policy to the skill in short
216and long-term flow forecasts?
217The rest of this paper is organized as follows. AQ2In Sec. II, the
218selected site and necessary datasets for the application of the proposed
219technique are described. This is then followed by a detailed description
220of the forecasting and reservoir operation optimization model as well
221as the evaluation framework in Sec. III. The case study results of the
222application of short- and long-term forecasts for optimization using
223different strategies for evaluation are presented in Sec. IV. A sensitivity
224analysis of the skill of long-term forecasts is also included, followed by
225discussion and concluding remarks in Sec. V.

226II. STUDY SITE AND DATASETS
227A. Multi-dam network and its operations
228The dam network chosen for the demonstration of the pro-
229posed technique is one of the four units of the Colorado River
230Storage Project called Wayne N. Aspinall Unit. The unit is com-
231posed of a series of three dams—Blue Mesa (BM) Dam, Morrow
232Point (MP) Dam, and Crystal (CR) Dam in the Upper Colorado
233Basin along the Gunnison River, which flows further down into the
234Colorado River. The dams were constructed between 1963 and 1977
235and are operated by the U.S. Bureau of Reclamation (USBR). A sche-
236matic of the reservoir connections and relevant hydrological stations
237is shown in Fig. 2 (USBR, 2004). The drainage basin of the Blue
238Mesa dam used for reservoir inflow modeling is also shown. Table I
239summarizes the characteristics of dams and power plants in the
240Unit.
241The upstream-most and largest reservoir, Blue Mesa, is responsi-
242ble for the primary water storage in the system. The power plants at
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243 Blue Mesa and Morrow Point are highly flexible with the release rates
244 and can be operated to provide peaking power. The five turbines at the
245 three dams are capable of generating up to 291 MW of electricity.
246 The power plant at the Morrow Point produces the largest amount
247 of energy, around twice as much as Blue Mesa. The crystal reser-
248 voir serves as a regulation reservoir to stabilize flows to the
249 Gunnison River and is usually operated under constraints to regu-
250 late downstream flows. The dam releases can be made via power-
251 houses/penstocks, bypass, or spillway routes. The USBR manages
252 the releases within certain sideboards that include annual snow-
253 pack conditions, senior water rights, minimum downstream flow
254 requirements, power plant and outlet capacities, reservoir elevation
255 goals, fishery management recommendations, dam safety, and
256 other considerations. Certain operational goals are mandated to
257 honor these sideboards, which were used to design constraints for

258the optimization model. These goals include but are not limited to
259the following (see Fig. 2 for hydrological stations):

260(a) the desired Whitewater gage peak flow (USGS station
26109152500) to be obtained every year based on the April–July
262forecasted inflow into the Blue Mesa reservoir;
263(b) flow at the Gunnison River above the confluence with the
264Uncompahgre River to be kept below 15 000 cfs;
265(c) peak releases be typically made between May 10th and June 1st,
266giving priority to power plants followed by bypasses and spillways;
267(d) Blue Mesa Reservoir to be kept at or below 7490 feet (580 000
268acre-feet live storage) by December 31st to provide storage
269for next spring’s runoff and minimize upstream icing;
270(e) minimum downstream flow through the Black Canyon of the
271Gunnison National Park and Gunnison Gorge National

FIG. 2. (a) Dams in the Aspinall Unit, pertinent hydrological stations, Gunnison River, and Blue Mesa drainage basins; (b) simplified schematic showing the dam connections
and relevant stations (not to scale). Arrows show the flow direction (upstream to downstream).

J_ID: JRSEBH DOI: 10.1063/1.5124097 Date: 13-February-20 Stage: Page: 4 Total Pages: 21

ID: sureshr Time: 10:02 I Path: //chenas03/Cenpro/ApplicationFiles/Journals/AIP/RSE#/Vol00000/200011/Comp/APPFile/AI-RSE#200011

Journal of Renewable
and Sustainable Energy ARTICLE scitation.org/journal/rse

J. Renewable Sustainable Energy 12, 000000 (2020); doi: 10.1063/1.5124097 12, 000000-4

Published under license by AIP Publishing

https://scitation.org/journal/rse


PROOF COPY [JRSE19-AR-01824]

272 Conservation Area is 300 cfs, except in severe drought when
273 flow may be reduced;
274 (f) maximum releases from the Crystal Dam, outside of the peak
275 flow period, be limited to the 2150 cfs power plant capacity; and
276 (g) daily ramping rates at the Crystal Dam limited to the increase
277 in 500 acre-ft and the decrease of 400 acre-ft per day.

278 B. Operational and hydrometeorological data
279 The observed operational data for the Aspinall Unit were
280 obtained from the USBR’s data portal (https://www.usbr.gov/
281 rsvrWater/HistoricalApp.html; Aspinall Unit Water Operations,
282 2019), which include observed inflows, releases, reservoir elevation,
283 storage, and hydropower generated. The operational data were used
284 for setting up the optimization model as well as in calibration and vali-
285 dation of the forecasting models. The hydro-meteorological forecast
286 forcings, basin’s antecedent conditions, and current reservoir state
287 (from USBR) were inputs to the inflow forecasting model. The forecast
288 fields of precipitation, temperature, and windspeed were acquired
289 from the Global Forecast System (GFS) global-scale numerical weather
290 prediction (NWP) model at 0.5� for a lead time of 7 days with a 3-h
291 temporal resolution. To include the uncertainty estimates in the fore-
292 cast flow, National Oceanic and Atmospheric Administration’s
293 (NOAAs) Global Ensemble Forecasting System Reforecast (version 2)
294 dataset (GEFS/R) (Hamill et al., 2013) with an 11-member ensemble
295 of forecasts at 1� resolution was used. The average scenario of the
296 ensemble members was used for optimizing the reservoir operations.
297 The antecedent basin precipitation was obtained from the Climate
298 Hazards Group InfraRed Precipitation with Station data (CHIRPS)
299 gridded rainfall time series at a resolution of 0.05� (Funk et al., 2015).
300 The gridded datasets were converted into basin-averaged estimates for
301 inputs to the forecasting model.
302 For the monthly scale long-term forecasting model, in addition
303 to the antecedent monthly streamflow, the ensemble seasonal forecast
304 forcings from the climate model suite of North American Multi-
305 Model Ensemble (NMME) were used (Kirtman et al., 2014). The
306 diversity of models in NMME provides a superior representation of
307 multi-model uncertainty in seasonal forecast skill, on average, relative

308to other seasonal prediction systems. Because it is computationally
309challenging to use each of the ensemble models present in the NMME
310suite for optimization, two models were chosen to obtain enough
311ensemble members that are representative of the uncertainty in mod-
312eled forcings. These were (i) Climate Forecast System version 2
313(CFSv2) for monthly precipitation fields (Saha et al., 2014) and (ii)
314Geophysical Fluid Dynamics Laboratory (GFDL) CM2.1 model for
315sea surface temperature fields (Delworth et al., 2006). An additional
316predictor of the AQ3SST anomaly based index of Ni~no 3.4 was also used
317for the monthly forecast model, retrieved from the National Oceanic
318and Atmospheric Administration Earth System Research Laboratory
319(NOAA-ESRL) (http://www.esrl.noaa.gov/psd/data/climateindices/
320list/). The period of analysis used to setup the long-term forecasting
321model extended from 1980 to 2018, while that for short-term weather
322forecasting ranged from 2007 to 2018.

323III. METHODS
324The general approach followed in this study and the experimental
325components are schematically shown in Fig. 3. AQ4The following sections
326describe the methodological components in detail.

327A. Short-term ensemble flow forecasting
328To obtain the short-term forecasts for the lead time of 7 days for
329inflow into each of the three reservoirs in the dam network, two kinds
330of models were incorporated: (i) data-based artificial neural network
331(ANN) model for the Blue Mesa dam, which is the most upstream in
332the multi-dam network and (ii) linear regression model for the
333Morrow Point and Crystal dams, which lies downstream. The ANN
334model was specifically chosen for the Blue Mesa dam because it
335receives most of the unregulated flow and the nonlinearities in the
336hydrological response are most suited for a complex model like ANN.
337However, for the next two downstream dams, the inflows are highly
338dependent on the release from the upstream dam and hence do not
339require complex modeling exercise. Ashe skill in modeling the system
340inflow is mostly driven by the most upstream Blue Mesa dam; the
341focus was to improve the quality of Blue Mesa’s forecast inflow using
342ANN. The specifications of the ANN model are described next

TABLE I. Relevant characteristics of the dams, reservoirs, and power plants in the Aspinall Unit.

Dam, reservoir, and power plant characteristics Blue Mesa Morrow point Crystal

Dam type Earthfill embankment Double-curvature thin-arch Double-curvature thin-arch
Dam height (ft) 502.0 468.0 323.0
Spillway crest elevationa (ft) 7487.9 7123.0 6756.0
Crest elevationa (ft) 7528.0 7165.0 6772.0
Total storage capacity (acre-ft) 940 700 117 190 25 240
Total installed capacity (MW) 86.4 173.3 32.0
Production mode Peaking Peaking Base load
Number of turbines 2 2 1
Turbine flow capacity (cfs) 3400 5400 2150
Bypass capacity (cfs) 4500 1500 1900
Spillway capacity (cfs) 34 000 41 000 41 350

a.Above the mean sea level.
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343 followed by the linear regression model and ensemble forecast
344 processing.

345 1. ANN model for daily flow forecasting

346 The daily forecasting model is based on a feedforward neural
347 network involving input, hidden, and output layers. Considering
348 the reservoir and basin characteristics, the candidate input layer
349 nodes were identified as: (i) forecast fields of precipitation and
350 temperature, obtained from the GFS model at a resolution of 0.5�;
351 (ii) antecedent precipitation over the basin; (iii) antecedent
352 streamflow into the reservoir; and (iv) antecedent baseflow. A pro-
353 cedure was followed similar to that used by Ahmad and Hossain
354 (2019) for selecting the optimal set of input predictors to this ANN
355 model. The final predictor set included antecedent precipitation
356 (2 days), antecedent baseflow (3 days), antecedent inflow (1/2/
357 3 days based on the lead time), antecedent moving average inflow
358 (3/5/8-day window based on the lead time), forecast precipitation
359 (1 day), and forecast min/max temperature (1 day each). The con-
360 figuration of the short-term ANN model is shown in Fig. 4. The
361 ANN was trained using the Levenberg–Marquardt (LM) method,
362 and measures of early stopped training (STA) and regularization
363 were taken to avoid overfitting and lack of generalization (underfit-
364 ting). The period of Jan 2007 to Aug 2014 was used as the training
365 set, while the validation and testing sets were selected as Sep
366 2014–Oct 2015 and Nov 2015–Dec 2017, respectively.

367 2. Linear regression model for downstream dams

368 Using the modeled inflow into the most upstream dam, a linear
369 regression model was developed to route the release from upstream
370 dams to inflow into the downstream reservoirs. The linear regression
371 model was deemed to be fit for the purpose as the two downstream
372 dams, Morrow Point and Crystal, mostly receive regulated flow with

373minimal contribution from the intermediate tributaries. The two sets
374of linear regression models were developed: (a) between Blue Mesa
375release and Morrow Point inflow and (b) between Morrow Point
376release and Crystal inflow. The linear relationships and the respective
377correlations are shown in Fig. 5.

3783. Ensemble forecast processing

379After the base reservoir inflow models (ANN-based for Blue
380Mesa and linear regression-based for other two dams) were developed
381to obtain deterministic inflow forecasts for the lead time of 1–7 days,
382the uncertainty in forecasts was modeled next for the Blue Mesa dam
383inflow. The trained ANN model was fed with 11 ensemble scenarios
384of the forecast forcings from the GEFS model to result in the ensemble
385inflow forecast. Given that the reservoir operation model was designed
386to use a deterministic optimization technique, the average scenario of
387the ensemble forecast members was used in the optimization model
388(see Sec. III C). The average of the ensemble flow forecasts showed
389higher skill compared to the deterministic forecasts obtained using
390GFS forcings (see Table V). The higher skill in the average scenario of
391GEFS-based ensemble forecast flow as compared to the deterministic
392daily forecasts from GFS was also confirmed in a study by Ahmad and
393Hossain (2019) for multiple dams in US.

394B. Long-term ensemble flow forecasting
395For nesting the short-term optimization model with long-term
396operations, the long-term flow forecast model was developed to result
397in monthly inflow forecasts for up to 7-months in the future. Similar
398to the short-term forecasting, a feedforward ANNmodel with one hid-
399den layer was designed to forecast the inflow into the most upstream
400Blue Mesa dam. However, an entirely different set of input predictors
401from the NMME climate model outputs suitable to capture seasonal

FIG. 3. Schematic of the approach showing key experimental components of the
study. See Table IV for explanation of the evaluation framework strategies.

FIG. 4. ANN model configuration with the selected input predictors for daily stream-
flow forecasting over the Blue Mesa dam. Log sigmoid and linear transfer functions
were used for hidden and output layers, respectively. The number of antecedent/
forecast days for each node is also shown. K is the window length for moving aver-
age streamflow that varies with the forecast lead time.
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402 variations in seasonal runoff was developed. Based on a predictor selec-
403 tion analysis similar to that for the short-term ANN model, the input
404 predictors were forecast precipitation (1month; from the CFSv2 model),
405 forecast sea surface temperature (1month; from the GFDL CM2.1
406 model), antecedent inflow (1/2/3months based on the lead time), ante-
407 cedent baseflow (3months), antecedent moving average flow (3/5/8-
408 month window based on the lead time), and Ni~no 3.4 index (1month).
409 The climate models in NMME contain 12 ensemble members (realiza-
410 tions) for each variable, which were used to train the ANN model. The
411 average trace of the forecast flow was used for optimization. For the
412 other two downstream dams, the linear regression model for daily fore-
413 casting was used under the assumption that inflow contributions from
414 tributaries at the monthly scale are insignificant. The available dataset
415 was divided into training, validation, and test sets extending from 1981
416 to 2007, 2008 to 2011, and 2012 to 2018, respectively.

417 C. Reservoir operation optimization
418 The forecast flow information obtained from short and long-
419 term forecasting models was used as input to the optimization model
420 for obtaining optimal release decisions. The focus of this study was on
421 hydropower maximization, which was formulated as the major objec-
422 tive. Other constraints were incorporated into the model representing
423 flood control, environmental flow concerns, and dam safety. The
424 short-term optimization model was setup with a daily temporal scale
425 over the 7-day horizon, while the long-term model was developed to
426 output optimal release decisions at the monthly scale with the optimi-
427 zation horizon of 7months. The nesting of the two optimization mod-
428 els was carried out by using the long-term optimal reservoir state to
429 formulate a complementary objective function into the short-term
430 model at every time step of the horizon. Different operation strategies
431 were devised to evaluate the value in co-optimization. The long-term
432 optimization model is described next, which is the basis for the nesting
433 procedure, followed by short-term optimization and evaluation
434 strategies.

435 1. Long-term optimization model

436 The optimization model for monthly release decisions is based
437 on two objective functions, maximizing the total hydropower

438generation from all power plants in the system and minimizing the
439deviation of elevation of the Blue Mesa dam at the end of year from a
440required target level. As the skill in long-term forecasts degrades with
441the increasing lead time, the model predictive scheme (MPC) was
442employed at the monthly scale, which updates the flow forecasts at
443every step of the optimization horizon (Turner et al., 2017; Ahmad
444and Hossain, 2020). The spread of the ensemble flow forecasts was
445ignored in the deterministic optimization procedure so that it can pro-
446vide a clear indication of the contribution of forecasts to the optimal
447operation performance (Turner et al., 2017).
448The two objectives are formulated below:

4491. Maximizing hydroelectric power production (MW) from the sys-
450tem’s three power plants,

max f1 MWð Þ ¼
X

n

X
t
�n � Dtnturb � HFn

t �HTn
t

� �
� Rn

p;t ; (1)

451where t is the optimization horizon of 7 months, n is the index
452for the reservoir in consideration, n ¼ 1, 2, 3, HF and HT are the
453reservoir forebay and tailrace water levels (ft), � is the turbine
454efficiency, Dtturb denotes the turbine operating hours, and Rp is
455the power release from turbines (cfs).
4562. Minimizing the absolute value of deviation of reservoir elevation
457from the target level (T) in the month of December (HDec) for
458the Blue Mesa dam. This is to satisfy the requirement for the
459Blue Mesa dam to return to 7490 ft on December 31st to provide
460storage for next spring’s runoff and minimize upstream icing.
461Under the MPC scheme of optimization, the objective is only
462implemented for horizons containing the month of December.

min f2 ftð Þ ¼ : (2)

463The energy production function in Eq. (1) requires the knowl-
464edge of turbine efficiency and the number of operating hours for
465everyday operations. Because the turbine operating characteristics usu-
466ally vary over the year and within any day of operations, a regression
467model was developed for estimating energy generation. Linear regres-
468sion was performed between the observed hydropower (in MWh)
469and the product of hydraulic head DH and power release Rp based on
470the historical data. The obtained regression constant captures the

FIG. 5. Scatter plots showing linear regression between release and inflow of the upstream–downstream dam pairs of Blue Mesa (BM)–Morrow Point (MP) and Morrow Point
(MP)–Crystal (CR) dams.
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471 unknown turbine efficiency � and operating hours Dtturb. The con-
472 stants were obtained as 17.02 h, 18.64 h, and 12.22 h for Blue Mesa,
473 Morrow Point, and Crystal dams, respectively. Multiple constraints
474 were imposed on the long-term optimization model considering flood
475 control, dam safety, environmental flow requirements, and operational
476 restrictions for Aspinall reservoirs specified in the control manuals.
477 Various operational restrictions specified by the control manuals
478 (USBR, 2004, 2012a, 2012b) (see Sec. IIA) were considered for setting
479 up the constraints as summarized in Table II.

480 2. Short-term daily optimization model

481 The daily-scale multi-objective optimization model using the
482 MPC scheme was setup to generate optimal release decisions for one
483 week ahead in the future. The primary and secondary objectives varied
484 with the strategy of optimization (see Table IV). The ensemble forecast
485 spread was ignored during the optimization for reasons mentioned
486 under the long-term optimization model. The constraints for optimi-
487 zation were tailored to account for the daily-scale reservoir operations
488 of the three dams. In addition to the constraints for the long-term
489 optimization model, the daily ramping rates for Crystal dam release
490 and daily maximum change in the Crystal reservoir forebay elevations
491 were constrained by the values specified in the control manuals and
492 are summarized in Table III.

493 3. Optimization algorithm

494 The multi-objective optimization problem was solved using
495 deterministic genetic algorithm-based optimization. Due to the con-
496 flicting nature of objective functions, a non-dominated or Pareto set of
497 solutions is needed where one objective function cannot be improved
498 further without violating the other. To implement the Pareto optimal-
499 ity, the Non-dominated Sorting Genetic Algorithm (NSGA-II;
500 Deb et al., 2002) was used. Open-source library platypus

501(https://platypus.readthedocs.io) was incorporated to formulate the
502multi-dam optimization problem. The algorithm produces a set of
503Pareto optimal solutions (with the user-defined size of Pareto optimal
504set), from which the dam operator can choose the preferred solution
505based on which objective function receives priority according to the
506situation at hand. For the sake of this study, a balanced optimal solu-
507tion was selected on the Pareto front that gives equal weightage to
508both the objectives. Pareto optimization allows for different units of
509objective functions without the need to transform to consistent units,
510which is often difficult to achieve (Madsen et al., 2009).

511D. Co-optimization at long-term and short-term scales
512The proposed strategy optimizes the operations of the cascade of
513dams in tandem while considering the long-term benefits for short-
514term optimality. We coin this co-optimization as temporal nesting
515with spatial coupling (TeNeSC). TeNeSC-based optimization is carried
516out in two steps; first, the long-term model, as described in Sec. III C 1,
517is used to obtain monthly optimal release decisions over an optimiza-
518tion horizon of seven months into the future. The monthly optimal
519operations yield the optimal reservoir states at the end of each month.
520The end-of-month reservoir storages over the 7-month horizon are
521linearly interpolated to result in the daily levels that form the boundary
522conditions or constraints for the short-term daily scale optimization
523model. The small storage of dams in consideration (capacity to the
524annual inflow ratio close to 1) results in variability in the reservoir state
525at daily scales and justifies the daily time step for short-term optimiza-
526tion (Anghileri et al., 2016). Furthermore, the “coupled” component
527in the TeNeSC scheme signifies the joint operation of the dam net-
528work, where the co-optimization is carried out by simultaneously con-
529sidering releases from all the dams. The water released from the
530upstream dam reaches the downstream reservoir with a certain delay
531equal to the flow travel time along the reach. The delay time usually
532ranges from several hours and extends to days only when the flow
533travel time is long enough in large multi-reservoir systems (Souza and
534Diniz, 2012; Ge et al., 2014). Given that the present study considers
535daily scale operations over medium scale inter-reservoir reaches, the

TABLE II. Dam-specific and general constraints imposed on the monthly optimization
model.

Dam-specific constraints Value

Blue Mesa Dam
Minimum elevation 7393.0 ft
Maximum elevation (Jan–Mar) 7490.0 ft
Maximum elevation (Apr–Dec) 7519.4 ft
Elevation on Dec 31 7490.0 ft
Morrow point dam
Minimum elevation (Jun–Sep) 7151.0 ft
Minimum elevation (Oct–May) 7143.0 ft
Maximum elevation 7160.0 ft
Crystal dam
Minimum elevation 6725.0 ft
Maximum elevation 6772.0 ft
General constraints
Minimum monthly release 2500 cfs
Maximum monthly release 64 500 cfs
Maximum monthly release (May 10–Jun 1) 220 000 cfs

TABLE III. Additional constraints imposed on the daily scale short-term optimization
model.

Dam-specific constraints Value

Crystal dam
Maximum elevation change (Apr–Jun) 4 ft per day
Maximum elevation change (Jul–Mar) 10 ft per day
Daily ramping rate—increase 500 acre-ft per day
Daily ramping rate—decrease 400 acre-ft per day
Morrow point dam
Daily ramping rate—increase/decrease 2000 acre-ft per day
Blue Mesa dam
Daily ramping rate—increase/decrease 2000 acre-ft per day
General constraints
Minimum daily release 300 cfs
Maximum daily release 2150 cfs
Maximum daily release (May 10–Jun 1) 12500 cfs
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536 delay time was neglected in the routing of streamflow. A schematic
537 illustrating the temporal nesting of the optimization models is shown
538 in Fig. 6.
539 The boundary conditions were used to formulate the secondary
540 objective for the short-term optimization model where the primary
541 goal is hydropower maximization across all the dams in the network.
542 The objective was set to minimize the deviation of elevation from the
543 boundary conditions (or target elevation) reflecting the long-term
544 optimal conditions over the short-term optimization horizon. Because
545 the main purpose of the Crystal dam is to act as a regulator of the
546 upstream releases, there is a lesser flexibility left for the optimal reser-
547 voir level for hydropower maximization. This was taken into consider-
548 ation by obtaining the deviation of reservoir levels only on the first day
549 of the optimization horizon. The higher weight is indirectly assigned
550 to the secondary objective as the MPC scheme only considers the first
551 day’s optimal release and discards the rest. However, for Blue Mesa
552 and Morrow Point dams, the deviation was obtained at the last (sev-
553 enth) day of the horizon as they are operated for peaking power and
554 permit higher flexibility in operations. Mathematically, the secondary
555 objective is formulated as

min f2 ftð Þ ¼ H1
7 � T1

7

�� ��þ H2
7 � T2

7

�� ��þ H3
1 � T3

1

�� ��; (3)

556 where Hn
t is the nth reservoir’s storage (numbered from the upstream

557 to downstream dam) at time step t. The optimization problem was
558 bound by the fundamental long and short-term constraints on reser-
559 voir storages and releases described in Secs. III C 1 and III C 2. Apart
560 from those, the continuity constraints for the three reservoirs over
561 each time step t of the optimization horizon can be mathematically
562 stated in vector form as

Si t þ 1ð Þ ¼ Si tð Þ þ Ii tð Þ þM:Ri tð Þ; (4)

563 where Si tð Þ is the vector of storages in reservoirs i ¼ 1;…; n; Ii tð Þ
564 and Ri tð Þ are vectors of inflows into and release from each reservoir;
565 and M is an n�n square matrix representing the indices of reservoir
566 connections,

M ¼
�1 0 0
1 �1 0
0 1 �1

2
4

3
5:

567For the continuity constraints, storage-elevation relations were
568obtained as second-order polynomial equations for each reservoir
569using 15 years of historical data (2004–2018) using which the storage
570at each time step was converted to the respective reservoir level. The
571coupled optimization model solves a giant matrix for all the reservoirs
572to derive the optimal reservoir release decisions and their respective
573states at each time step.

574E. Evaluation framework for co-optimization
575To answer the first research question of this study and establish
576the efficacy of co-optimization, several strategies of optimization were
577implemented under an evaluation framework. The objective is to sepa-
578rately underscore the value in two different facets of co-optimization
579for maximizing hydropower: (a) nesting of short- and long-term
580objectives in time and (b) coupling of reservoirs in space. Tables IV(a)
581and IV(b) summarize the specifications of each strategy for evaluating
582temporal nesting and spatial coupling.
583An additional aspect that needs consideration for demonstrating
584the robustness of this concept is the value of the real-time forecasting
585model in improving the operational benefits of the dam network. Our
586study accomplishes this by considering two different scenarios of
587obtaining the inflow forecasts:

588(a) perfect forecast scenario that stands as a hypothetical bench-
589mark of maximum attainable benefits using the different
590strategies described above. Here, the observed inflow is used
591as a proxy to the forecasts over the desired optimization hori-
592zon to simulate the perfect forecast scenario.
593(b) operational forecast scenario where the reservoir inflow fore-
594casts are obtained using the short- and long-term forecasting
595models developed in Secs. III A and III B. This scenario is the
596representative of the practically possible benefits using an

FIG. 6. Schematic explaining the procedure of co-optimization with the long- and short-term objectives.

J_ID: JRSEBH DOI: 10.1063/1.5124097 Date: 13-February-20 Stage: Page: 9 Total Pages: 21

ID: sureshr Time: 10:03 I Path: //chenas03/Cenpro/ApplicationFiles/Journals/AIP/RSE#/Vol00000/200011/Comp/APPFile/AI-RSE#200011

Journal of Renewable
and Sustainable Energy ARTICLE scitation.org/journal/rse

J. Renewable Sustainable Energy 12, 000000 (2020); doi: 10.1063/1.5124097 12, 000000-9

Published under license by AIP Publishing

https://scitation.org/journal/rse


PROOF COPY [JRSE19-AR-01824]

597 operational flow forecasting. The technique is operational for
598 real-time reservoir inflow forecasts for Ganges and
599 Brahmaputra river basins (Ahmad and Hossain 2019; http://
600 depts.washington.edu/saswe/datavis_Timeseries.html).

601 F. Benchmark scheme
602 To obtain the actual value in using forecast information for real-
603 izing optimal operations, a benchmark operating scheme is necessary
604 that by itself neither uses any forecast information nor is based upon
605 any co-optimization at different timescales. Rather, the benchmark
606 scheme should be reflective of control rules designed with respect to
607 certain operating objectives that the dam operator follows in practice.
608 Thus, to setup a fair benchmark, a customized control-rule based
609 operation scheme was designed to specifically address the hydropower
610 maximization objective (Turner et al., 2017), which is also the basis of
611 strategies described under the evaluation framework. The control rules
612 were designed in the form of lookup table where the optimal release is
613 specified as a function of two state variables: reservoir storage and sea-
614 son of year, as proposed by Turner et al. (2017). The stochastic

615dynamic programming (SDP)-based optimization procedure coded in
616the R package reservoir (Turner and Galelli, 2016) was incorporated to
617optimize for these rules. The observed inflows for 15-year period
618(2004–2018) were used for each dam as input to the SDP model,
619including the reservoir and objective function specifications. Three
620separate sets of control rules were obtained for each reservoir at the
621monthly time step, with no coupling between the operations of adja-
622cent reservoirs. To assess the benefits against this benchmark, a metric
623called percent improvement over benchmark (IB) was formulated as

IB %ð Þ ¼ HPoptim �HPbm
HPbm

� 100; (5)

624where HPoptim and HPbm are the total hydropower production (HP)
625from the three dams of the Aspinall Unit using optimized and bench-
626mark reservoir operating schemes.

627G. Effect of skill in long-term forecasts
628The skill in long-term monthly flow forecasts usually degrades
629rapidly as compared to that in the short-term daily-scale forecasts. As
630the temporal nesting uses long-term forecasts as the boundary

TABLE IV. (a) Specifics of strategies under the framework to evaluate the value in temporal nesting, formulated as the multi-objective problem. (b) Specifics of strategies under
the framework to evaluate the value in spatial coupling.

Strategy Formulation Description Objective

(a) All Spatially Coupled
TeNeSC Short þ long � Uses nested co-optimization at long and

short-term scales
Primary: maximize hydropower

� Continuity constraints formulated as one
giant matrix [Eq. (4)]

Secondary: minimize the deviation of reser-
voir elevation from target levels based on
long-term optimality [Eq. (3)]

T1 Short-only � No use of nested co-optimization Primary: maximize hydropower
� Continuity constraints the same as
TeNeSC

Secondary: minimize the absolute deviation
between reservoir release and turbine
capacity:
min f2ðcfsÞ ¼

Pn
i¼1
PT

t¼1 jRi
t � Ti

capj
ðn: number of reservoirs; T : short-term
horizon of 7 days).

T2 Long-only � No use of nested co-optimization Primary: minimize the absolute deviation
of reservoir elevation H from target levels
based on long-term optimality T for the
first day of horizon

� Considers long-term optimality only dur-
ing daily optimization

� Continuity constraints the same as
TeNeSC

min f1ðftÞ ¼
Pn

i¼1 jHi
1 � Ti

1j ðn: number of
reservoirs)
Secondary: the same as the secondary
objective in T1

(b) Both Temporally Nested
TeNeSC Coupling � The same as in Table IV(a) Same as in Table IV(a)
C1 No coupling � No coordination among reservoir release

decisions.
Primary: maximize hydropower
Secondary: the same as TeNeSC, deviation
calculated individually for each reservoir in
the respective optimization model

� Separate optimization models developed
for each reservoir; the regression model
converts upstream release into downstream
inflow
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631 condition for the daily-scale optimization model, the performance is
632 primarily driven by the skill in the long-term forecasts. For instance,
633 any major error in predicting the onset of flood or drought season can
634 cause the short-term release decisions to be optimized toward an
635 objective function that does not reflect long-term optimality. This can
636 potentially result in sub-optimal operations in both the short and long
637 terms. Hence, it is imperative to assess how the skill in monthly ANN-
638 based forecasts affects the resulting optimal reservoir operation policy.
639 The observed monthly inflow data were synthetically corrupted
640 to simulate underestimation and overestimation in the flow forecasts.
641 Six perturbed monthly inflow timeseries were generated by adding
642 multiplicative bias with six different constants, three of which simu-
643 lated underestimation (multiplicative constant< 1), while the rest sim-
644 ulated overestimation in the predicted inflow (multiplicative
645 constant> 1). The multiplicative factors simulate the worst-case sce-
646 narios of consistent over- or under-prediction of the flows across the

647period of analysis. Also, as the forecast error is more likely to increase
648for higher river flows (Montanari and Grossi, 2008), the proposed fac-
649tors were able to replicate increasing bias in forecasts for higher inflow.
650Perturbed monthly inflow timeseries were used to carry out the co-
651optimization (TeNeSC) using the perfect short-term inflow forecasts.
652The resulting reservoir elevations and hydropower benefits were com-
653pared across the different perturbed scenarios to assess the effect of
654degrading skill in long-term predictions.

655IV. CASE STUDY RESULTS
656A. Reservoir operation optimization
657The proposed concept of co-optimization and strategies for eval-
658uation were implemented over the selected multi-dam network of the
659Aspinall Unit of Blue Mesa, Morrow Point, and Crystal dams. Three
660years (2016–2018) with different inflow characteristics were selected
661for the analysis. While 2016 was a moderately wet year with the annual

FIG. 7. Optimal reservoir elevations from the different strategies using the perfect forecast scenario for the three dams over the three years with different flow characteristics.
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662 inflow of 441 535 cfs into the system, 2017 and 2018 experienced
663 anomalously wet and dry conditions with the annual inflow of
664 629 083 cfs and 211 853 cfs, respectively. The different flow conditions
665 were chosen to further underscore the robustness of this technique
666 under different seasons of dam operations. The detailed results are
667 described in the following sectionsAQ9 . The assessment of the forecast skill
668 in short and long-term ANN flow forecasting models is described in
669 detail in Appendix for the interested readers.

670 1. Evaluation framework

671 The long-term optimal policy derived from the monthly scale
672 optimization model was used for the strategies that nest long-term
673 benefits with short-term optimization (i.e., TeNeSC and C1). For the
674 other strategies used for evaluation, either only the short-term fore-
675 casts (T1) or long-term forecasts (T2) were used for the optimization.
676 Figure 7 shows the optimal reservoir elevations using these strategies
677 using perfect forecasts for the three years, while Fig. 8 shows the

678corresponding optimal elevations obtained using the operational fore-
679casts (ANN-based for Blue Mesa and regression-based for the others).
680The long-term optimal policy of operations is also shown alongside in
681each plot.
682When the optimization model uses temporal nesting and consid-
683ers the three reservoirs as a network (TeNeSC), the reservoir levels
684from the short-term optimization model are adjusted according to
685closely follow the long-term optimality. The long-term optimal policy
686tends to maximize the reservoir storage for the downstream two dams,
687where the upstream Blue Mesa dam acts as buffer for maximizing the
688energy generation. The resulting flexibility in the operation of
689upstream dams enables them to provide peaking power, while the
690Crystal dam traces the long-term optimal levels with minimal changes
691in reservoir levels. Considering the strategies used to evaluate TeNeSC,
692the short-term optimization (T1) results in lower storage levels for the
693downstream dams, resulting in lower hydropower benefits in the long-
694run due to its myopic nature. In contrast, the long-term only strategy
695(T2) tends to closely trace the monthly target levels but loses additional

FIG. 8. Optimal reservoir elevations from different strategies using operational forecasts (ANN/linear regression-based) for the three dams.
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696 hydropower benefits in short-term possible by tweaking the daily
697 release decisions accordingly (Table V).
698 Further, the value in spatial coupling was assessed separately by
699 comparing TeNeSC with the no-coupling scenario (no co-ordination
700 among reservoir release decisions; C1). The results from C1 suggest
701 that one of the two downstream dams undergoes major fluctuations in
702 reservoir levels, even violating the storage constraints for a few days
703 irrespective of co-optimization at the long- and short-term scales. The
704 fluctuations primarily occur during the peak flow season of wet years.
705 In contrast, spatial coupling of dams further facilitates in keeping the
706 reservoir levels within safe bounds and prevents violation of the stor-
707 age constraints. TeNeSC helped avoid any sudden surge or steep dip
708 in the reservoir levels during the wet and dry years. Finally, the high
709 accuracy of operational forecasts leads to optimal policies similar to
710 those obtained by the use of perfect forecasts (see Fig. 8).

711 2. Benchmark scheme

712 The reservoir storage and resulting hydropower generation
713 (MW) using the benchmark scheme are shown in Fig. 9 for the three
714 dams. The scheme is derived individually for each dam in the network
715 based on the observations over 2004–2018, without using any forecast
716 information.

717 3. Hydropower benefit assessment

718 The hydropower benefits harnessed from each strategy over the
719 three years and using the two forecast scenarios are shown in Table V.
720 The benefits from the perfect forecast scenario set bounds to maxi-
721 mum attainable benefits, which cannot be exceeded by the optimal
722 policy under the operational forecast scenario. Hydropower generation
723 (MWh) using observed real-world operations (obtained from USBR)
724 is also shown in Table V for comparison.
725 The high skill in ANN forecasts resulted in benefits similar and
726 lesser to those from the perfect forecast scenario for all the strategies.
727 Considering the different years of analysis, the proposed approach of
728 TeNeSC, which answers the key research question of our study, is

729more advantageous during the dry and moderate years (2016 and
7302018) as compared to the wet year (2017).
731Within the strategies evaluating values in temporal nesting, both
732the short-term-only (T1) and long-term-only (T2) optimization result
733in lower benefits in hydropower when compared against the proposed
734benchmark. TeNeSC, on the other hand, generates benefits of
73514%–41% over the different seasons for the perfect forecast scenario.
736Further, using the short-only optimization (T1) was most beneficial
737for drier years, while the long-term only optimization (T2) produced
738more benefits for the wetter year. This stresses the value in incorporat-
739ing both the strategic and tactical planning for robustly efficient opera-
740tions across different years. Next, the value in spatial coupling is
741underscored by comparing TeNeSC against strategy C1 with no cou-
742pling. The latter again falls short of the hydropower benefits compared
743to the former. This is because when the optimization considers only
744the individual reservoirs without any coordination in release decisions,
745the optimal policy for one dam leads to other dams performing sub-
746optimally, leading to an overall reduced performance of the system.
747The hydropower generation from real-world observed operations,
748although not used for assessment as mentioned in Sec. III F, was com-
749parable to those from the benchmark scheme.

750B. Effect of skill in long-term forecasts
751The perturbed inflow forecasts for the Blue Mesa dam were
752obtained for the moderately wet year of 2016 to study the effect of skill
753in monthly forecasts on the optimal operations. Figure 10(a) shows
754the perturbed inflow time series using six different constants of multi-
755plicative bias. The long-term optimization model was first used to
756obtain monthly optimal policies for the three dams. Figure 10(b)
757shows the optimal long-term policy for the Blue Mesa dam for the cor-
758responding perturbed inflow time series.
759The long-term optimal elevations were then used to constrain the
760short-term optimization under the TeNeSC scheme. The hydropower
761benefits using the optimal operating policy from different underesti-
762mation and overestimation scenarios are summarized in Table VI.
763Comparing the outputs from different scenarios of perturbation, a

FIG. 9. Benchmark control rules designed specifically for hydropower maximization using the R package reservoir for the dams in the Aspinall Unit during the period
2004–2018 at the monthly scale (after Turner and Galelli, 2016).
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764 higher bias of the inflow forecasts toward over- or underestimation
765 generally results in lower energy benefits relative to the perfect
766 forecast benefits. The effect of degrading skill is more prominent
767 for the overestimation scenarios where the optimization strategy
768 results in the over-conservative release policy, leading to lower
769 energy production. The underestimation scenarios, on the other
770 hand, yield relatively high releases and generate more energy when
771 assessed over the entire year. However, the overall difference
772 among the resulting optimal policies and respective hydropower
773 benefits was insignificant. This is partly because the long-term

774forecasts are not directly utilized for arriving at the final optimized
775releases; rather, the first step of long-term optimization leads to
776the monthly optimal release policy, which then feeds the daily
777optimization. Thus, the effect of poor skill in monthly forecasts is,
778to some extent, compensated for by the more accurate short-term
779forecasts while deriving the final daily optimal releases. This is
780advantageous in the case when long-term forecasts are not very
781skillful as demonstrated here with heavy over/underestimation,
782further underscoring the value of co-optimization at long- and
783short-time scales.

TABLE V. Assessment of hydropower production (HP) benefits over the Aspinall unit using different strategies compared against benchmark and observed benefits over three
years; IB is the improvement in production over the benchmark scheme. Comparing TeNeSC with T1 and T2 gives values in temporal nesting, while comparing with C1 gives
values in spatial coupling.AQ5

Year Strategy Formulation
HP (GWh-perfect

forecast) IB (%)
HP (GWh-operational

forecast) IB (%)

2017 (wet) TeNeSC Short þ long þ coupled 1028 14.8 1021 14.1
T1 Short-only 893 �0.3 877 �2.0
T2 Long-only 934 4.3 929 3.8
C1 Uncoupled 921 2.8 915 2.2

Benchmark Observed 895 …
812 …

2016(moderate wet) TeNeSC Short þ long þ coupled 974 26.9 948 23.5
T1 Short-only 837 9.0 821 7.0
T2 Long-only 759 �1.1 750 �2.3
C1 Uncoupled 807 5.2 780 1.7

Benchmark Observed 767 …
761 …

2018 (dry) TeNeSC Short þ long þ coupled 847 41.5 829 38.5
T1 Short-only 684 14.3 669 11.8
T2 Long-only 603 0.6 599 0.1
C1 Uncoupled 702 17.2 652 8.9

Benchmark Observed 599 …
609 …

FIG. 10. (a) Perturbed inflow timeseries for the Blue Mesa dam over 2016 to be used for the TeNeSC scheme; (b) optimal monthly elevations for the Blue Mesa dam using the
long-term optimization model based on the different perturbed forecast inflow time series; the black dashed line is based on perfect forecasts (i.e., observed inflow).
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784 V. DISCUSSION AND CONCLUSIONS
785 The smart use of skillful forecasts at weather and climate
786 scales can potentially make the operation of existing dams more
787 efficient. As forecast systems require fewer resources and man-
788 power than building new energy infrastructure (Turner et al.,
789 2017), a major implication of using the forecasts is the improved
790 efficiency of operations instead of building new hydropower dams
791 to satisfy the same energy demands. To realize this potential
792 toward energy generation, we have demonstrated a scheme that
793 integrates the long-term benefits with the short-term optimization
794 model to achieve optimality at both the time scales for a multiple
795 dam network. The findings presented here are globally applicable,
796 where energy demands and the need for greener and cleaner
797 energy production are simultaneously escalating.
798 As a first step, to model the reservoir short-term (daily) and
799 long-term (monthly) inflow forecasts, we used a numerically efficient
800 and skillful data-based technique of ANN for the most upstream dam
801 that receives unregulated natural flow. The publicly available NWP
802 forecast forcings at the weather scale and the climate model outputs at
803 the climate scale currently represent an underutilized resource for the
804 energy and water resource community. The data-intensive and skillful
805 ANN modeling technique was only employed for the most upstream
806 dam of the three-dam network that brings natural inflow into the sys-
807 tem. However, for the downstream reservoirs whose inflow is serially
808 correlated with releases from the respective upstream dams, a linear
809 regression model was found to be suitable for modeling the cascading
810 inflow. This concept can be useful even for more complex multi-dam
811 networks such as a parallel or combination of series-parallel networks,
812 where only the most upstream reservoirs (one or more) need a skillful
813 forecasting technique.
814 Our study shows that using the long-term optimal policy as a
815 guide to the short-term optimization model aids the reservoir in
816 avoiding any sudden surge or dip in the levels that might occur in
817 extreme seasons. In particular, this is valuable for the wet season
818 when an inflow peak with high uncertainty can leave the dam
819 operator with a small temporal window to pre-release and adjust
820 the reservoir levels when using short-term forecasts. With a skillful
821 monthly forecast of the inflow volume from climate models, the
822 temporal window of operations extends manifold giving the opera-
823 tor enough room to adjust the levels with minimal spells of heavy
824 spillway release. Similarly, during the extremely dry seasons, long-
825 term forecasts of drier years can keep the storage levels within safe
826 bounds for a relatively unvarying energy supply (satisfying the
827 baseload demands). The Pareto optimality in multi-objective

828optimization provides flexibility to the dam operator to choose an
829appropriate solution based on the prevailing circumstances and
830trade-offs between the two conflicting objectives.
831The other component of co-optimized operations is the spatial
832coupling of reservoirs where the connected dams are operated and
833optimized for in tandem. The results suggest that benefits to the dam
834operator offered by coordination in release decisions depend on the
835characteristics of the reservoirs in the network. A diverse network com-
836prising reservoirs and power plants with varying characteristics can
837potentially use the spatial coupling for the release policy tailored to
838each dam. Thus, if a dam is assigned to meet base load demands, its
839optimal release policy should allow for minimum changes in reservoir
840levels while, for the dams whose purpose is to provide peaking power
841during certain operational hours/days, the release policy can be
842adjusted accordingly to maintain the requirements for other baseload-
843providing reservoirs. This, when integrated with temporal nesting, has
844far-reaching implications for the numerous small and large multi-dam
845networks that were constructed in the previous centuries with long
846service lives but are suffering from fading efficiencies. Our proof-of-
847concept implies that smart use of seasonal and short-term forecasts can
848compensate for the losses in performance and generate more energy.
849The quantification of benefits under the evaluation framework was
850performed by comparing them against a benchmark scheme that
851completely neglects the forecasts. The study showed 14%–41% of
852improvements in energy benefits from the co-optimized scheme against
853the benchmark over years with different flow characteristics. In general,
854the dry and medium years showed higher energy improvements than
855the considered wet year. A similar conclusion was also reported by AQ6Xu
856et al. (2014) who obtained long-term energy generation as a function of
857short-term operations. As Xu et al. (2014) suggest, the objective of maxi-
858mizing the hydropower or stored energy favors the long-term energy
859production under drier conditions by maintaining higher storage levels.
860This leads to relatively high overall improvements on nesting the short
861and long-term optimality. However, wetter conditions demand higher
862release, leading to a loss to the storage maximization objective in the
863long term and hence comparatively lesser improvements to hydropower.
864This study specifically focused on the application of forecast-
865based reservoir operations at different temporal scales for improving
866upon the hydropower generation. The technique involves components
867of flow forecasting and optimization, which require in situ data on res-
868ervoir operations and inflow for setting up the models. For operation-
869alizing the concept over other dam networks across the globe, the
870forecasting models can rely on inputs from the global NWP model
871and satellite remote sensing. However, the optimization model needs
872to be setup in conditions of scarce in situ data on dam operations. We
873hope to consider this in a future study. Moreover, with improved effi-
874ciency of reservoir operations, any excess energy generation can be
875wasted if there is not enough demand for dispatching the power to the
876grid, or in case, there is no provision for excess energy storage. Thus,
877another logical future extension of this work is to integrate energy
878demand forecasting and excess energy storage with the co-optimized-
879based reservoir operations. The utility of nesting the weather forecasts
880within the climate forecast-based operations not only is limited to
881hydropower but can also benefit other renewables such as solar and
882wind energy generation. Future endeavors on fostering the clean
883energy generation should aim toward an integrated hydro-wind-solar
884based energy framework. 885

TABLE VI. Hydropower benefits obtained with TeNeSC using different perturbed
inflow scenarios, “Nx” represents the perturbed inflow scenario obtained by multiply-
ing the observed inflow timeseries by constant “N.”

Underestimation
scenario

Hydropower
(GWh)

Overestimation
scenario

Hydropower
(GWh)

0.10� 968.1 1.50� 949.4
0.25� 973.4 1.75� 949.9
0.50� 960.8 2.0� 937.9
Perfect forecast 973.8
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890 APPENDIX: SKILL ASSESSMENT IN FLOW
891 FORECASTING MODELS

892

893 1. Short-term inflow forecasts
894 Using the selected ANN architecture, the training, validation, and
895 testing of the ANN base model were performed using the GFS forecast
896 forcings for the Blue Mesa dam. The trained ANN model was then
897 forced with 11-member ensemble forecast forcings from the GEFS
898 model to result in the ensemble streamflow forecasts for lead times of
899 1–7 days. The GEFS-based ensemble flow forecasts obtained using the
900 trained ANN model are shown in Fig. 11 for the period of analysis
901 2016–2018. The selected period of analysis included anomalously dry,
902 intermediate, and anomalously wet years. The performance of the
903 average scenario of GEFS-based ensemble forecasts is compared
904 against that obtained using GFS-based forecast. The evaluation metrics

905of Nash-Sutcliffe Efficiency (NSE), Correlation, Root Mean Squared
906Error (RMSE), and RMSE normalized with the mean of observed
907inflow (NRMSE) were used. The metrics are shown in Table VII.
908The high accuracy exhibited by ANN flow forecasts results in a
909narrow spread of the GEFS-based ensemble forecasts. The average
910scenario of the ensemble has slightly higher skill as compared to
911that obtained from the GFS-based forecasts and hence was used as
912input to the short-term optimization model.

FIG. 11. Daily ensemble inflow forecasts along with the observed flow and average scenario of the 11-member ensemble for the Blue Mesa dam over 2016–2018.

TABLE VII. Evaluation metrics comparing the GEFS-average and GFS based flow
forecasts for lead times of 1, 4, and 7 days against the observed inflow for the Blue
Mesa dam.

Metric

GEFS average scenario GFS

L1 L4 L7 L1 L4 L7

NSE 0.971 0.923 0.912 0.972 0.921 0.888
Correlation 0.986 0.963 0.956 0.986 0.960 0.943
RMSE (cfs) 215.1 350.9 375.6 188.7 313.5 368.1
NRMSE 0.120 0.196 0.209 0.120 0.199 0.233
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9132. Long-term inflow forecasts
914The long-term ANN model was trained using the selected pre-
915dictors, and ensemble forecast forcings were used to result in the
916ensemble of flow forecasts. The modeled monthly flow forecasts
917over the testing period are compared with the observed inflow in
918Fig. 12(a). The spread in the ensemble forecasts for the lead time of
9191month for Blue Mesa dam is shown as the box-plot in Fig. 12(b).

FIG. 12. (a) Ensemble monthly flow forecasts using the ANN model compared against the observed inflows over the testing period for lead times of 1, 4, and 7 months; (b)
box-plots of the ensemble flow forecasts for 2016–2018 showing the spread in the forecasts for the lead time of 1-month.

TABLE VIII. Evaluation metrics for assessing the performance of the average sce-
nario from the ensemble of monthly flow forecasts over the testing period of the ANN
model.

Metric Lead 1 month Lead 4 months Lead 7 months

NSE 0.63 0.53 0.58
Correlation 0.80 0.75 0.77
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920 The average forecast scenario was used for performing the deter-
921 ministic genetic algorithm-based optimization. The metrics evaluat-
922 ing the performance of average monthly forecast scenario against
923 the observed values are tabulated in Table VIII.
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