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Abstract 9 

This study explores the maximization of hydropower generation by optimizing reservoir 10 

operations based on short-term inflow forecasts derived from publicly available numerical 11 

`weather prediction (NWP) models. Forecast fields from the NWP model of the Global 12 

Forecast System (GFS) were used to force the Variable Infiltration Capacity (VIC) 13 

hydrologic model to forecast reservoir inflow for 1-16 days lead time. A reservoir operations 14 

optimization strategy was applied based on the forecast of inflow. The concept was 15 

demonstrated for two dams in the United States. Results showed that a significantly greater 16 

amount additional hydroelectric energy benefit can be derived consistently than the 17 

traditional operations without optimization and weather forecasts.  Goals of flood control 18 

and dam safety also were not compromised when exploring opportunities for hydropower 19 

maximization. The study clearly underscores the additional value of weather forecasts that 20 

are available publicly and globally from NWP models for any dam location for hydropower 21 

maximization. Given the on-going effort to coordinate strategies for sustainable energy 22 

production from renewable energy sources, it is timely that this concept be expanded further 23 

to current hydropower dam sites around the world. This can help reduce dependence on 24 
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fossil-fuel based energy production and shift towards greener sources using existing 25 

hydropower infrastructure. 26 

Keywords: hydropower, maximization, short-term weather forecasts, reservoir operations 27 

optimization, flood control. 28 

1. Introduction 29 

Improving production from renewable energy sources is required in reducing the 30 

dependence on fossil fuels and addressing the global energy security in a sustainable way. 31 

As envisioned by [1], unless a replacement energy infrastructure is developed well ahead of 32 

time, economic, social and political instability may ensue due to heavy fluctuation in the 33 

supplies and price of fossil-fuel [2]. The renewable sources of energy are not subject to such 34 

price fluctuations as they come from the available natural sources of water, sunlight, wind, 35 

tides etc. [3]. A recent study concluded that the use of wind, solar, hydroelectric, tidal and 36 

geothermal energy is the most beneficial, among several other alternatives, for addressing 37 

pollution, public health, global warming, and energy security [4].  38 

The use of wind, water and sunlight to suffice for the electricity demands within U.S. 39 

as well as worldwide has been explored by [1,5-7]. Some of these studies have projected 40 

the future renewable energy potential to lie exclusively in the variable sources of wind and 41 

solar power and claimed them to be sufficient to meet the energy demand [8-11]. However, 42 

hydropower remains a key renewable source to generate the baseload power (minimum 43 

power needed at a steady rate) due to its relatively high capacity factor [12] and minimal 44 

potential interruptions to the system [13,14]. Factors that further necessitate studying 45 

hydropower systems include its significant operational flexibility with ability to store 46 

energy [15], instant power generation [16], low operating and maintenance costs [13], and 47 
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capability of integration with intermittent renewables [15,17,18]. This is manifested in 48 

recent effort of wind-hydro combination projects by the German firm Max Bögl [19]. 49 

Within the U.S., over the past 65 years (1950-2015), hydropower has contributed 50 

10% to the total and 85% to the renewable power generation [19]. However, the installation 51 

of newer hydropower capacity has declined in the past couple of decades. According to the 52 

U.S. Department of Energy [19], the amount of nation’s net electricity generation 53 

contributed by hydropower has decreased, from 30% in 1950 to 7% in 2013, as nuclear 54 

power, coal, natural gas, and other sources were added to the nation’s energy portfolio to 55 

meet rising demands. In the last decade, no large-scale hydropower dam project, exceeding 56 

500 megawatts (MW), has been constructed in the U.S. due to factors such as lower 57 

economic growth, concerns related to environmental impacts, stagnant energy market, and 58 

uncertainties owing to the recent breakthroughs in the shale gas and oil industries [20]. Fig. 59 

1 illustrates this stagnation observed in the growth of hydropower capacity after 1990. 60 

Further, as most economical hydropower sites in U.S. have already been explored over the 61 

previous century, any rise in the hydropower infrastructure is hardly expected [21]. Given 62 

that we are no longer building new hydropower dams in the developed world such as the 63 

U.S., it is worthwhile to explore how existing infrastructure can be maximized of its 64 

operational effectiveness to provide more power to the energy grid by optimizing the 65 

operations [22]. 66 
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 67 

Fig. 1. Cumulative installed hydropower capacity from 1890-2015 over the United States 68 

(Reproduced from [2]) 69 

The current management of most federal reservoirs at daily time scale is based on 70 

rule curves that outline the reservoir storage targets to be met at specific time intervals of 71 

the year. The rule curves were designed based on existing storage volumes using a 72 

climatology of historical flow observations [23, 24]. Operating strictly based on these rules, 73 

without considering the altered demands or changes in inflow patterns [71, 72] can cause 74 

mishandling of an impending and unexpected reservoir inflow situation at the weather scale. 75 

Such a situation can lead to missed hydroelectric energy [20]. For example, in a weaker-76 

than-average month of the flood season, lowering the pool to rule curve level too early can 77 

result in significant loss in power generation, which could be avoided if the inflow forecasts 78 

are made ahead of time. Thus, it is timely to leverage the advancements in atmospheric 79 

modeling for forecasting the weather [25] and optimization techniques to achieve the goal 80 

of maximizing hydropower energy and realize more efficient and ‘smart’ reservoir 81 

operations management.  82 

0

20

40

60

80

100

120

1880 1900 1920 1940 1960 1980 2000 2020

C
u
m
u
la
ti
ve
 H
yd

ro
p
o
w
er
 C
ap

ac
it
y 
(G
W
)



5 
 

The NWP weather models from various meteorological agencies produce weather 83 

scale forecasts fields of precipitation, temperatures, wind speed, soil moisture etc. in three 84 

dimensions over the entire globe. These publicly available forecasts represent an 85 

underutilized low-hanging fruit for the hydropower community. Currently, the integration 86 

of such forecasts into existing water management decision processes at weather scale is not 87 

yet popular or mainstream due to the traditional risk averse nature of water managers. The 88 

major concerns include low forecast skill and mismatch in the scales of forecasts from those 89 

required by the stakeholders [13,22,26,27]. However, a recent study has concluded that the 90 

forecast skill of NWP models at a lead time of 7 days has improved from 50% in 1995 to 91 

more than 70% in 2015 [15]. Such an improvement can capture the peaks of a flood event 92 

and can be utilized to adjust the dam operations accordingly. Reservoirs in the snow-93 

dominated regions like the west coast (e.g. Columbia River basin) frequently use seasonal 94 

projections of climate, snowpack forecast etc. to optimize their operations [13,27]. Ongoing 95 

projects such as Integrated Forecast and Reservoir Management (INFORM) [28] and 96 

Forecast Informed Reservoir Operations [29], that have focused over specific watersheds, 97 

are also utilizing short-term weather forecasts for operating the reservoirs. Another issue is 98 

the coarse resolution of the NWP forecast fields that are often not detailed enough to be 99 

applied over the relatively small reservoir catchments. To address this, dynamic 100 

downscaling technique can be used to resolve the atmospheric processes at finer scale [30-101 

32]. To the best of our knowledge, there has not been any study to explore the value of 102 

dynamically downscaled NWP based-forecasts specifically for hydropower maximization.     103 

To utilize the forecast inflow information for generating more energy, the reservoir 104 

system needs an optimal and more informed set of release decisions updated dynamically 105 
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based on the current reservoir state and future inflow. Various optimization techniques have 106 

been proposed in the past, and an extensive literature review and evaluation of different 107 

state-of-the-art approaches can be found in [21,33-35]. The optimization objective is the 108 

key towards optimizing operations as there are a plenty of studies focusing on single user 109 

benefits.  These include optimizations for hydropower production [36-38], flood control and 110 

security [23,39,40], water supply [41,42], irrigation and crop planning [43,44] and 111 

environmental concerns [20]. However, due to the wide-ranging diversity of property rights 112 

and stakeholders, optimizing for a single stakeholder is ill-advised, rather the competing 113 

purposes (such as flood control and irrigation) needs to be balanced for extracting equitable 114 

benefits out of the existing infrastructure. In several multi-objective optimization studies 115 

[45-52], the focus has been on the dams with significantly large reservoir storage capacity. 116 

Short-term forecasts, as used here, are likely more valuable for the dams with reservoir 117 

capacity smaller than the annual inflow volume [27].  This study specifically explores such 118 

dams, usually unaddressed in the existing literature, for hydropower operations 119 

incorporating the weather-scale forecasts. 120 

The overarching research question addressed here is – can the short-term weather 121 

forecasts from numerical weather prediction improve the hydroelectric energy production 122 

for small and medium storage dams without compromising flood security, dam safety and 123 

environmental flow constraints? A schematic of the approach highlighting the major 124 

components of the study is shown in Fig. 2 and is explained in the following sections. 125 
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 126 

Fig. 2. Illustration of the approach used in this study.  Green box – forecasting; Blue box – 127 

hydrologic modeling; Red box – optimization component. VIC is the hydrologic model for 128 

predicting inflows. GFS is NOAA’s Global Forecasting System for weather forecasts. 129 

2. Material and Methods 130 

2.1 Study Region and Data 131 

An exploration was made for dams satisfying the following criteria: (i) operated for 132 

hydropower generation or flood control as their primary or secondary purpose, (ii) have 133 

reservoir storage capacity less than a threshold of 1,700,000 ac-ft (98th percentile value for 134 

reservoir storage within U.S., see Fig. 3), (iii) located upstream in the dam network (in case 135 

of a multi-reservoir system) to receive unregulated inflow, to facilitate hydrological 136 
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modeling, and (iv) reservoir storage capacity smaller than annual inflow volume for the 137 

short-term forecasts to be valuable [27]. Out of the several potential locations, Detroit dam 138 

in Oregon and Pensacola dam in Oklahoma, were selected based on the data availability and 139 

processing time constraints. Both the Detroit dam, located at the North Santiam River 140 

forming Detroit Lake, and Pensacola dam on the Neosho River forming Grand Lake are 141 

primarily used for hydropower and flood control. The powerhouse at Detroit dam contains 142 

two Francis turbine units with a combined nameplate capacity of 100MW, while Pensacola 143 

dam, Oklahoma’s first hydroelectric power plant, consists of six turbine generator units with 144 

the nameplate capacity of 120MW.  The observed streamflow data was obtained from the 145 

U.S. Army Corps of Engineers (USACE) [53,54]. The reservoir storage capacity and ratio 146 

with annual inflows are shown in Table 1 and locations of the selected dams in Fig. 4.  147 

 148 

Fig. 3. Distribution of the storage capacity of dams in U.S. Data obtained from Global 149 

Reservoir and Dam (GRanD) database [73]. 150 

Table 1. Comparison of Storage Capacity and Annual Inflow for the two dams 151 

Dam Storage Capacity  
(ac-ft) 

Annual Inflow  
(ac-ft) 

Capacity-Annual 
Inflow Ratio 

Detroit 455,000 1,420,360 0.32 
Pensacola 1,672,000 5,996,482 0.28 

 152 
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                  153 

             154 

Fig. 4. Location, drainage boundaries, stream networks on the left panel and rule curves 155 

for (a) Detroit Dam, OR; (b) Pensacola Dam, OK, on the right panel. 156 

2.2 Short-term NWP based forecasts 157 

 Real-time short-term (1-16 days) forecast data from the Global Forecast System 158 

(GFS) global-scale NWP model was acquired at 0.5˚ resolution. The global forecasts are 159 

produced four times a day for 1-16 days lead time in almost real-time by National Centers 160 

for Environmental Prediction (NCEP) [76]. Dynamic downscaling was performed using the 161 

numerical Weather Research Forecasting (WRF) model to output forecasts at 0.1˚ 162 

resolution. WRF, a mesoscale atmospheric numerical modeling system, has demonstrated 163 

its capability for constructing the atmospheric conditions, at both local and regional scales 164 

[55,56]. Two nested domains of 10 km and 30 km were used for the dams as shown in Fig. 165 

5Error! Reference source not found..  166 

(a) 

(b) 
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 167 

(a)             (b)  168 

Fig. 5. The nested domains for WRF simulation at 30km and 10km, for (a) Detroit Dam, 169 

OR and (b) Pensacola Dam, OK.  170 

 In a numerical model like WRF, the Microphysics (MP) and Cumulus 171 

Parameterization (CP) schemes are the controlling factors for precipitation as reported in 172 

existing literature [57, 55]. As the Detroit dam lies in the Pacific Northwest region, the 173 

model configurations were inherited from the forecast model runs of Department of 174 

Atmospheric Sciences at the University of Washington [58]. The Thompson graupel scheme 175 

was considered for MP and Grell-Devenyi ensemble scheme for CP. For Pensacola dam, 176 

the Morrison microphysics scheme was used as recommended by [55] for extreme storm 177 

simulations. Appendix A evaluates the performance of WRF setup for both the dams. 178 

2.3 Hydrologic Model 179 

The macroscale semi-distributed Variable Infiltration Capacity (VIC) hydrologic 180 

model [59, 60] was chosen to model the reservoir inflow. The VIC model is forced with the 181 

time series of gridded precipitation, minimum and maximum temperature, and wind speed. 182 

The macroscale model was run at a daily time scale at 0.1˚ spatial resolution to ensure that 183 

the basin contains enough grid cells for simulation. The hindcast forcings were obtained 184 
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from NCDC Global Surface Summary of the Day data [61] while the WRF-downscaled 185 

GFS fields provided the forecast forcings for the VIC model. To obtain the inflow at the 186 

downstream station of basin, routing of streamflow was performed separately using the 187 

routing model of Lohmann et al. [62,63]. Model calibration was performed by adjusting the 188 

parameters of VIC model that govern baseflow recession, infiltration, and soil layer depths 189 

to match the simulated streamflow with reference data, minimizing the root mean squared 190 

error (RMSE). The calibration and validation details of VIC model are provided in 191 

Appendix B.   192 

2.4 Reservoir Operations Model 193 

 The next step (Fig. 2, red box) is to model the reservoir operations using the forecast 194 

inflow information optimizing the releases from the reservoir to maximize hydropower 195 

generation. Optimizing at the daily time step is most suitable when it comes to real-time 196 

operations of small and medium-storage dams. A small dam operator is very unlikely to be 197 

making decisions on reservoir releases for such dams at frequencies higher than a day. 198 

2.4.1 Optimization Strategy 199 

In general, setting up the reservoir’s optimization framework involves three 200 

components – 1) advanced scheduling of water releases, 2) useful inflow forecasts that serve 201 

as input data, and 3) and optimization model that utilizes forecast information to the best 202 

advantage [33]. A major limitation in operating the reservoirs occurs during the flood/peak 203 

flow seasons when the high uncertainty in predicting a flood peak leaves the dam operator 204 

uncertain on much water to release to balance the various stakeholder benefits. The short-205 

term forecast information was utilized here to provide the operator with a release policy 206 

optimized to simultaneously maximize benefits from the conflicting objectives.  207 
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To minimize the effect of reduced forecast skill with increasing lead times (see 208 

Appendix A), the optimization strategy sequentially updates NWP-based (downscaled by 209 

WRF) flow forecasts every other day. Evaluation is performed by calculating optimized 210 

hydropower benefits (optimized HP) using the optimized releases while passing the 211 

observed inflow into the system. The optimized HP benefits were compared against the 212 

observed benefits (observed HP) using observed operations without any 213 

optimization/forecasts. The observed benefits correspond to the real-world power 214 

generation data obtained from USACE that operates the two dams. The optimized 215 

hydropower benefits (megawatt-hours, MWh) were calculated as a product of hydraulic 216 

head and power release (via penstocks), considering the turbine efficiency, operating hours 217 

and the capacity factor (ratio of actual hydropower produced to the maximum possible over 218 

a period).  219 

2.4.2. Optimization Objectives and Constraints  220 

Reservoir operations were formulated as a Multi-objective Optimization Problem 221 

(MOP) based on a Pareto optimal set of solutions with the objective functions of 222 

hydropower maximization and flood control [64]. The two objectives are mutually 223 

conflicting, since maximizing hydropower production requires higher reservoir storage to 224 

produce more power, while for minimization of the flood risk, more water needs to be 225 

released to ensure enough storage when the peak inflow hits the reservoir. The Non-226 

dominated Sorting Genetic Algorithm (NSGA-II) [65] was used to yield the Pareto front of 227 

the optimal solutions from which an appropriate alternative can be chosen at various 228 

satisfaction levels of both the objectives [66]. The two conflicting objectives are formulated 229 

below. 230 
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1. Minimize the deficit in hydroelectric power production (MW) from the maximum 231 

generation capacity of the powerplant (𝐻𝑃௠௔௫ሻ, 232 

min 𝑓ଵሺ𝑀𝑊ሻ ൌ 𝐻𝑃௠௔௫ െ ∑ 𝜖 ∙ ∆𝑡௧௨௥௕ ∙ ሺ𝐻𝐹௧ െ 𝐻𝑇௧ሻ ∙ 𝑅௣,௧௧               (1) 233 

2. Minimize the absolute value of deviations of reservoir elevation (H) from the target 234 

rule curve level (T) over the optimization horizon. It is represented as, 235 

min 𝑓ଶሺ𝑓𝑡ሻ ൌ ∑ |𝐻௧ െ 𝑇௧|௧                                    (2) 236 

𝑡 െ 1-16 days (optimization horizon)  237 

𝐻𝐹 – Reservoir forebay water level (ft) 238 

𝐻𝑇 – Reservoir tailrace water level (ft) 239 

𝜖 – Turbine efficiency 240 

∆𝑡௧௨௥௕ – Turbine operating hours 241 

𝑅௣ െ Power release from turbines (cfs) 242 

 Several constraints were imposed on the optimization problem in the interest of 243 

downstream stakeholders, dam safety and environmental concerns. The power and spillway 244 

release from the reservoir were limited by the turbine and spillway capacity. The minimum 245 

for reservoir storage was set to 95% of the historical minimum and the maximum to the 246 

flood control pool while following the storage-volume continuity. The total release was 247 

bounded between the environmental flow limit and a safe threshold to prevent flooding at a 248 

downstream control station. The mathematical formulation of the constraints is given in 249 

Appendix C.  250 

3. Results  251 

Three case studies are presented for forecast-based hydropower maximization using 252 

optimized reservoir operations. Two of them were performed over a single storm flow event 253 



14 
 

each for Detroit and Pensacola dams, while a third long-term assessment was performed 254 

over a continuous period of ten months for Detroit dam with a long dry spell. 255 

3.1 Detroit Dam – Single Event Assessment 256 

 The various pools of the reservoir along with the constraints used in setting up the 257 

optimization model are shown schematically in Fig. 6. The maximum total release was set 258 

to control the downstream point of Mehama to a threshold of 9000 cfs to prevent 259 

downstream flooding. 260 

  261 

Fig. 6. Cross-section of Detroit dam (not to scale) showing relevant pool elevations (from 262 

mean sea level, MSL) along with the optimization constraints obtained from USACE. 263 

The flow event of 21 Dec 2014 with peak inflow of 24,170 cfs (yearly-scale 264 

magnitude) was selected. As the turbine operating characteristics vary over an event or a 265 

season, model for hydropower estimation (MWh) based on available daily energy 266 

generation data (MW) was developed. Linear regression was performed between the energy 267 

generation (in MWh) and the product of hydraulic head ∆𝐻 and power release 𝑅௣ to obtain 268 

an average estimate of 19.72 hours for turbine’s operating hours coupled with its efficiency 269 

(the constant 𝜖 ∙ ∆𝑡௧௨௥௕ in Eq. (1)). 270 
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The 16-day forecast inflow obtained using the VIC model forced with WRF-271 

downscaled forecasts for lead times of 3, 5 and 9-days over the selected event are shown in 272 

Fig. 7(a).  273 

   274 
(a)          (b) 275 

Fig. 7. (a) VIC-modeled 16-day forecast flow forced with WRF-downscaled forecast fields, 276 

for lead times of 3, 5 and 9 days; (b) Non-dominated solutions on the Pareto front and the 277 

selected balanced optimum obtained between the objectives of hydropower deficit and 278 

deviation from rule curve (to be minimized). Detroit dam, OR. 279 

The optimized release policy was obtained with the optimization starting on Dec 11. 280 

A set of 100 non-dominated points on the tradeoff curve (Pareto front) obtained between 281 

the two competing objectives are shown in Fig. 7(b) for the first day of optimization. A 282 

balanced optimum solution was chosen on the Pareto front giving equal priority for 283 

hydropower deficit and flood risk (in terms of deviation from rule curve) and aiming at 284 

concurrently minimizing both the objectives. The conflicting nature of the two objectives 285 

can be clearly observed from the shape of the Pareto curve. 286 

The optimal release of first two days were implemented while the later ones were 287 

revised in the next model run on Dec 13 using updated forecasts. The sequential updating 288 

of forecasts was continued every alternate day until Dec 19. This resulted in the optimized 289 
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release as shown in Fig. 8 (a). While the releases and elevations from Dec 11-19 are obtained 290 

by sequentially updating the forecasts, the values afterwards are obtained from the last 291 

optimization run of Dec 19. 292 

      293 
(a)         (b) 294 

Fig. 8. (a) Optimized releases and elevations from the sequentially updated forecasts from 295 

Dec 11-19, along with the respective observed values, (b) Daily comparison of hydropower 296 

benefits (MWh) from optimized and observed operations (Detroit dam, OR). ‘HP’ stands 297 

for Hydropower; yellow bars and labels show the difference in benefits from the two set of 298 

operations. 299 

As can be seen from Fig. 8(a), the optimized operations result in a higher release as 300 

soon as the peak inflow is forecasted due to which the reservoir levels (black dashed curve) 301 

drop down within dam’s safety limits, and then surges as the peak hits the reservoir. The 302 

elevation at the end of the optimization period, however, has a slightly higher deviation 303 

from the rule curve (compared to the observed value) as the sequential updates to forecasts 304 

have only been made till Dec 19. An optimized hydropower benefit of 20,720 MWh was 305 

obtained in comparison to the observed production of 11,450 MWh over Dec 11-23. Thus, 306 

an additional benefit of 9,270 MWh of hydropower could have been generated before and 307 

during the peak inflow event based on weather forecasts and optimization. The daily 308 
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comparison of hydropower benefits from the optimized and observed operations is shown 309 

in Fig. 8(b). 310 

3.2 Pensacola Dam – Single Event Assessment 311 

Similar to Detroit dam, we identified the dam’s relevant pools, the operating 312 

constraints and turbine features, as depicted in Fig. 9. The optimization constraints for 313 

Pensacola dam were obtained from USACE. For the maximum total release, the threshold 314 

of 30,000 cfs was selected as a flood-safe value of streamflow at the downstream USGS 315 

gage of Neosho River (site ID - 07190500) while the minimum value was selected to allow 316 

a safe environmental flow of 1000 cfs based on the historical observed release data. 317 

 318 

Fig. 9. Cross-section of Pensacola dam (not to scale) showing relevant elevations (from 319 

mean sea level, MSL) and the selected constraint values obtained from USACE. 320 

The inflow event of 22 Mar 2012 with a peak flow of 82,350 cfs was chosen for 321 

Pensacola dam. As the actual hydropower data (MWh) is not provided on USACE data 322 

portal, an estimate of turbine’s operating hours and efficiency could not be obtained. Hence, 323 

a value, close to that for Detroit, of 20 hours was chosen for the constant in hydropower 324 
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equation ሺ𝜖 ∙ ∆𝑡௧௨௥௕ሻ (Eq. 1), as both the dams have similar installed hydropower capacities. 325 

The 16-day forecast inflow modeled for lead times of 3, 5 and 9-days is shown in Fig. 10(a).  326 

     327 
(a)           (b) 328 

Fig. 10. (a) VIC-modeled 16-day forecast flow, forced with WRF-downscaled forecast 329 

fields, for lead times of 3, 5 and 9 days; (b) Pareto front and the selected balanced 330 

optimum obtained between the two objectives, Pensacola dam, OK. 331 

The Pareto front with the non-dominated solutions and the chosen balanced 332 

optimum is shown in Fig. 10(b). The optimization based on sequential updates to WRF 333 

forecasts for this dam revealed optimized hydropower benefit of 31,650 MWh from Mar 11-334 

24, as compared to the observed benefit of 18,825 MWh. Again, an additional production 335 

of 12,825 MWh pre- and over the peak flow event was realized. The optimized releases and 336 

reservoir elevations are compared with the respective observed values in Fig. 11(a) and the 337 

daily hydropower benefits plotted in Fig. 11(b). 338 
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    340 
(a)          (b) 341 

Fig. 11. (a) Optimized releases and elevations updating forecasts every alternate day from 342 

March 11-17, with the respective observed values; (b) Daily comparison of hydropower 343 

benefits (MWh) obtained using observed and optimized operations (Pensacola dam, OK). 344 

‘HP’ stands for Hydropower; yellow bars and labels show the difference in benefits from 345 

the two set of operations. 346 

3.3 Long-term Assessment of Hydropower Benefit 347 

To put our concept to test in the practical world, the reservoir operations model for 348 

hydropower maximization using WRF-downscaled forecasts were automated through an 349 

online decision support system (see http://depts.washington.edu/saswe/damdss) for Detroit 350 

dam. The long-term results obtained from Dec 2017 to Sep 2018 (10 months), consist of 351 

both wet and dry seasons. A 16-day optimized operation schedule was derived using the 352 

WRF model’s downscaled GFS forecasts. Using the actual inflow that occurred during the 353 

day and the respective optimized releases, final reservoir storage was computed by 354 

satisfying the storage-volume continuity (see Appendix C). The final storage of the first day 355 

served as the next day’s beginning storage to obtain the next set of optimized releases using 356 

the updated forecasts. The model was run for all the ten months using such daily sequential 357 

updates. A similar update process was followed by [75] at a weekly scale.  358 
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The hydropower benefits from the optimized operations are compared with the 359 

observed power generation data from USACE in Fig. 12, plotted together with the respective 360 

inflow and release. The plots suggest that during the peak flow seasons, optimized policy 361 

results in higher release ahead of the event leading to higher energy generation. For low 362 

flows, the optimized release is constrained by the environmental flow limit of 1000 cfs, 363 

although the actual operations go below this limit on a few days. The total optimized 364 

hydroelectric energy (optimized HP) of 258,120 MWh was obtained over the 10-month 365 

period in comparison to the observed benefit (observed HP) of 244,490 MWh. Thus, an 366 

additional hydropower benefit of 13,630 MWh (optimized minus observed hydropower) 367 

was obtained over the longer term that included both wet and dry seasons. The highest 368 

benefits in energy were obtained when a peak inflow occurs, as that is when the dam 369 

operator is most uncertain on the release to be made often leading to ‘missed hydropower.’ 370 

There are also episodes when the energy generation from observed operations exceeded the 371 

optimized ones (red bands in Fig. 12) that occur during the low flow periods, generally after 372 

a peak inflow event. Also, the assumption of constant turbine’s operating hours and 373 

efficiency might not hold true, due to change in its efficiency or future addition of more 374 

turbines. However, the optimized release policy did not compromise the other objectives 375 

(of flood control and dam safety) by not exceeding the safe threshold of downstream 376 

flooding and satisfying the environmental flow constraints. Overall, in a longer period, the 377 

concept has potential in producing more energy benefits, overcoming the concerns of false 378 

alarms and false low flows, when operationalized in real-time operations over the existing 379 

infrastructure. 380 
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 381 

Fig. 12. Optimized hydropower benefits obtained by sequentially updating forecasts every 382 

day, compared with the observed benefits (top); optimized and observed release policy 383 

compared along with the observed inflow (bottom). Red bands highlight the days when 384 

optimized power was exceeded by the observed power generation. 385 

4. Discussion 386 

4.1 Performance Assessment - Hydropower versus Flood Control benefits 387 

In order for the proposed optimization strategy to be effective, the two competing 388 

objectives of hydropower and flood control need to be satisfied simultaneously. For the 389 

Pensacola dam, during the Mar 2012 peak event, the proposed optimization strategy was 390 

able to generate an additional 12,825 MWh of energy on top of the production from 391 

observed operations. This amounts to a revenue of $1,251,720 using the average residential 392 

electricity rate of 9.76¢/kWh in Oklahoma City [67]. At an average electricity consumption 393 

of 900 kWh per month per US household, this additional energy can fulfill the demands of 394 

around 11,545 more households for one month. For the competing flood control objective, 395 
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the performance was assessed from the reduction in the outflow peak over the event. For 396 

the selected event, a maximum observed release of 57,211 cfs was limited to just 30,000 cfs 397 

(47.5% reduction) as a safe threshold to prevent flooding downstream.  398 

For Detroit dam’s single event assessment, the proposed optimized operations were 399 

able to generate an additional 9,270 MWh of hydropower (on top of the observed value). 400 

Again, this energy equivalent to revenue of $908,460 at a rate of 9.8¢/kWh in Oregon [68] 401 

that can power up to 8,345 US households for a month. For the long-term assessment over 402 

ten months (with inflows lower than the considered individual peak events), the additional 403 

energy amounted to 13,630 MWh and the optimization strategy was most effective during 404 

the high inflow periods. The reservoir release was kept under the flood-safe limit of 9000 405 

cfs for the downstream control station. Thus, the proposed optimization strategy not only 406 

generates more hydroelectric power but also addresses the other key objective of reducing 407 

the flood risk.  408 

The two dams for the case study assessments were chosen in different hydrological 409 

regimes with varying characteristics. As the Detroit dam lies in with steep terrain with small 410 

sized basin and fast hydrological response, the rainfall quickly gets converted into runoff 411 

with a lesser time of concentration. However, Pensacola dam possesses a flatter terrain with 412 

longer rivers resulting in higher time of concentration.  Thus, the successful assessment over 413 

both the dams, over individual high inflow events as well as operationally over longer term, 414 

illustrates the robustness of the concept. 415 

4.2. Scalability of Hydropower Maximization 416 

While the dams selected for study have different hydrologic regimes, catchment 417 

characteristics and reservoir inflows, the variation is certainly much higher across the dams 418 



23 
 

over U.S. and the globe. This variation cannot be captured by the analysis presented in this 419 

study. However, the practitioners are encouraged to study and extend the framework of 420 

optimization to improve the hydropower generation scenario using weather forecast 421 

information over other dams suitable for such kind of exploration. These include the dams 422 

that are (a) powered, (b) have small to medium reservoir storage capacity, and (c) upstream 423 

in the dam network receiving unregulated flow. An analysis over the U.S. dams revealed 424 

525 dams satisfying these criteria, amounting to 23% of the 2248 powered dams [69]. These 425 

dams are shown in Fig. 13 and are the sites for further exploration of their suitability for the 426 

concept. We believe that the concept, if extended to a good fraction of such dams, has the 427 

potential to bring the nation closer to an energy infrastructure independent of the fossil fuels 428 

and other non-renewable sources. 429 

 430 

Fig. 13. Locations of upstream dams receiving unregulated inflow to be explored of their 431 

suitability for weather forecast use in optimizing reservoir operations. 432 

5. Conclusions 433 

The purpose of this study was to evaluate the potential of short-term weather 434 

forecasts to extract more hydroelectric energy, without compromising other competing 435 

objectives. The NWP model-based weather forecasts, their dynamic downscaling, 436 
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hydrologic modeling, and the optimization algorithm were coupled with reservoir 437 

operations model to obtain the optimized release policy for maximizing energy production. 438 

The concept was demonstrated over two dam sites with varying hydrological characteristics 439 

receiving unregulated inflow. Performance assessment over two year return period storm 440 

events and a longer ten-month period (of wet and dry seasons), showed significant energy 441 

benefits that could be reaped over the long-term.  The optimization not only improved the 442 

energy production, but also helped achieve the goals of flood control and dam safety. The 443 

Pareto optimality allowed the operator to choose an appropriate optimal solution depending 444 

on the prevailing circumstances in operating the reservoir. It should be noted that, at least 445 

for the type of dams demonstrated here, the forecasts help the most during the peak flow 446 

(wet) period when uncertainty in the reservoir inflow is high causing over-conservative 447 

operations. Nevertheless, the long-term benefits of maximizing the hydropower every day, 448 

even in small amounts, is a low-hanging fruit that should not be overlooked, rather be 449 

explored to its depth to realize a more sustainable framework for reducing the dependence 450 

on fossil-fuel based energy generation. Future research needs to include integrating the 451 

power demand forecasting with the reservoir operations model so that the opportunity to 452 

generate additional power is not missed during times of peak demand.  453 

 Combining optimization and simulation models for managing water resources in a 454 

real-world setting has not been fully realized yet [74]. By using real data on real dams with 455 

real-world constraints, we have demonstrated very clearly that the currently available 456 

weather forecasts from NWP models have a lot to offer to address energy security. Thanks 457 

to the advances in atmospheric science and modeling, these weather forecasts are already 458 

available publicly. The challenge now is to convert availability to accessibility so that dam 459 
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operators can operate based on an improved advisory that makes hydropower generation 460 

more efficient (more power with same or less impounded water) and reduce our impact on 461 

the natural world. 462 

 463 

Appendix A. WRF performance evaluation 464 

The evaluation of dynamically downscaled forcings of precipitation, min/max 465 

temperature and wind speed from WRF was performed using Livneh daily CONUS near-466 

surface gridded meteorological dataset [70]. For Detroit dam, due to the absence of Livneh 467 

dataset after 2014, WRF model evaluation was performed for the peak flow event of 16 468 

January 2011. The GFS forecasts for 3, 5 and 7-days lead time were downscaled using WRF. 469 

In the case of Pensacola dam, WRF model was set up for the peak inflow event of 20 March 470 

2012 and forecast data corresponding to lead times of 4, 6 and 8-days was processed for 471 

downscaling.  The metrics of correlation, RMSE, Probability of detection (POD) and 472 

Frequency Bias [55] were calculated to assess the performance with different lead times. 473 

POD is the measure of how well the simulation can capture the true positives while 474 

frequency bias measures the extent to which the simulated results are biased towards false 475 

positive/negative (both having best value of 1). For both dams, performance of the forecast 476 

model deteriorates with lead time, with higher number of misses (true negatives) and false 477 

positives. The comparison maps of precipitation are shown in Fig. A.1 for the selected peak 478 

flow events and Table A.1 summarizes metrics for both the dams.  479 

 480 

 481 

Table A.1. Metrics for evaluation of WRF downscaled forcings for lead times of 3-8 days 482 

(L3-L8). 483 
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Variable Metric 
Detroit Dam Pensacola Dam 

L3 L5 L7 L4 L6 L8 

Precipitation 

Correlation 0.85 0.84 0.19 0.61 0.31 -0.09 

RMSE (mm) 11.18 21.62 15.86 23.39 30.52 33.57 

POD 0.93 0.96 0.04 0.72 0.66 0.57 

Freq. Bias 2.28 2.56 0.04 0.76 0.67 0.58 

Max. 
Temperature 

Correlation 0.53 0.48 0.48 0.78 0.71 0.64 

RMSE (˚C) 4.88 4.65 6.05 3.73 4.82 5.19 

Min. 
Temperature 

Correlation 0.68 0.67 0.68 0.87 0.82 0.58 

RMSE (˚C) 5.45 5.34 3.46 2.07 2.26 3.23 

Wind Speed 
Correlation 0.16 0.36 0.01 0.61 0.45 -0.19 

RMSE (m/s) 2.26 2.03 2.56 1.70 1.88 2.76 

 484 

              485 

    486 
(a) 487 

Livneh (Reference) 

Lead: 3 days Lead: 5 days Lead: 7 days 

Precipitation (mm) 
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            488 

     489 
(b) 490 

Fig. A.1. Assessment of WRF downscaled precipitation (0.1˚) with reference Livneh dataset 491 

over the events of 16 Jan 2011 and 20 Mar 2012 for (a) Detroit and (b) Pensacola dam. 492 

Appendix B. VIC Model Setup 493 

Detroit Dam 494 

 Calibration was performed on the period from 2009-11, and the validation over 495 

2013-15. The first few months were ignored for calculating metrics considering the model 496 

spin-up period. Normalized RMSE is calculated as 
ோெௌா

ఙ೚್ೞ
  (where 𝜎௢௕௦  is standard deviation 497 

of the observed streamflow). The results for calibration and validation are shown in Fig. B1. 498 

As the high flow events are of interest, normalized mean absolute error ( 𝑁𝑀𝐴𝐸 ൌ499 

ଵ

ே௨௠ ௢௙ ௣௘௔௞௦
 ∑

|ை௕௦ିெ௢ௗ|

ெ௢ௗ
ሻ specific to peaks (with flow exceeding turbine capacity of 9000 500 

cfs) and percentage of times peaks were under/overestimated are also shown in Fig. B1.  501 

Livneh (Reference) 

Lead: 4 days Lead: 6 days Lead: 8 days 

Precipitation (mm) 
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 502 
(a) 503 

   504 
(b) 505 

Fig. B.1. (a) VIC calibrated and (b) validated streamflow, along with metrics for Detroit 506 

Dam. NMAE is normalized mean absolute error, UE/OE is % times peak is 507 

under/overestimated. 508 

Pensacola Dam 509 

 Daily inflow data from 2002-06 was used for calibration, while validation was 510 

performed over 2011-15. The calibration and validation results are shown below in Fig. B2. 511 

The NMAE and percent times peak is overestimated (false positive) or underestimated 512 

(missed bias) over the considered period is obtained for events with flow exceeding 513 

20,000cfs. 514 
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 515 
(a) 516 

   517 
(b) 518 

Fig. B.2. (a) VIC calibrated and (b) validated streamflow, with metrics for Pensacola Dam. 519 

NMAE is normalized mean absolute error, UE/OE is % times peak is under/overestimated. 520 

The performance of VIC model for Pensacola dam was better compared to that of 521 

Detroit dam. Running this macroscale model at 0.1˚ resolution for smaller basin of Detroit 522 

dam results in very few grid cells that cannot capture the sub-grid heterogeneity for 523 

modeling the hydrologic variables.  524 

Appendix C. Constraints for Optimization 525 

1. Release from the turbines is constrained by the turbine capacity, 𝑃௧௨௥௕. 526 
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𝑅௣,௧ ൑ 𝑃௧௨௥௕   , ∀𝑡            Eq. (C.1)  527 

2. The system follows storage-volume continuity (water-balance equation) which 528 

requires that in each period 𝑡, 529 

𝑆௧ାଵ ൌ 𝑆௧ ൅ ሾ𝐼௧ െ 𝐿௧ െ ൫𝑅௣,௧ ൅ 𝑅௡௣,௧൯ሿ ∙ ∆𝑡, ∀𝑡          Eq. (C.2)  530 

However, as the optimization is performed at daily time steps (∆𝑡 ൌ 1ሻ, the losses 531 

due to evaporation and seepage, 𝐿௧, were ignored. 532 

3. Reservoir storage (S) was limited to ensure dam safety and avoid infeasible 533 

scenarios such as the reservoir running empty,  534 

𝑆௠௜௡ ൑ 𝑆௧ ൑ 𝑆௠௔௫, ∀𝑡 ൌ 1,2, … ,16           Eq. (C.3)  535 

4. Daily hydropower production (HP) was limited by the powerplant’s overload 536 

capacity (𝐻𝑃௠௔௫ሻ, 537 

𝐻𝑃௧ ൏ 𝐻𝑃௠௔௫,   ∀𝑡 ൌ 1,2, … ,16     Eq. (C.4) 538 

5. To prevent the downstream flooding hazards, the total release was constrained to a 539 

maximum limit, 𝑅௠௔௫, 540 

𝑅௣,௧ ൅ 𝑅௡௣,௧ ൑ 𝑅௠௔௫, ∀𝑡             Eq. (C.5) 541 

6. To avoid excessive and infeasible rates of non-power release via the spillway, the 542 

non-power release rate was limited to the spillway capacity, 543 

𝑅௡௣,௧ ൑ 𝑆𝑝𝑖𝑙𝑙௠௔௫,   ∀𝑡            Eq. (C.6)  544 

7. Lastly, the releases made from reservoir should comply with the environmental flow 545 

limit, 𝑄௘௡௩,  546 

𝑅௡௣,௧ ൅ 𝑅௣,௧ ൒ 𝑄௘௡௩, ∀𝑡             Eq. (C.7) 547 
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