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A B S T R A C T

This study explores the maximization of hydropower generation by optimizing reservoir operations based
on short-term inflow forecasts derived from publicly available numerical weather prediction (NWP) models.
Forecast fields from the NWP model of Global Forecast System (GFS) were used to force the Variable Infil-
tration Capacity (VIC) hydrologic model to forecast reservoir inflow for 1–16 days lead time. The optimiza-
tion of reservoir operations was performed based on the forecast of inflow. The concept was demonstrated
for two dams in the United States. Results showed that a significantly greater amount additional hydroelectric
energy benefit can be derived consistently than the traditional operations without optimization and weather
forecasts. Goals of flood control and dam safety were also not compromised when exploring opportunities
for hydropower maximization. An alternate data-based technique was also demonstrated to improve the fore-
casting skill and efficiency. The study clearly underscores the additional value of weather forecasts that are
available publicly and globally from NWP models for any dam location for hydropower maximization. Given
the on-going effort to coordinate strategies for sustainable energy production from renewable energy sources,
it is timely that this concept be expanded further to current hydropower dam sites around the world.

© 2019.

1. Introduction

Improving production from renewable energy sources is required
in reducing the dependence on fossil fuels and addressing the global
energy security in a sustainable way. As envisioned by Ref. [1], un-
less a replacement energy infrastructure is developed well ahead of
time, economic, social and political instability may ensue due to heavy
fluctuation in the supplies and price of fossil fuel [2]. The renew-
able sources of energy are not subject to such price fluctuations as
they come from the available natural sources of water, sunlight, wind,
tides etc. [3]. A recent study concluded that the use of wind, so-
lar, hydroelectric, tidal and geothermal energy is the most benefi-
cial, among several other alternatives, for addressing pollution, public
health, global warming, and energy security [4].

The use of wind, water and sunlight to suffice for the electric-
ity demands within U.S. as well as worldwide has been explored by
Refs. [1,5–7]. Some of these studies have projected the future re-
newable energy potential to lie exclusively in the variable sources
of wind and solar power and claimed them to be sufficient to meet
the energy demand [8–11]. However, hydropower remains a stable
renewable source to generate the baseload power (minimum power
needed at a steady rate) due to its relatively high capacity factor
[12,77] and minimal potential interruptions to the system [13,14].
Factors that further necessitate studying hydropower systems include
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its significant operational flexibility with ability to store energy [15],
instant power generation [16], low operating and maintenance costs
[13], and capability of integration with intermittent renewables
[15,17,18]. This is manifested in recent effort of wind-hydro combina-
tion projects by the German firm Max Bögl [19].

Within the U.S., over the past 65 years (1950–2015), hydropower
has contributed 10% to the total and 85% to the renewable power
generation [19]. However, the installation of newer hydropower ca-
pacity has declined in the past couple of decades. According to the
U.S. Department of Energy [19], the amount of nation's net electric-
ity generation contributed by hydropower has decreased, from 30%
in 1950 to 7% in 2013, as nuclear power, coal, natural gas, and other
sources were added to the nation's energy portfolio to meet rising de-
mands. In the last decade, no large-scale hydropower dam project,
exceeding 500MW (MW), has been constructed in the U.S. due to
factors such as lower economic growth, concerns related to environ-
mental impacts, stagnant energy market, and uncertainties owing to
the recent breakthroughs in the shale gas and oil industries [20]. Fig.
1 illustrates this stagnation observed in the growth of hydropower
capacity after 1990. Further, as most economical hydropower sites
in U.S. have already been explored over the previous century, any
rise in the hydropower infrastructure is hardly expected [21]. Minia-
ture hydropower and pump storage plants have recently appeared as
alternatives using highly flexible pump as turbines (PAT) for uti-
lization of hydropower without causing major human rehabilitation
[77–79]. However, given that large-scale development of new hy-
dropower dams has stagnated in the developed world such as the
U.S., it is worthwhile to explore how existing infrastructure can be
maximized

https://doi.org/10.1016/j.renene.2019.07.126
0960-1481/ © 2019.
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Fig. 1. Cumulative installed hydropower capacity from 1890 to 2015 over the United
States (Reproduced from Ref. [2]).

of its operational effectiveness to provide more power to the energy
grid by optimizing the operations [22].

The current management of most federally-operated reservoirs in
the U.S. is based on rule curves that outline the reservoir storage tar-
gets to be met at specific time intervals of the year. The rule curves
were designed based on existing storage volumes using a climatol-
ogy of historical flow observations [23,24]. Operating strictly based
on these rules, without considering the altered demands or changes in
inflow patterns [71,72] can cause mishandling of an impending and
unexpected reservoir inflow situation at the weather scale. Such a sit-
uation can lead to missed hydroelectric energy [20]. For example, in
a weaker-than-average month of the flood season, lowering the pool
to rule curve level too early can result in significant loss in power
generation, which could be avoided if the inflow forecasts are made
ahead of time. Thus, it is timely to leverage the advancements in at-
mospheric modeling for forecasting the weather [25] and optimization
techniques to achieve the goal of maximizing hydropower energy and
realize more efficient and ‘smart’ reservoir operations management.

The numerical weather prediction (NWP) weather models from
various meteorological agencies produce weather scale forecasts
fields of precipitation, temperatures, wind speed, soil moisture etc. in
three dimensions over the entire globe. These publicly available fore-
casts represent an underutilized low-hanging fruit for the hydropower
community. Currently, the integration of such forecasts into existing
water management decision processes at weather scale is not yet pop-
ular or mainstream due to the traditional risk averse nature of wa-
ter managers. The major concerns include low forecast skill and mis-
match in the scales of forecasts from those required by the stakehold-
ers [13,22,26,27]. However, a recent study concluded that the forecast
skill of NWP models at a lead time of 7 days has improved from 50%
in 1995 to more than 70% in 2015 [15]. Such an improvement can cap-
ture the peaks of a flood event and can be utilized to adjust the dam
operations accordingly.

Reservoirs in the snow-dominated regions like the west coast (e.g.
Columbia River basin) frequently use seasonal projections of climate,
snowpack forecast etc. to optimize their operations [13,27]. Ongoing
projects such as Integrated Forecast and Reservoir Management (IN-
FORM) [28] and Forecast Informed Reservoir Operations [29], that
have focused over specific watersheds, are also utilizing short-term
weather forecasts for operating the reservoirs. Another issue is the
coarse resolution of the NWP forecast fields that are often not de-
tailed enough to be applied over the relatively small reservoir catch-
ments. To address this scale limitation, dynamic downscaling tech-
nique can be used to resolve the atmospheric processes at finer spatial
scales [30–32]. To the best of our knowledge, there has not been any

study to explore the value of dynamically downscaled NWP
based-forecasts specifically for hydropower maximization.

To utilize the forecast inflow information for generating more en-
ergy, the reservoir system needs an optimal and more informed set of
release decisions updated dynamically based on the current reservoir
state and future inflow. Various optimization techniques have been
proposed in the past, and an extensive literature review and evalu-
ation of different state-of-the-art approaches can be found in Refs.
[21,33–35]. The optimization objective is the key as there are a plenty
of studies focusing on single user benefits. These include optimiza-
tions for hydropower production [36–38], flood control and security
[23,39,40], water supply [41,42], irrigation and crop planning [43,44]
and environmental concerns [20]. However, due to the wide-ranging
diversity of property rights and stakeholders, optimizing for a sin-
gle stakeholder is ill-advised, rather the competing purposes (such as
flood control and irrigation) needs to be balanced for extracting equi-
table benefits out of the existing infrastructure.

In several multi-objective optimization studies [45–52], the focus
has been on the dams with significantly large reservoir storage ca-
pacity. The value of weekly streamflow forecasts was evaluated by
Ref. [80] over three different reservoir systems. Wasimi and Kitanidis
[81] analyzed the daily forecasts specifically to minimize flood dam-
age from multi-reservoir system operations during floods. Short-term
forecasts, as used here, are likely more valuable for the dams with
reservoir capacity smaller than the annual inflow volume [27]. This
study specifically explores such dams, usually unexplored in exist-
ing literature, for hydropower operations based on weather-scale fore-
casts while maintaining flood control and dam safety. Further, as un-
derscored by Ref. [82], the uncertainty of hydrologic forecasts must be
considered to avoid fatal decisions. A scheme for obtaining probabilis-
tic inflow forecasts based on ensemble NWP fields is also described
in this study.

The key novel elements that distinguish this study from the exist-
ing literature include: (a) demonstration of the value of publicly avail-
able, dynamically downscaled NWP-based forecasts, to obtain reser-
voir inflow forecasts; (b) derivation of probabilistic forecasts using
NWP forecast fields; (c) focusing on small-medium storage dams that
receive unregulated inflow; (d) coupling of the forecasts with reser-
voir optimization for hydropower maximization without compromis-
ing downstream flood safety. Most of the published literature, to the
best of our knowledge, focusses on flood control or hydropower but
never together despite the obvious and competing constraints each
pose on reservoir operations.

The overarching research question addressed is – can short-term
weather forecasts from numerical weather prediction improve the hy-
droelectric energy production for small and medium storage dams
without compromising flood security, dam safety and environmental
flow constraints? Hereafter ‘short-term’ is used to refer to a period of
up to 16 days (forecast horizon of the NWP model). A schematic of
the approach highlighting the major components of the study is shown
in Fig. 2 and is explained in the following sections.

2. Material and methods

2.1. Study region and data

An exploration was made for dams satisfying the following crite-
ria: (i) operated for hydropower generation or flood control as their
primary or secondary purpose, (ii) have reservoir storage capacity less
than a threshold of 1,700 kaf (2.1 km3) (98th percentile value for reser-
voir storage within U.S., see Fig. 3), (iii) located upstream in the
dam network (in case of a multi-reservoir system) to receive unregu
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Fig. 2. Illustration of the approach used in this study. Green box – forecasting; Blue box – hydrologic modeling; Red box – optimization component. VIC is the hydrologic model for
predicting inflows. GFS is NOAA's Global Forecasting System for weather forecasts.

Fig. 3. Distribution of the storage capacity of dams in U.S. Data obtained from Global
Reservoir and Dam (GRanD) database [73].

lated inflow, to facilitate hydrological modeling, and (iv) reservoir
storage capacity smaller than annual inflow volume for the short-term
forecasts to be valuable [27]. Out of several potential locations, De-
troit dam in Oregon and Pensacola dam in Oklahoma, were selected
based on the data availability and processing time constraints. Both
the Detroit dam, located at the North Santiam River forming De-
troit Lake, and Pensacola dam on the Neosho River forming Grand
Lake are primarily used for hydropower and flood control. The pow-
erhouse at Detroit dam contains two Francis turbine units with a com-
bined nameplate capacity of 100MW, while Pensacola dam, Okla-
homa's first hydroelectric power plant, consists of six turbine gen-
erator units with the nameplate capacity of 120MW. The observed
streamflow data was obtained from the U.S. Army Corps of Engi

neers (USACE) [53,54]. The reservoir storage capacity and ratio with
annual inflows are shown in Table 1 and locations of the selected dams
in Fig. 4.

2.2. Short-term NWP based forecasts

Real-time short-term (1–16 days) forecast data from the Global
Forecast System (GFS) global-scale NWP model was acquired at 0.5°
resolution. The global forecasts are produced four times a day for 1–16
days lead time in almost real-time by National Centers for Environ-
mental Prediction (NCEP) [76]. Dynamic downscaling was performed
using the numerical Weather Research Forecasting (WRF) model to
output forecasts at 0.1° resolution. WRF, a mesoscale atmospheric
numerical modeling system, has demonstrated its capability for con-
structing the atmospheric conditions, at both local and regional scales
[55,56]. Two nested domains of 10km and 30km were used for both
the dams as shown in Fig. 5.

In a numerical model like WRF, the Microphysics (MP) and Cu-
mulus Parameterization (CP) schemes are the controlling factors for
precipitation as reported in existing literature [55,57]. As the Detroit
dam lies in the Pacific Northwest region, the model configurations
were inherited from the forecast model runs of Department of Atmos

Table 1
Comparison of Storage Capacity and Annual Inflow for the two dams.

Dam

Drainage
Basin Area
(km2)

Storage
Capacity
(km3)

Annual
Inflow
(km3)

Capacity-
Annual Inflow
Ratio

Detroit 1435.4 0.56 1.75 0.32
Pensacola 26847.9 2.06 7.40 0.28
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Fig. 4. Location, drainage boundaries, VIC model grids (0.1°) on the left panel and rule curves for (a) Detroit Dam, OR; (b) Pensacola Dam, OK, on the right panel (1 ft = 0.305m).

Fig. 5. The nested domains for WRF simulation at 30km and 10km, for (a) Detroit Dam, OR and (b) Pensacola Dam, OK.

pheric Sciences at the University of Washington [58]. The Thomp-
son graupel scheme was considered for MP and Grell-Devenyi ensem-
ble scheme for CP. For Pensacola dam, the Morrison microphysics
scheme was used as recommended by Ref. [55] for extreme storm
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simulations. Appendix A evaluates the performance of WRF setup for
both the dams.

2.3. Hydrologic model

The macroscale semi-distributed Variable Infiltration Capacity
(VIC) hydrologic model [59,60] was chosen to model the reservoir in-
flow. The VIC model is forced with the time series of gridded pre-
cipitation, minimum and maximum temperature, and wind speed. The
macroscale model was run at a daily time scale at 0.1° spatial reso-
lution to ensure that the basin contains enough grid cells for simula-
tion. The hindcast forcings were obtained from NCDC Global Sur-
face Summary of the Day data [61] while the WRF-downscaled GFS
fields provided the forecast forcings for the VIC model. To obtain
the inflow at the downstream station of basin, routing of streamflow
was performed separately using the routing model of Lohmann et al.
[62,63]. Model calibration was performed by adjusting the parame-
ters of VIC model that govern baseflow recession, infiltration, and soil
layer depths to match the simulated streamflow with reference data,
minimizing the root mean squared error (RMSE). The calibration and
validation details of VIC model are provided in Appendix B.

2.4. Reservoir operations model

The next step (Fig. 2, red box) is to model the reservoir operations
using the forecast inflow information by optimizing the releases from
the reservoir to maximize hydropower generation without compromis-
ing the dam's flood control objective. Optimizing at the daily time step
is most suitable when it comes to real-time operations of small and
medium-storage dams. A small dam operator is unlikely to make de-
cisions on reservoir releases for such dams at frequencies finer than a
day.

2.4.1. Optimization strategy
In general, setting up the reservoir's optimization framework in-

volves three components – 1) advanced scheduling of water releases,
2) useful inflow forecasts that serve as input data, and 3) and opti-
mization model that utilizes forecast information to the best advan-
tage [33]. A major limitation in operating the reservoirs occurs during
the flood/peak flow seasons when the high uncertainty in predicting a
flood peak leaves the dam operator uncertain on much water to release
to balance the various stakeholder benefits. The short-term forecast in-
formation was utilized here to provide the operator with a release pol-
icy optimized to simultaneously maximize benefits from the conflict-
ing objectives.

To minimize the effect of reduced forecast skill with increasing
lead times (see Appendix A), the optimization strategy sequentially
updates NWP-based (downscaled by WRF) flow forecasts every other
day. Evaluation is performed by calculating optimized hydropower
benefits (optimized HP) using the optimized releases while passing
the observed inflow into the system. The optimized HP benefits were
compared against the observed benefits (observed HP) using observed
operations without any optimization/forecasts. The observed benefits
correspond to the real-world power generation data obtained from US-
ACE that operates the two dams. The optimized hydropower bene-
fits (megawatt-hours, MWh) were calculated as a product of hydraulic
head and power release (via penstocks), considering the turbine ef-
ficiency, operating hours and the capacity factor (ratio of actual hy-
dropower produced to the maximum possible over a period).

2.4.2. Optimization objectives and constraints
Reservoir operations were formulated as a Multi-objective Opti-

mization Problem (MOP) based on a Pareto optimal set of solutions
with the objective functions of hydropower maximization and flood
control [64]. The two objectives are mutually conflicting, since max-
imizing hydropower production requires higher reservoir storage to
produce more power, while for minimization of the flood risk, more
water needs to be released to ensure enough storage when the peak
inflow hits the reservoir. The Non-dominated Sorting Genetic Algo-
rithm (NSGA-II) [65] was used to yield the Pareto front of the optimal
solutions from which an appropriate alternative can be chosen at vari-
ous satisfaction levels of both the objectives [66]. The two conflicting
objectives are formulated below.

1. Minimize the deficit in hydroelectric power production (MW) from
the maximum generation capacity of the powerplant (HPmax),

2. Minimize the absolute value of deviations of reservoir elevation
(H) from the target rule curve level (T) over the optimization hori-
zon. It is represented as,

1–16 days (optimization horizon)
HF – Reservoir forebay water level (ft)
HT – Reservoir tailrace water level (ft)
ε – Turbine efficiency
Δtturb – Turbine operating hours

Power release from turbines (cfs)
Several constraints were imposed on the optimization problem in

the interest of downstream stakeholders, dam safety and environmen-
tal concerns. The power and spillway release from the reservoir were
limited by the turbine and spillway capacity. The minimum for reser-
voir storage was set to 95% of the historical minimum and the max-
imum to the flood control pool while following the storage-volume
continuity. The total release was bounded between the environmental
flow limit and a safe threshold to prevent flooding at a downstream
control station. The mathematical formulation of the constraints is
given in Appendix D.

3. Results

Three case studies are presented for forecast-based hydropower
maximization using optimized reservoir operations. Two of them were
performed over a single storm flow event each for Detroit and Pen-
sacola dams, while a third long-term assessment was performed over a
continuous period of ten months for Detroit dam with a long dry spell.

3.1. Detroit Dam – single event assessment

The various pools of the reservoir along with the constraints used
in setting up the optimization model are shown schematically in Fig. 6.
The maximum total release was set to control the downstream point of
Mehama to a threshold of 9000 cfs (255 m3/s) to prevent downstream
flooding.

(1)

(2)
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Fig. 6. Cross-section of Detroit dam (not to scale) showing relevant pool elevations
(from mean sea level, MSL) along with the optimization constraints obtained from US-
ACE. (1 ft = 0.305m, 1 cfs = 0.028m3/s, 1 ac-ft = 1233.48m3).

The flow event of 21 Dec 2014 with peak inflow of 24,170 cfs
(684 m3/s) (yearly-scale magnitude) was selected. As the turbine op-
erating characteristics vary over an event or a season, model for hy-
dropower estimation (MWh) based on available daily energy genera-
tion data (MW) was developed. Linear regression was performed be

tween the energy generation (in MWh) and the product of hydraulic
head ΔH and power release Rp (correlation coefficient, R2 = 0.93) to
obtain an average estimate of 19.72h for turbine's operating hours
coupled with its efficiency (the constant in Eq. (1)). Although
the linear model gives a reasonable approximation for hydropower
production function, detailed data on the turbines' characteristic curves
and their operating schedules will be sought from dam operating agen-
cies in a future work.

The 16-day forecast inflow obtained using the VIC model forced
with WRF-downscaled forecasts for lead times of 3, 5 and 9-days over
the selected event are shown in Fig. 7(a).

The optimized release policy was obtained with the optimization
starting on Dec 11. A set of 100 non-dominated points on the tradeoff
curve (Pareto front) obtained between the two competing objectives
are shown in Fig. 7(b) for the first day of optimization. A balanced op-
timum solution was chosen on the Pareto front giving equal priority
for hydropower deficit and flood risk (in terms of deviation from rule
curve) and aiming at concurrently minimizing both the objectives. The
conflicting nature of the two objectives can be clearly observed from
the shape of the Pareto curve.

The optimal release of the first two days were implemented while
the later ones were revised in the next model run on Dec 13 using up-
dated forecasts. The sequential updating of forecasts was continued
every alternate day until Dec 19. This resulted in the optimized re-
lease as shown in Fig. 8 (a). While the releases and elevations from
Dec 11–19 are obtained by sequentially updating the forecasts, the

Fig. 7. (a) VIC-modeled 16-day forecast flow forced with WRF-downscaled forecast fields, for lead times of 3, 5 and 9 days for Detroit dam, OR; (b) Non-dominated solutions on
the Pareto front and the selected balanced optimum obtained between the objectives of hydropower deficit and deviation from rule curve (to be minimized). (1 cfs = 0.028 m3/s).

Fig. 8. (a) Optimized releases and elevations from the sequentially updated forecasts from Dec 11–19, along with the respective observed values, (b) Daily comparison of hydropower
benefits (MWh) from optimized and observed operations (Detroit dam, OR). ‘HP’ stands for Hydropower; yellow bars and labels show the difference in benefits from the two set of
operations.
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values afterwards are obtained from the last optimization run of Dec
19.

As can be seen from Fig. 8(a), the optimized operations result in a
higher release as soon as the peak inflow is forecasted due to which the
reservoir levels (black dashed curve) drop down within dam's safety
limits, and then surges as the peak hits the reservoir. The elevation at
the end of the optimization period, however, has a slightly higher de-
viation from the rule curve (compared to the observed value) as the se-
quential updates to forecasts have only been made till Dec 19. An opti-
mized hydropower benefit of 20,720MWh was obtained in compari-
son to the observed production of 11,450MWh over Dec 11–23. Thus,
an additional benefit of 9,270MWh of hydropower could have been
generated before and during the peak inflow event based on weather
forecasts and optimization. The daily comparison of hydropower ben-
efits from the optimized and observed operations is shown in Fig. 8(b).

3.2. Pensacola Dam – single event assessment

Similar to Detroit dam, we identified the dam's relevant pools,
the operating constraints and turbine features, as depicted in Fig. 9.
The optimization constraints for Pensacola dam were obtained from
USACE. For the maximum total release, the threshold of 30,000 cfs

Fig. 9. Cross-section of Pensacola dam (not to scale) showing relevant elevations
(from mean sea level, MSL) and the selected constraint values obtained from USACE.
(1 ft = 0.305m, 1 cfs = 0.028 m3/s, 1 ac-ft = 1233.48m3).

(849 m3/s) was selected as a flood-safe value of streamflow at the
downstream USGS gage of Neosho River (site ID - 07190500). Other
constraints are summarized in Appendix D.

The inflow event of 22 Mar 2012 with a peak flow of 82,350 cfs
(2332 m3/s) was chosen for Pensacola dam. As the actual hydropower
data (MWh) is not provided on USACE data portal, an estimate of tur-
bine's operating hours and efficiency could not be obtained. Hence, a
value, close to that for Detroit, of 20h was chosen for the constant in
hydropower equation (Eq. (1)), as both the dams have sim-
ilar installed hydropower capacities. The 16-day forecast inflow mod-
eled for lead times of 3, 5 and 9-days is shown in Fig. 10(a).

The Pareto front with the non-dominated solutions and the chosen
balanced optimum is shown in Fig. 10(b). The optimization based on
sequential updates to WRF forecasts for this dam revealed optimized
hydropower benefit of 31,650MWh from Mar 11–24, as compared to
the observed benefit of 18,825MWh. Again, an additional production
of 12,825MWh pre- and over the peak flow event was realized. The
optimized releases and reservoir elevations are compared with the re-
spective observed values in Fig. 11(a) and the daily hydropower ben-
efits plotted in Fig. 11(b).

3.3. Long-term assessment of hydropower benefit

To put our concept to test in the practical world, the reservoir op-
erations model for hydropower maximization using WRF-downscaled
forecasts was automated through an online decision support system
(see http://depts.washington.edu/saswe/damdss) for Detroit dam. The
long-term results obtained from Dec 2017 to Sep 2018 (10 months),
consist of both wet and dry seasons. A 16-day optimized operation
schedule was derived using the WRF model's downscaled GFS fore-
casts. Using the actual inflow that occurred during the day and the
respective optimized releases, final reservoir storage was computed
by satisfying the storage-volume continuity (see Appendix D). The fi-
nal storage of the first day served as the next day's beginning storage
to obtain the next set of optimized releases using the updated fore-
casts. The model was run for all the ten months using such daily se-
quential updates. A similar update process was followed by Ref. [75]
at a weekly scale. The inflow forecasts generated over the selected
10-month period are compared with the observed values in Appendix
B.

The hydropower benefits from the optimized operations were com-
pared with the observed power generation data from USACE in Fig.
12, plotted together with the respective inflow and release. The plots
suggest that during the peak flow seasons, optimized policy re

Fig. 10. (a) VIC-modeled 16-day forecast flow, forced with WRF-downscaled forecast fields, for lead times of 3, 5 and 9 days; (b) Pareto front and the selected balanced optimum
obtained between the two objectives, Pensacola dam, OK.
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Fig. 11. (a) Optimized releases and elevations updating forecasts every alternate day from March 11–17, with the respective observed values; (b) Daily comparison of hydropower
benefits (MWh) obtained using observed and optimized operations (Pensacola dam, OK). ‘HP’ stands for Hydropower; yellow bars and labels show the difference in benefits from
the two set of operations.

Fig. 12. Optimized hydropower benefits obtained by sequentially updating forecasts every day for Detroit dam, compared with the observed benefits (top); optimized and observed
release policy compared along with the observed inflow (bottom). Red bands highlight the days when optimized power was exceeded by the observed power generation.

sults in higher release ahead of the event leading to higher energy
generation. For low flows, the optimized release is constrained by
the environmental flow limit of 1000 cfs, although the actual opera-
tions go below this limit on a few days. The total optimized hydro-
electric energy (optimized HP) of 258,120MWh was obtained over
the 10-month period in comparison to the observed benefit (observed
HP) of 244,490MWh. Thus, an additional hydropower benefit of
13,630MWh (optimized minus observed hydropower) was obtained
over the longer term that included both wet and dry seasons. The high-
est benefits in energy were obtained during peak inflow occurence,
as that is when the dam operator is most uncertain on the release
to be made often leading to ‘missed hydropower.’ There are also
episodes when the energy generation from observed operations ex-
ceeded the optimized ones (vertically highlighted bands in Fig. 12)
that occur during low flow periods, generally after a peak inflow
event. This is because, during peak inflow, dam operations hold the
water back for preventing the flood downstream due to high uncer-
tainty in future flows. Once the peak flow recedes, the dam opera-
tor is bound to release more water brought in by the peak flow event,
which increases hydropower production, but also causes high spill

way releases increasing downstream risk of flooding. The optimized
operations, on the other hand, use the forecasts to pre-release the water
already stored before the peak arrives at the reservoir in a controlled
manner without causing spill. This generates a consistent amount of
energy before and after the peak flood event. The other objectives (of
flood control and dam safety) were also not compromised by keeping
the reservoir below the safe release threshold of downstream flooding
and satisfying the environmental flow constraints. Thus, in a longer
period, the concept has potential in producing more energy benefits
with reduced flood risk, overcoming the concerns of false alarms and
false low flows, when operationalized in real-time operations over the
existing infrastructure.

4. Improvements in NWP-based reservoir inflow forecasting
technique

As the premise of this research is to elucidate the value of
short-term forecasts in hydropower maximization, rather than the
value of hydrologic modeling, our prescribed approach needs to be
model-agnostic. To demonstrate this, two additional reservoir fore-
cast model
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ing techniques are described next – one that uses ensemble of
NWP-based forcings to generate probabilistic flow forecasts and other
that uses a data-based approach to forecasting reservoir inflow.

4.1. NWP-based probabilistic inflow forecasts

To incorporate the uncertainty in forecasts, an ensemble of stream-
flow forecasts was obtained based on Global Ensemble Forecast Sys-
tem (GEFS) forcings. The 21-member ensemble forecast fields from
GEFS were used to force the VIC hydrological model and obtain
ensemble of inflow forecasts for 1–16 days. The peak flood event
of Mar 2012 over Pensacola dam was chosen for demonstrating the
value of available NWP ensemble fields in capturing the uncertainty
in flow forecasts. The mean, minimum and maximum forecast flow
from the 21-member GEFS ensembles for lead times of 3, 5, 7 and 9
days is shown in the Fig. 13 for the peak flow event. A comparison
of forecasting accuracy based on the average GEFS scenario against
WRF-downscaled GFS is shown in Table 2, which suggests clear ben-
efits of using probabilistic forecasts likes GEFS over the WRF simu-
lation.

4.2. Data-based approach for inflow forecasts

As the macroscale VIC model leaves room for improvement in
modeling accuracy, the data-based technique of Artificial Neural Net-
works (ANN) was employed for 1–7 days lead reservoir inflow fore-
casting. ANN, over the last two decades, has been established as an
efficient choice for modeling water resource variables while capturing
the nonlinearity in flow [83,84]. A three-layered ANN was designed
using NWP forecast fields, antecedent streamflow, baseflow and pre-
cipitation as the input predictors (refer to Ref. [85] for details). The use
of basin-averaged NWP fields alleviates the need of computationally
expensive dynamic downscaling using WRF. The ANN model and re-
sults of forecasting are briefly presented in Appendix C.

5. Discussion

5.1. Performance assessment - hydropower versus flood control
benefits

In order for the proposed optimization strategy to be effective, the
two competing objectives of hydropower and flood control need to be

Fig. 13. Ensemble forecast inflow corresponding to mean, minimum and maximum of the 21 ensemble members of GEFS forecast fields over Mar 2012 event for Pensacola dam.

Table 2
Comparison of the forecast flow performance from average GEFS scenario and WRF-downscaled GFS fields over Mar 2012 event for Pensacola dam.

Metric L3 L5 L9

WRF GEFS WRF GEFS WRF GEFS

Correlation 0.817 0.905 0.556 0.887 0.002 0.691
RMSE (cfs) 20827.0 14977.1 28407.2 15964.9 34934.1 28298.5
NRMSE 0.678 0.501 0.908 0.515 1.090 0.868
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satisfied simultaneously. For the Pensacola dam, during the Mar 2012
peak event, the proposed optimization strategy was able to generate
an additional 12,825MWh of energy on top of the production from
observed operations. This amounts to a revenue of $1,251,720 using
the average residential electricity rate of 9.76¢/kWh in Oklahoma City
[67]. At an average electricity consumption of 900kWh per month per
US household, this additional energy can fulfill the demands of around
11,545 more households for one month. For the competing flood con-
trol objective, the performance was assessed from the reduction in the
outflow peak over the event. For the selected event, a maximum ob-
served release of 57,211 cfs (1620 m3/s) was limited to just 30,000 cfs
(849 m3/s) (∼47.5% reduction) as a safe threshold to prevent flooding
downstream.

For Detroit dam's single event assessment, the proposed optimized
operations were able to generate an additional 9,270MWh of hy-
dropower (on top of the observed value). Again, this energy equivalent
to revenue of $908,460at a rate of 9.8¢/kWh in Oregon [68] that can
power up to 8,345 US households for a month. For the long-term as-
sessment over ten months (with inflows lower than the considered in-
dividual peak events), the additional energy amounted to 13,630MWh
(5.6% increase over the observed energy) and the optimization strat-
egy was most effective during the high inflow periods. The reservoir
release was kept under the flood-safe limit of 9000 cfs (255m3/s) for
the downstream control station. Thus, the proposed optimization strat-
egy not only generates more hydroelectric power but also addresses
the other key objective of reducing the flood risk.

The two dams for the case study assessments were chosen in differ-
ent hydrological regimes with varying characteristics. As the Detroit
dam lies in with steep terrain with small sized basin and fast hydro-
logical response, the rainfall quickly gets converted into runoff with
a lesser time of concentration. However, Pensacola dam possesses a
flatter terrain with longer rivers resulting in higher time of concentra-
tion. Thus, the successful assessment over both the dams, over indi-
vidual high inflow events as well as operationally over longer term,
illustrates the robustness of the concept.

5.2. Scalability of hydropower maximization

While the dams selected for study have different hydrologic
regimes, catchment characteristics and reservoir inflows, the variation
is certainly much higher across the dams over U.S. and the globe. This
variation cannot be captured by the analysis presented in this study.
Also, this study was limited in terms of the computational resources to
simulate WRF model (for downscaling GFS forcings and generating
inflow forecasts) for a year-long period over the Pensacola Dam. This
will be considered in a future study by using computationally efficient
ANN, as demonstrated here, to forecast inflows and optimize reservoir
operations. The practitioners are encouraged to study and extend the
framework of optimization to improve the hydropower generation sce-
nario using weather forecast information over other dams suitable for
such kind of exploration. These include the dams that are (a) powered,
(b) have small to medium reservoir storage capacity, and (c) upstream
in the dam network receiving unregulated flow. Our analysis over the
U.S. dams revealed 525dams satisfying these criteria, amounting to
23% of the 2248 powered dams [69]. These dams are shown in Fig.
14 and are the sites for further exploration of their suitability for the
concept. We believe that the concept, if extended to a good fraction
of such dams, has the potential to bring the nation closer to an energy
infrastructure independent of the fossil fuels and other non-renewable
sources.

Fig. 14. Locations of upstream dams receiving unregulated inflow to be explored of
their suitability for weather forecast use in optimizing reservoir operations.

6. Conclusions

The purpose of this study was to evaluate the potential of
short-term weather forecasts to extract more hydroelectric energy,
without compromising other competing objectives. The NWP
model-based weather forecasts, their dynamic downscaling, hydro-
logic modeling, and the optimization algorithm were coupled with
reservoir operations model to obtain the optimized release policy for
maximizing energy production. The concept was demonstrated over
Detroit and Pensacola dams with varying hydrological characteristics
receiving unregulated inflow. Performance assessment over two-year
return period storm events produced benefits of 12,825 and
9,270MWh for Pensacola and Detroit dams, respectively, while op-
timization over a longer ten-month period (of wet and dry seasons)
for Detroit dam raised the total energy production by 5.6% over the
observed scenario. The optimization not only improved hydropower
generation, but also helped satisfy the goals of flood control and dam
safety. The Pareto optimality allows the operator to choose an ap-
propriate optimal solution depending on the prevailing circumstances
in operating the reservoir. It should be noted that, at least for the
type of dams demonstrated here, the forecasts help the most dur-
ing the peak flow (wet) period when uncertainty in the reservoir in-
flow is high causing over-conservative operations. Nevertheless, the
long-term benefits of maximizing the hydropower every day, even in
small amounts, is a low-hanging fruit that should not be overlooked,
rather be explored to its depth to realize a more sustainable framework
for reducing the dependence on fossil-fuel based energy generation.
Future research needs to integrate the power demand forecasting with
the reservoir operations model so that the opportunity to generate ad-
ditional power is not missed during times of peak demand.

The value and robustness of NWP forecast fields in deriving the
inflow forecasts was further demonstrated using two additional tech-
niques. The 21-member ensemble GEFS forecast fields forced VIC
model to generate probabilistic reservoir inflow forecasts over a peak
inflow event for Pensacola dam. The average GEFS scenario per-
formed better than the WRF downscaled forecasts. The improved in-
flow forecasts with the uncertainty estimates (from probabilistic fore-
casts) can benefit the optimization model and arrive at optimal deci-
sions different confidence levels. Secondly, the data-based approach
of ANN was used to forecast short-term inflow over the two dams.
ANN improved the skill in inflow forecasting as well as proved to
be computationally efficient. Future work will integrate these two ap-
proaches with the reservoir operations optimization model.
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Combining optimization and simulation models for managing wa-
ter resources in a real-world setting has not been fully realized yet
[74]. By using real data on real dams with real-world constraints, we
have demonstrated very clearly that the currently available weather
forecasts from NWP models have a lot to offer to address energy se-
curity. Thanks to the advances in atmospheric science and modeling,
these weather forecasts are already available publicly. The challenge
now is to convert availability to accessibility so that dam operators can
operate based on an improved advisory that makes hydropower gener-
ation more efficient (more power with same or less impounded water)
and reduce our impact on the natural world.
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Appendix A. WRF performance evaluation

The evaluation of dynamically downscaled forcings of precipi-
tation, min/max temperature and wind speed from WRF was per-
formed using Livneh daily CONUS near-surface gridded meteorologi-
cal dataset [70]. For Detroit dam, due to the absence of Livneh dataset
after 2014, WRF model evaluation was performed for the peak flow
event of 16 January 2011. In the case of Pensacola dam, WRF model
was set up for the peak inflow event of 20 March 2012. The GFS fore-
cast fields corresponding to lead times of 1–16 days was processed for
downscaling using WRF simulation for both the dams. The metrics
of correlation, RMSE, Probability of detection (POD) and Frequency
Bias [55] were calculated to assess the performance of downscaled
variables at different lead times. POD is the measure of how well the
simulation can capture the true positives while frequency bias mea-
sures the extent to which the simulated results are biased towards false
positive/negative (both having best value of 1). For both dams, perfor-
mance of the forecast model deteriorates with lead time, with higher
number of misses (true negatives) and false positives. The comparison
maps of precipitation are shown in Fig. A1 for the selected peak flow
events and Table A1 summarizes metrics for both the dams. Results
for lead times of 3, 5 and 7 days for Detroit dam, and of 4, 6 and 8
days for Pensacola dam are shown here.

Table A1 Metrics for evaluation of WRF downscaled forcings for lead times of 3–8
days (L3-L8).

Variable Metric Detroit Dam Pensacola Dam

L3 L5 L7 L4 L6 L8

Precipita-
tion

Correla-
tion

0.85 0.84 0.19 0.61 0.31 −0.09

RMSE
(mm)

11.18 21.62 15.86 23.39 30.52 33.57

POD 0.93 0.96 0.04 0.72 0.66 0.57
Freq.
Bias

2.28 2.56 0.04 0.76 0.67 0.58

Max.
Tem-
perature

Correla-
tion

0.53 0.48 0.48 0.78 0.71 0.64

RMSE
(˚C)

4.88 4.65 6.05 3.73 4.82 5.19

Min. Tem-
perature

Correla-
tion

0.68 0.67 0.68 0.87 0.82 0.58

RMSE
(˚C)

5.45 5.34 3.46 2.07 2.26 3.23

Wind
Speed

Correla-
tion

0.16 0.36 0.01 0.61 0.45 −0.19

RMSE
(m/s)

2.26 2.03 2.56 1.70 1.88 2.76
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Appendix B. VIC Model Setup

Detroit Dam

Calibration was performed on the period from 2009 to 11, and the
validation over 2013–15. The first few months were ignored for cal-
culating metrics considering the model spin-up period. Normalized
RMSE is calculated as (where σobs is standard deviation of the

observed streamflow). The results for calibration and validation are
shown in Fig. B1. As the high flow events are of interest, normalized

mean absolute error spe-

cific to peaks (with flow exceeding turbine capacity of 9000 cfs) and
percentage of times peaks were under/overestimated are also shown in
Fig. B1.

Pensacola Dam

Daily inflow data from 2002 to 06 was used for calibration, while
validation was performed over 2011–15. The calibration and valida-
tion results are shown below in Fig. B2. The NMAE and percent times
peak is overestimated (false positive) or underestimated (missed bias)
over the considered period is obtained for events with flow exceeding
20,000 cfs (566m3/s).

The performance of VIC model for Pensacola dam was better com-
pared to that of Detroit dam. Running this macroscale model at 0.1°
resolution for smaller basin of Detroit dam results in very few grid
cells that cannot capture the sub-grid heterogeneity for modeling the
hydrologic variables.

Fig. A1. Assessment of WRF downscaled precipitation (0.1°) with reference Livneh
dataset over the events of 16 Jan 2011 and 20 Mar 2012 for (a) Detroit and (b) Pensacola
dam.

Fig. B1. (a) VIC calibrated and (b) validated streamflow, along with metrics for Detroit
Dam. NMAE is normalized mean absolute error, UE/OE is % times peak is under/over-
estimated. (1 cfs = 0.028 m3/s)

Fig. B2. (a) VIC calibrated and (b) validated streamflow, with metrics for Pensacola
Dam. NMAE is normalized mean absolute error, UE/OE is % times peak is under/over-
estimated. (1 cfs = 0.028m3/s).
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The modeled real-time reservoir inflow forecasts over the Detroit
dam generated by the operational system over Dec 2017 to Sep 2018,
forcing the VIC model with WRF downscaled forcings, is compared
with the observed inflow in Fig. B3. The hindcast flow from VIC
model is also plotted alongside for comparison. The metrics of com-
parison are summarized in Table B1.

Appendix C. Data-based Inflow Forecasting based on NWP
Forecasts

The selected ANN architecture consisted of antecedent precipita-
tion (2 days), antecedent baseflow (3 days), antecedent streamflow (3
days; for lead times of 4–7 days), antecedent moving average stream-
flow (3-, 5- and 8-day window based on lead time), forecast precipi-
tation (1 day) and forecast min/max temperature (1 day each). For de-
tails on the setup of ANN model, please refer to Ref. [85]. Fig. C1
plots the ANN forecasted flow against observed values over the val-
idation period (2016–17) for 1, 4, and 7-days lead time Detroit and
Pensacola dams. The metrics of NSE, Correlation and Normalized
RMSE are tabulated in Table C1.

Appendix D. Constraints for Optimization

1. Release from the turbines is constrained by the turbine capacity,
Pturb.

2. The system follows storage-volume continuity (water-balance
equation) which requires that in each period t,

However, as the optimization is performed at daily time steps
, the losses due to evaporation and seepage, Lt, were ignored.

3. Reservoir storage (S) was limited to ensure dam safety and avoid
infeasible scenarios such as the reservoir running empty,

4. Daily hydropower production (HP) was limited by the powerplant's
overload capacity (HPmax),

5. To prevent the downstream flooding hazards, the total release was
constrained to a maximum limit, Rmax,

Fig. B3. Comparison of the modeled daily forecast/hindcast flow for lead times of 1, 4
and 7 days over Jan–Sep 2018 against observed data for Detroit dam. (1 cfs = 0.028m3/s)

Table B1 Metrics for comparison of daily modeled forecast/hindcast flows against ob-
served data over Jan–Sep 2018 for Detroit dam.

Best
value Lead 1 Lead 4 Lead 7

Lead
10

Hind-
cast

RMSE
(cfs)

0.0 1486.1 1459.8 1944.7 1882.3 1504.0

NRMSE 0.0 1.03 1.01 1.35 1.31 1.04
Correlation 1.0 0.64 0.78 0.71 0.67 0.72
NSE 1.0 0.35 0.37 −0.11 −0.04 0.34

Fig. C1. ANN modeled flow plotted against observed values for 1, 4, and 7-days lead
time (L1, L4, and L7) for Detroit and Pensacola dams.

Table C1 Evaluation metrics for the ANN forecasted flow for three lead times

Dam
Name NSE Correlation NRMSE

L1 L4 L7 L1 L4 L7 L1 L4 L7

Detroit 0.843 0.720 0.606 0.920 0.849 0.780 0.264 0.352 0.418
Pen-

sacola
0.838 0.517 0.268 0.922 0.724 0.519 0.312 0.539 0.664

(D1)

(D2)

(D3)

(D4)
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6. To avoid excessive and infeasible rates of non-power release via
the spillway, the non-power release rate was limited to the spillway
capacity,

7. Lastly, the releases made from reservoir should comply with the
environmental flow limit, Qenv,
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