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ABSTRACT

The objective of this study was to investigate spatial downscaling of satellite rainfall data for streamflow

prediction in a medium-sized (970 km2) river basin prone to flooding. The spatial downscaling scheme used in

the study was based on the principle of scale invariance. It reproduced the rainfall variability at finer scales

while being conditioned on the large-scale rainfall. Two Tropical Rainfall Measuring Mission (TRMM)-

based real-time global satellite rainfall products were analyzed: 1) the infrared (IR)-based 3B41RT product

available at 1 hourly and 0.258 scales and 2) the combined passive microwave (PMW) and IR-based 3B42RT

product available at 3 hourly and 0.258 scales. The conceptual Hydrologic Engineering Center-Hydrologic

Modeling System (HEC-HMS) was used for the simulation of streamflow. It was found that propagation of

spatially downscaled satellite rainfall in the hydrologic model increased simulation uncertainty in streamflow

as rainfall grid scales became smaller than 0.258. The streamflow simulation uncertainty for satellite down-

scaling was found to be very similar to that for ground validation Next Generation Weather Radar (NEXRAD)

downscaling at any given scale, indicating that the effectiveness of the spatial downscaling scheme is not

influenced by rainfall data type. Closer inspection at the subbasin level revealed that the limitation of the

selected spatial downscaling scheme to preserve the mean rainfall intensity for irregularly sized drainage

units was responsible for the increase in simulation uncertainty as scales became smaller. Although the

findings should not be construed as a generalization for spatial downscaling schemes, there is a need for more

rigorous hydrometeorological assessment of downscaled satellite rainfall data prior to institutionalizing its

use for real-time streamflow simulation over ungauged basins.

1. Introduction

Spatial downscaling is a technique for disaggrega-

tion of coarse-resolution data for applications where

finer resolution input is required. Given the sparseness

of in situ networks for rainfall measurement and the

coarseness associated with the ‘‘effective’’ scale (spac-

ing) of point rainfall observations (;25–100 km), spatial

downscaling techniques have historically found wide-

spread use for rainfall disaggregation in hydrologic

modeling applications that require finer spatial resolu-

tions (;1–5 km). Satellite rainfall data in particular

have benefited from spatial downscaling techniques

(Hossain and Lettenmaier 2006), because most rain-

fall products from spaceborne platforms are typically

provided at large space–time scales suitable for coarse-

scale meteorological applications, such as climatologic

analysis, or water balance studies (Shepherd et al. 2002).
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As an example, the satellite rainfall algorithm called

Precipitation Estimation from Remotely Sensed Infor-

mation using Artificial Neural Networks (PERSIANN;

Sorooshian et al. 2000) estimates 0.048, half-hourly rainfall

by using the Climate Prediction Center merged infrared

(IR) dataset (Janowiak et al. 2001) at full resolution and

disaggregating the passive microwave (PMW) estimates

from 0.128 grids with guidance from the IR field (Hong

et al. 2005).

Although there are several approaches for downscal-

ing rainfall, one of the most common technique is based

on the concept of ‘‘scaling,’’ or relating the properties

associated with the rainfall process at one scale to those

at a finer scale (see, e.g., Perica and Foufoula-Georgiou

1996a; Venugopal et al. 1999; Bindlish and Barros 2000;

Ahrens 2003; Ferraris et al. 2003, among others). Most

spatial downscaling schemes honor certain characteris-

tics during the disaggregation process. These charac-

teristics include the (i) preservation of the rainfall in-

tensity at the starting (or another specified) spatial

scale; (ii) stochastic nature of yielding equiprobable

realizations; and (iii) simulation of the expected vari-

ance at downscaled resolution based on the scaling

property of rainfall. For a useful summary on the vari-

ous classifications of spatial downscaling techniques,

refer to Ferraris et al. (2003).

Our review of current literature indicates that most

spatial downscaling schemes, to the best of our knowl-

edge, may not have been assessed of their physical im-

plications on hydrologic modeling and, in particular, for

streamflow simulation based on satellite rainfall data

(Nykanen et al. 2001). One physical aspect that warrants

a closer inspection is the implication of ‘‘redistribution’’

(in space) of the rainfall because of spatial downscaling

on overland runoff simulation accuracy. Herein, redis-

tribution refers to the spatial ‘‘spread’’ of downscaled

rainfall data when compared to the ‘‘true’’ field (assum-

ing that the true rainfall field at the downscaled resolu-

tion is known a priori). For example, it is possible sta-

tistically for a downscaling technique to register rain in

some grid boxes (or pixels) that are supposed to be dry

(nonrainy) at the downscaled resolution. Vice versa, some

rainy grid boxes may be identified as zero rainfall grid

boxes by the technique at the downscaled resolution.

A question that therefore appears largely unexplored

is, although spatial downscaling schemes preserve the

mean and mimic the expected variance of the rainfall

intensity, is that generally acceptable for stream flow

simulation based on downscaled satellite rainfall data at

smaller scales? The effect of not adequately capturing

the small-scale rainfall variability (i.e., second- and

higher-order moments) and the propagation of this var-

iability via the nonlinear hydrologic equations may result

in significant biases of the predicted variables at scales

larger than the scale of the dominant rainfall variability

(Nykanen et al. 2001; Bindlish and Barros 2000).

In the long run, gaining insights on the above ques-

tion is particularly important because of the current

community-wide agenda on the Program to Evaluate

High Resolution Precipitation Products (PEHRPP) and

the Global Precipitation Measurement (GPM) mission.

PEHRPP is an effort led by the International Precipi-

tation Working Group (IPWG) to evaluate the quality

of currently available high-resolution satellite rainfall

products (Ebert et al. 2007). The GPM mission, in col-

laboration with major international space partners, will

represent a unique constellation of rain-measuring sat-

ellites comprising PMW sensors (Smith et al. 2007),

providing almost real-time rainfall information on a

global basis. GPM is currently scheduled for launch in

2013 (available online at http://gpm.gsfc.nasa.gov).

Naturally, satellite rainfall data will become more

widely available at smaller scales with a better under-

standing of the associated uncertainty in the future.

A logical progression to this anticipated scenario requires

us to take a closer look at spatial downscaling and iden-

tify the role downscaling techniques should play for

agendas like PEHRPP and GPM. There are no obvious

answers today to questions such as the following: will

there be as much a need for spatial downscaling as there

is today; or, if satellite rainfall data are characterized by

scale-dependent uncertainty, what role does downscaling

play in transforming this uncertainty at the disaggregated

resolution? Hence, it is important that we begin a de-

tailed investigation of downscaling technique and identify

the physical implications for streamflow prediction.

The objective of this study is, therefore, to investigate

spatial downscaling for satellite-based streamflow sim-

ulation in anticipation of the proposed GPM mission. A

secondary objective is to investigate the influence of

various rainfall types in downscaling. Because most

spatial downscaling schemes are different in algorithm

formulation (Ferraris et al. 2003), findings from this

study are limited to the specific scheme investigated

herein (described in section 2). Nevertheless, one of our

goals is to generalize our study toward recommenda-

tions on how spatial downscaling schemes should be

assessed for disaggregation of satellite rainfall data in

light of GPM and PEHRPP. Two TRMM-based real-

time global satellite rainfall products, considered as

forerunners to GPM products, are analyzed: 1) the

IR-based 3B41RT product, available at 1 hourly and

0.258 scales; and 2) the combined PMW- and IR-based

3B42RT product, available at 3 hourly and 0.258 scales.

The study is organized as follows: section 2, provides

a brief description of study region, data, hydrologic
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model, and the spatial downscaling technique. Section 3

describes the methodology used to gauge the effec-

tiveness of spatial downscaling for streamflow predic-

tion. Section 4 presents the results of the downscaling

effectiveness, followed by a closer inspection for elicit-

ing physical insights. Finally, section 5 provides the

conclusions and future extensions of this study.

2. Study area, data, and models

a. Study area

The region of interest for this work is the upper

970 km2 of the Upper Cumberland (UC) River basin in

southeastern Kentucky (Fig. 1). The UC basin is mainly

a mountainous area (i.e., elevation ranges from 150 to

1200 m MSL) that lies in the Eastern Mountain Coal

Fields region. The underlying rock formations are pri-

marily sandstone, shale, and siltstone. A major part of it

(80.13%) is forest land, whereas only 8.20% is urban

area. Cropland and pasture makeup 11.15%, and the

combined lakes and reservoirs occupy 0.52%. The UC

River basin has been subject to frequent flooding. In

April 1977, for example, record rainfall caused severe

flooding and damages, which then led to the declaration

of federal disaster areas by President Jimmy Carter.

More recently, major flooding took place in 2002

(Harris et al. 2007).

b. Data

Three rainfall events of varying characteristics (in

terms of duration, pattern of intensity, season, and

streamflow dynamics) are selected for investigation of

spatial downscaling. All three events generated peak

flows ranging between 10 000 and 50 000 cubic feet per

second (cfs). Table 1 summarizes the statistical charac-

teristics of the rainfall and the ensuing streamflow hy-

drograph for these three rain events. The reference

rainfall data considered as ground validation (GV) data

are Next Generation Weather Radar (NEXRAD) radar

rainfall data (Fulton et al. 1998) cropped over the basin

area. To minimize the uncertainty of the GV data in our

investigation, we used the National Centers for Envi-

ronmental Prediction’s (NCEP) 4-km stage IV NEXRAD

rainfall data that is adjusted to gauges and conveniently

available as a quality-controlled data mosaic over the

United States (Lin and Mitchell 2005).

Typically, the period from February to March is the

wettest in the Cumberland region of eastern Kentucky

(Gaffin and Lowery 2008). Hence, the first two events

(events 1 and 2) that took place on 10–25 March 2002 and

13–23 February 2003, respectively, resulted in high

floodlike peaks. Event 3, on the other hand, took place

during the considerably drier month of July of 2002, with

a higher frequency of low rain rates. A month-long pe-

riod is considered for event 3 to assess the performance

FIG. 1. The UC River basin and the river network. Circles and arrows indicate the three river

reaches and the location of selected subbasins for closer inspection of the rainfall-runoff re-

lationship as a function of disaggregated scale. Star denotes the stream gauge located close to

the basin outlet in Loyall. The inset shows the six satellite rainfall grid boxes at 0.258 scale.
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of spatial downscaling during longer periods of rainfall

hiatus (or low rain) when efficient water management is

critical in the southeastern United States.

In terms of storm characteristics and heavy precipita-

tion climatology, the study region is frequently subject to

orographic effects throughout the year. In general, most

synoptic weather systems in this region generally move

from west to east, with cold fronts aligned southwest to

northeast. The Gulf of Mexico also contributes to high

moisture content, particularly across southern regions of

the study area during early spring (Troutman et al. 2008).

Figure 2 shows the rainfall hyetographs, while the en-

suing streamflow hydrographs are shown in Fig. 3.

The observed streamflow was measured at the outlet

of the basin in Loyall, Kentucky, at the U.S. Geological

Survey streamflow gauge 03401000 (Fig. 1). This gauge

was operated in cooperation with the U.S. Army Corps

of Engineers (USACE; Harris et al. 2007).

The National Aeronautics and Space Administra-

tion’s (NASA) real-time satellite rainfall data products

from PMW-calibrated IR and merged PMW–IR esti-

mates and labeled as 3B41RT and 3B42RT, respec-

tively, are used as satellite rainfall input for spatial

downscaling. The products 3B41RT and 3B42RT are

produced at 0.258 with hourly and 3-hourly temporal

resolution, respectively (Huffman et al. 2007). These are

globally available on a near-real-time basis (available

online at ftp://trmmopen.gsfc.nasa.gov, or at http://precip.

gsfc.nasa.gov). These products are expected to act as

pathfinders to a hydrologically more optimal rainfall

product in the GPM era of post-2013. Currently, NASA

employs these products for the development of a real-

time and global flood and landslide detection system

(Hong et al. 2007). Hence, it is likely that future satellite

rainfall products from the GPM era will evolve from

these products.

c. Hydrologic model

The hydrologic model used for streamflow simulation

was the Hydrologic Engineering Center’s (HEC) Hy-

drologic Modeling System (HMS), version 3.0. HEC-

HMS is a conceptual hydrologic model system that sim-

ulates the rainfall-runoff processes of dendritic watershed

systems. Each modeling run comprises three compo-

nents: the basin model, the meteorological model, and the

control specifications. In the basin model, the size, infil-

tration method, rainfall-runoff routing method, base flow,

and other physical parameters are specified. The precip-

itation and evapotranspiration parameters are specified

in the meteorological model, and the dates and time step

of the model are selected in the control specifications.

Because of frequent disastrous flooding in the region,

the USACE Nashville District (available online at http://

www.lrn.usace.army.mil) had recently undertaken a Sec-

tion 202 Flood Reduction project on the UC River

TABLE 1. Summary of rainfall events studied.

Event 1 Event 2 Event 3

Date 10–25 Mar 2002 13–22 Feb 2003 1–31 Jul 2002

Total rainfall accumulation (mm) 137.6 172.85 89.59

Duration (days) 16 10 31

Mean rainfall rate (mm h21)* 0.36 0.725 0.124

Standard deviation of rainfall rate (mm h21)* 1.34 1.53 0.327

Percentage of 1-h periods with rain 29.68 60.41 38.57

Maximum streamflow (cfs) 29 600 29 208 7190.0

Runoff volume (cfs day21) 41 879 44 094 36 324

* Computed over the whole duration of the event.

FIG. 2. Rainfall hyetographs for (top to bottom) events 1, 2, and 3.
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basin. The model, with the outlet at Loyall, Kentucky, is

calibrated using the Soil Conservation Service (SCS)

Curve Number method for calculating surface runoff.

For modeling of runoff, the watershed is subdivided

into 31 subbasins, each connected by one of the three

major river reaches and junctions and having an area

in the ranges of 15–50 km2 (Fig. 1). The other com-

ponents selected for use in the HEC-HMS model are

the Modified Clark (ModClark) overland flow trans-

formation (Kull and Feldman 1998) and Muskingum–

Cunge river routing (Barry and Bajracharya 1995).

NEXRAD rainfall is used as input for calibrating model

parameters [refer to HEC (2000) for further details on

HEC-HMS usage]. Details of the hydrologic model

setup and calibration for the UC basin are described in

Harris et al. (2007) and Harris and Hossain (2008).

d. Spatial downscaling scheme

This study used the wavelet-based spatial downscaling

scheme developed by Perica and Foufoula-Georgiou

(1996b). This scheme has the ability to reproduce the

rainfall variability at finer scales while being condi-

tioned on the large-scale rainfall average and physi-

cal properties of prestorm conditions. The scheme is

developed on the basis of two hypotheses for midlati-

tude mesoscale convective systems (MCS) as follows:

1) standardized rainfall fluctuations (defined via a Haar

wavelet transform) exhibit simple scale over the meso-

scale and 2) statistical scaling parameters of rainfall

fluctuation are related to convective available poten-

tial energy (CAPE), which measures convective insta-

bility of prestorm environment (Perica and Foufoula-

Georgiou 1996a). Herein, rain fluctuation refers to the

variation in space.

Whereas most rainfall downscaling schemes have the

ability to predict the small-scale rainfall variability, the

chosentechniqueofPerica and Foufoula-Georgiou (1996b)

has two particular advantages: 1) the statistical charac-

terization of downscaling applies over a range of scales

with a single parameter H that defines scale invariance

and 2) the value of H is linked to the CAPE of the

prestorm environment. Unlike many downscaling tech-

niques, therefore, this scale invariance parameter allows

parsimony in the downscaling model and a convenient

pathway to leverage information on a physical variable

(CAPE) that is computed in most mesoscale models.

The CAPE–H relationship as reported in Perica and

Foufoula-Georgiou (1996b) is not used for the deriva-

tion of the scaling parameter H, because the use of a

mesoscale model to estimate a representative CAPE is

beyond the scope of this study. Rather, the scaling pa-

rameter H is estimated from the available rainfall data.

A statistical scaling analysis is performed wherein the

slope of the line for standard deviation versus scale

(on a log-log scale) yielded an estimate for H. Spatial

downscaling is then performed using the inverse Haar

wavelet transform in the manner outlined in Perica and

Foufoula-Georgiou (1996b). The derivation of H from

data is described as follows.

In this study, the downscaling code first computed the

standard deviation of rainfall in each of the three direc-

tions (x, y, and diagonal) at three scales—0.258, 0.508, and

1.08—using satellite rainfall data provided to the scheme

over a larger 64 3 64 gridded domain around the study

region. For example, actual 3B42RT or 3B41RT data

pertaining to the storm periods is used for computation of

the scaling parameters representative of the specific sat-

ellite rainfall product being investigated. For the latter two

scales, data are aggregated (upscaled) from the native

scale of 0.258. Next, the standard deviation for each di-

rection is plotted on a log-log scale against the spatial scale

to fit a straight line. The slope of the line then yielded the

H for the direction concerned, which is then used for

representing variability in downscaled data.

For this study, the downscaling scheme is used to

generate finer-scale data at three ‘‘down scales’’ (0.1258,

0.06258, and 0.031258) from the native scale (0.258). The

scales are equivalent to 12.5, 6.25, 3.125, and 25.0 km,

FIG. 3. Observed streamflow hydrographs and date range for the

three events [(top) 1: 10–25 Mar 2002; (middle) 2: 13–22 Feb 2003;

and (bottom) 3: 1–31 Jul 2002].
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respectively. A threshold value of 0.1 mm h21 is used in

the downscaling scheme for distinguishing rainy from

nonrainy areas. According to Perica and Foufoula-

Georgiou (1996b), threshold values ranging from 0.1 to

0.25 mm h21 are recommended. The scaling parameter

H is calculated for each satellite product using as input

rainfall data from a much larger (64 3 64 grid domain)

field at the native scale of 0.258 from the midlatitude

regions of the United States. The data at 0.258 scale is

first upscaled to 0.508, 1.08, and 2.08 and then the best-fit

slope value is derived. The downscaled data are then

propagated through the streamflow model (discussed in

section 3). Prior to this study, the downscaling scheme

was thoroughly verified to ensure that the mean rainfall

intensity at disaggregated scales was preserved consis-

tently. Although details on the verification of the

downscaling scheme for the UC River basin may be

found in Rahman (2008), we provide a summary of es-

sential features of quality assurance and quality control

(QA/QC) of the downscaling scheme in the appendix.

3. Methodology

a. Specific approach

The specific approach of the study is first summarized

in Fig. 4. Satellite rainfall data at 0.258 is downscaled to

three smaller scales (0.1258, 0.06258, and 0.031258).

Then, 200 Monte Carlo (MC) realizations of dis-

aggregated rainfall data are created. The mean and 6s

(standard deviation) of the MC realizations are then

propagated through HEC-HMS for the derivation of

streamflow simulation uncertainty. This had two advan-

tages. First, the Perica and Foufoula-Georgiou (1996b)

scheme is a purely ‘‘spatial’’ downscaling scheme with no

explicit accommodation of the autocorrelation of the

rainfall system. Thus, the mean and standard deviation of

200 MC realizations yielded downscaled rainfall fields at

each time step that do not undermine the inherent per-

sistence of rainfall within the event as a result of the

random nature of the stochastic downscaling. Second, in

the current scheme of operations, HEC-HMS has no

provision for executing automatic Monte Carlo simula-

tion. Each realization needs to be propagated manually.

The propagation of only three streaks (mean and 6s),

therefore, made our investigation manageable in terms

of time and effort. We have also verified that the prop-

agation of the three streaks of disaggregated rainfall

are, indeed, equivalent to propagating each realization

and deriving the mean and 6s in streamflow. Evidence

of this equivalency is shown in the appendix. Finally, the

NEXRAD GV data, available at the native scale of

0.048 (remapped from NCEP 4-km earth parallel grids),

is aggregated to 0.258 and then downscaled to the three

smaller scales as well. The objective of applying up-

scaled NEXRAD data to spatial downscaling is to dis-

tinguish the response on streamflow prediction as a

function of data type (satellite versus ground validation

data) and to minimize model calibration issues (since

HEC-HMS model parameters were calibrated using

NEXRAD data).

In the current HEC-HMS setup, there are 31 subba-

sins for the UC River basin (Fig. 1). Each subbasin re-

quires areal-averaged rainfall as a time series for sim-

ulation of flow at the subbasin outlet. To calculate the

subbasin-averaged rainfall, the percentage area of each

subbasin that lies in a grid box is identified for each scale

(0.258, 0.1258, 0.06258, and 0.031258). Figure 5 illustrates

the concept for the four spatial scales. At 0.258 resolu-

tion, the subbasin area falls under two satellite grid

boxes (see upper-left corner of Fig. 5). By calculating

the relative percentage of area for each color, the

weight that needs to be assigned to the rainfall value of

each satellite grid box to compute the areal average of

rainfall for the subbasin is determined. As the scale gets

smaller, more downscaled satellite grid boxes overlay

a given subbasin and relative weights need to be iden-

tified for each one of them accordingly. If there are

n grid boxes overlaying a given subbasin, then the areal-

average rainfall for that subbasin is calculated as

Average rainfall at a time step 5 �
n

i51
w

i
Ri, (1)

where wi is the relative weight for grid box i, and Ri is

the satellite rainfall for grid box i.

b. Metrics for investigating downscaling

The three MC rainfall scenarios—mean, mean 2 s,

and mean 1 s—derived from 200 downscaled realiza-

tions that are propagated through HEC-HMS yields

corresponding uncertainty limits in streamflow simula-

tion (for each event). The metrics exceedance probability

(EP) and uncertainty ratio (UR) are used to assess the

implication of downscaling on flood prediction. These

metrics are defined as follows:

FIG. 4. General approach used in the study for investigating the

effectiveness of spatial downscaling of satellite rainfall for stream-

flow prediction.
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To normalize the EP and UR value at a given scale

of satellite data to that obtained using NEXRAD GV

data, two more metrics are defined. These are expressed

as follows:

EP ratio 5
EP

SATELLITE

EP
NEXRAD

and (4)

UR ratio 5
UR

SATELLITE

UR
NEXRAD

. (5)

In the above equations (4 and 5), the denominator

represents the EP and UR values that are obtained by

applying downscaled NEXRAD data derived from

aggregated NEXRAD data (at 0.258). The advantage

of using these two ratio metrics is that they provide

performance evaluation of satellite rainfall data rel-

ative to the more conventional scenario of using GV

rainfall data for gauged river basins. Hence, an EP

ratio of 0 would mean that the entire observed hy-

drograph is enveloped by the simulated error bounds.

A value of 1 would signify that the probability of the

observed flow exceeding the simulated error bound for

satellite data is the same as that for NEXRAD data.

The Nash–Sutcliffe efficiency performance measure

(Nash and Sutcliff 1970) is also computed for this study:

E
NS

5 1� s2
e

s2
obs

 !
. (6)

FIG. 5. GIS map (shape files) of satellite grid boxes (at four scales) overlaid on subbasin maps. For each satellite

scale, the percentage area of a given subbasin in a satellite grid box is identified (refer to the gray-shaded areas for

each grid box). These percentages act as weights to calculate the areal-average rainfall for the subbasin from satellite

rainfall downscaled data.

EP 5
Number of times observed streamflow exceeds the uncertainty limits

Total number of timesteps
and (2)

UR 5
Uncertainty in runoff volume simulation (beween uncertainty limits)

Observed runoff volume
. (3)
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In Eq. (6), subscripts e and obs refer to errors and ob-

servations, respectively. Absolute values of relative er-

rors (%) in time to peak, peak runoff, and runoff volume

are also computed. Herein, efficiency and the relative

errors are calculated with respect to the satellite-derived

hydrograph obtained by propagating the mean of the

200 MC realizations.

4. Results and discussion

a. Satellite data adjustment

Because the focus of the study is solely on investi-

gating the spatial downscaling, an effort is made to

remove as much bias as possible from actual satellite

data prior to downscaling. As an example, Fig. 6 shows

the cumulative hyetographs of event 1 for NEXRAD,

3B41RT, and 3B42RT rainfall over the UC basin. The

satellite rainfall products are found to underestimate

rainfall by considerable margins when compared to

NEXRAD for event 1. Typically, it is observed that both

satellite products estimate rainfall for a given event by

a factor ranging from 0.5 (underestimation) to 2.5 (over-

estimation). All satellite rainfall data is, therefore, bias-

adjusted (using NEXRAD as reference) accordingly to

make satellite-derived hydrograph mimic as closely as

possible the observed streamflow. In the post-GPM era,

this bias adjustment may be considered equivalent to

the research-level 3B42 V6 product that is planned for

real-time generation based on dynamic bias adjustment

(Huffman et al. 2007). The Figs. 7a,b demonstrate the

effectiveness of this bias adjustment for event 1 and

event 2, respectively, where reasonably accurate stream-

flow simulation is obtained using the bias-adjusted sat-

ellite data. Further details of bias adjustment can be

found in Rahman (2008).

b. Propagation of downscaled rainfall data
in HEC-HMS

Figures 8a,b show the streamflow simulation un-

certainty for event 1 using downscaled 3B42RT and

NEXRAD data, respectively. Figure 9 demonstrates

the streamflow simulation uncertainty for event 2 (top)

FIG. 6. Basin-averaged rainfall hyetographs for event 1 for (top to bottom) 3B41RT, 3B42RT,

and NEXRAD.
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and event 3 (bottom) using downscaled 3B42RT data at

the 0.06258 resolution. (For performance metrics at

other resolutions and products, refer to Tables 3 and 4.)

The most common trend seen for all events (Figs. 8

and 9) is that streamflow simulation uncertainty sys-

tematically increases with each successive level of

downscaling. This effect is also found to be independent

of the data type, because a similar pattern is also ob-

served for NEXRAD for event 1 (see Fig. 8b). For all

three events, it appears that spatial downscaling of satellite

FIG. 7. (a) Stream flow simulation for event 1 using bias-adjusted satellite rainfall data (top) 3B41RT and (bottom) 3B42RT at native

scale of 0.258 (no downscaling). (b) Same as (a) but for event 2.

FIG. 8. (a) Stream flow simulation uncertainty for event 1 using downscaled 3B42RT data at (top to bottom) 0.1258, 0.06258, and 0.031258.

(b) Same as (a) but for downscaled NEXRAD.
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rainfall data does not categorically yield an improve-

ment (in terms of reduced uncertainty or more accurate

simulation) at the next smaller downscaled resolution

(when compared to the simulation obtained with native

scale data). Simulation uncertainty appears to increase

consistently (in terms of width of error bars) as scales

become smaller for HEC-HMS.

Tables 2 and 3 summarize quantitatively the perfor-

mance metrics using NEXRAD and satellite data, re-

spectively, for event 1. Product wise, more accurate

performance is generally obtained with downscaled

PMW-IR 3B42RT than with IR 3B41RT data for the

temporal aspects of hydrograph simulation (such as

lower EP and EP ratios in Table 3). The relative error in

time to peak is considerably lower for 3B42RT (for

events 1 and 3). For other features (such as error in

runoff volume or peak runoff), simulation uncertainty

of 3B42RT and 3B41RT seem statistically quite similar.

For both products, a considerable worsening of effi-

ciency of simulation is observed at scales smaller than

0.1258. The uncertainty width (UR) appears to almost

double at each successively smaller scale. In terms

of UR, the simulation uncertainty using downscaled

3B41RT or 3B42RT is found to be very similar to that

obtained from NEXRAD (UR ; 1.00–1.10). The EP

ratio is, however, considerably higher. This indicates

that a probabilistic flood warning derived from down-

scaled satellite rainfall data at any given time step is likely

to be considerably less certain compared to that derived

from NEXRAD data. Finally, in Table 4, the quanti-

tative measures of performance metrics for events 2

and 3 further confirm the observation for event 1 that

satellite downscaling increases streamflow prediction

uncertainty.

c. How accurate is the preservation of rainfall’s
spatial structure during spatial downscaling?

Generally speaking, the assumption, that as the scale

(grid size) is reduced, the uncertainty of streamflow

prediction would decrease, should be considered a valid

one. In an earlier study, Ahrens (2003) reports that

downscaling of rainfall fields with 16-km grid spacing

to fields with 1-km grid spacing can result in about a

5%–10% improvement in the simulation accuracy of

runoff for an alpine watershed of comparable size as the

UC basin. Other studies, such as the Bindlish and Barros

(2000) study, also reported similar findings using down-

scaled model rainfall data for studying the hydrologic

response at the subgrid scale. So, the observations re-

ported in this study on spatial downscaling systematically

increasing simulation uncertainty are counterintuitive at

first. To achieve a more physical understanding of the

observations from a hydrologic standpoint, a closer in-

spection of the rainfall-runoff process is undertaken. This

is described next.

One physical aspect that needs to be studied is the

nature of variability (in space) of the rainfall due to

spatial downscaling and its consequent implications on

overland runoff simulation uncertainty. Herein, vari-

ability may refer to the spatial ‘‘offset’’ of downscaled

rainfall data from the true field (assuming that the true

field is known a priori). For example, some areas may

register rain as having spread out on actually dry re-

gions, whereas other actually rainy areas may exhibit

zero rainfall at the downscaled resolution. Overall, this

FIG. 9. Stream flow simulation uncertainty for (top) event 2

and (bottom) event 3 using downscaled 3B42RT data at 20.06258

resolution.

TABLE 2. Summary of performance metrics for NEXRAD for all error propagation scenarios for event 1.

0.258 (actual data) 0.1258 (downscaled) 0.06258 (downscaled) 0.031258 (downscaled)

Efficiency 0.832 0.318 20.0656 0.236

EP N/A 0.262 0.0417 0.0167

UR N/A 0.724 1.446 2.163

Error in peak runoff (%) 0.20 49.774 82.973 100.346

Error in peak runoff time (hr) 0 0 0 0

Error in runoff volume (%) 1.4 36.536 53.547 63.208
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offset may be called a redistribution phenomenon (as

already discussed in section 1) and is shown in Figure 10.

A 32 3 32 rainfall field is upscaled to a 16 3 16 field and

then subsequently downscaled back to the 32 3 32 field

using the Perica and Foufoula-Georgiou (1996b) model.

The scaling coefficients are computed from the original

and upscaled fields. For one random realization, the

following features of downscaling are clearly apparent

from Fig. 10: 1) rainy grid boxes can sometimes be

predicted as nonrainy; 2) nonrainy grid boxes can

sometimes be predicted as rainy; and 3) there can be

significant bias in the rainfall estimation over many

rainy areas, even when the mean rainfall intensity re-

mains constant over the entire domain. Rahman (2008)

reported that the downscaling scheme of Perica and

Foufoula-Georgiou (1996b) can wrongly classify a rainy

(nonrainy) grid box as nonrainy (rainy) about 5%–10%

of the time.

Some of the features reported above are not un-

common for downscaling schemes. Most spatial

downscaling schemes were developed in response to

disaggregating the coarse-resolution rainfall output

from the numerical weather prediction (NWP) or

global circulation models (GCMs) for use in macro-

scale hydrologic models (Nijssen et al. 2001). Therein,

the typical performance methods used for assessing the

accuracy of disaggregation schemes pertained mostly

to fractional coverage of rain, conditional rain-rate

distribution, or empirical semivariograms (Perica and

Foufoula-Georgiou 1996b). These methods, although

being useful, are not hydrologically sufficient to con-

strain the generation of overland runoff at smaller

scales. Multiple spatial structures of rainfall over

land (and hence multiple overland runoff responses)

are possible for a single fractional coverage numeric

value, empirical semivariogram, or conditional rain rate

TABLE 3. Summary of performance metrics for all error propagation scenarios using 3B41RT and 3B42RT for event 1.

Scale product 0.258 actual 0.1258 0.06258 0.031258

Efficiency 3B41RT 0.60 0.539* 0.303* 0.132*

3B42RT 0.64 0.232* 0.040* 0.245*

EP 3B41RT N/A 0.933 0.817 0.40

3B42RT N/A 0.921 0.767 0.292

UR 3B41RT N/A 0.793 1.603 2.352

3B42RT N/A 0.749 1.493 2.175

EP 3B41RT N/A 3.561 19.592 23.952

3B42RT N/A 3.515 18.393 17.485

UR 3B41RT N/A 1.095 1.109 1.087

3B42RT N/A 1.034 1.032 1.006

Error in peak runoff (%) 3B41RT 22.71 5.64* 27.74* 38.87*

3B42RT 8.84 63.68* 97.70* 115.69*

Error in peak runoff time (hr) 3B41RT 12.0 11.0* 11.0* 11.0*

3B42RT 3.0 4.0* 4.0* 4.0*

Error in runoff volume (%) 3B41RT 11.03 50.45* 69.10* 76.99*

3B42RT 12.21 47.55* 62.48* 70.09*

* Computed from the simulation obtained from the mean of 200 realizations.

TABLE 4. Same as Table 3 but for events 2 and 3.

Scale product 0.258 actual events 0.1258 0.06258 0.031258

Efficiency 3B41RT 0.78 20.03 0.37* 21.00* 20.47* 21.80* 21.00* 22.10*

3B42RT 0.68 20.19 0.37* 21.20* 20.25* 20.16* 20.40* 21.06*

EP 3B41RT N/A N/A 0.59 0.46 0.53 0.25 0.43 0.15

3B42RT N/A N/A 0.82 0.83 0.67 0.69 0.47 0.26

UR 3B41RT N/A N/A 0.74 0.41 1.60 0.80 2.49 1.14

3B42RT N/A N/A 0.57 0.52 1.17 0.89 1.82 1.10

Error in peak runoff (%) 3B41RT 0.38 25.00 4.72* 71.80* 91.50* 70.80* 110.5* 71.30*

3B42RT 14.15 4.00 51.90* 70.40* 84.90* 71.90* 109.4* 27.20*

Error in peak runoff time (h) 3B41RT 0.0 0.0 0.0* 1.0* 0.0* 1.0* 0.0* 1.0*

3B42RT 0.0 0.0 0.0* 0.0* 0.0* 0.0* 0.0* 0.0*

Error in runoff volume (%) 3B41RT 7.26 78.90 33.60* 7.80* 67.30* 0.42* 82.10* 2.80*

3B42RT 28.30 67.00 1.60* 16.60* 18.50* 16.60* 31.70* 9.50*

* Computed from the simulation obtained from the mean of 200 realizations.
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distribution. Therefore, a more timely question is, how

accurate is the spatial structure preservation of rainfall

during downscaling and what does it mean for the

simulation of overland runoff?

Hence, to gain further understanding of the implica-

tions of the uncertainty of satellite rainfall downscaling,

a few subbasins are examined. These subbasins are lo-

cated along the three main river reaches of the UC

River basin (Fig. 1). Using the satellite product 3B42RT

and the event 1, the purpose here is to relate the cu-

mulative (in time) rainfall estimated by satellite at each

disaggregated scale to the simulated cumulative runoff

for the selected subbasins. In principle, this exercise

allowed a closer look at the rainfall-runoff process using

downscaled data at the subbasin level.

Figure 11 shows the cumulative rainfall for the se-

lected subbasins as a function of disaggregated scale and

location (upstream, midstream, and downstream) for

one of the three river reaches (reach 2, see Fig. 1). The

cumulative rainfall is calculated from the mean of the

200 MC downscaled realizations. Rather than achieving

a strict conservation of rainfall volume at each scale, a

considerable increase or decrease of cumulative rainfall

volume is observed as the disaggregated scale decreases

for a given subbasin (Fig. 11, top). Some subbasins ex-

perience an increase in rainfall volume, whereas others

experience a decrease with downscaling. The offset in

capturing the true rainfall volume widens consistently

as scales become smaller. This clearly indicates that

although a downscaling scheme may be constrained

to preserve the rainfall intensity within a square domain

of rainfall field, it can fail to do likewise for irregularly

sized subbasins. (Refer back to Fig. 5 to gain a better

grasp of each subbasin and the number of disaggregated

satellite grid boxes that become available for estimation

of areal averaged rainfall at each scale.) Figure 11

(bottom) shows the corresponding effect of downscaled

satellite rainfall on runoff generation for the same set of

selected subbasins along river reach 2. Comparison of

the two panels (top and bottom) of Fig. 11 reveals

that wherever rainfall is downscaled to a net higher

amount, it usually results in a higher total runoff volume

of the same subbasin. For certain subbasins, this

effect appears dampened because of possibly drier an-

tecedent moisture conditions. Generally, the scale ef-

fect is found to be more pronounced in runoff than it is

FIG. 10. Example of the random effect of spatial downscaling. A (top left) 32 3 32 rainfall field is upscaled to a (bottom left)

16 3 16 rainfall field. (top right) The downscaled 32 3 32 rainfall field from the corresponding 16 3 16 upscaled field is shown.

Units for rainfall rates are mm h21. (Note that the mean rainfall intensity is strictly preserved during downscaling.)
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for rainfall as a result of the nonlinear thresholding and

transformation of rainfall to runoff. Overland runoff

is triggered either when the soil is completely saturated

or when the rain rate exceeds the infiltration capacity

of the soil. Table 5 summarizes the cumulative rainfall-

runoff relationship as a function of downscaled resolu-

tion for the other two river reaches (1 and 3).

Finally, the rain rate histograms are shown in Fig. 12

for basin-averaged rainfall. For downscaled scenarios,

we consider the mean of the 200 MC realizations for

calculating the histograms. The most dramatic change in

the statistical distribution of rain rates is found to occur

at 0.1258 (the first instance of downscaling from the

native scale of 0.258). A higher frequency of rain rates in

the ranges of 1–5 mm h21 is observed when compared to

the native scale. This further explains why an increase

in streamflow simulation uncertainty can be observed

with downscaling. Overall, it is very clear from this

closer inspection that the limitation of a chosen down-

scaling scheme in preserving the mean rainfall intensity

over irregularly sized drainage units can result in an

increase in simulation uncertainty as scales become

smaller for a conceptual and semidistributed hydrologic

model like HEC-HMS. We should point out that this

limitation is manifested mainly because of the concep-

tual nature of the hydrologic model that requires aver-

aging rainfall for irregularly sized drainage units from

gridded data.

5. Conclusions

The objective of this study was to investigate spatial

downscaling of satellite rainfall data for streamflow

prediction for a medium-sized basin (;970 km2) in

Kentucky in anticipation of the proposed Global Pre-

cipitation Measurement (GPM) mission. Two TRMM-

based real-time global satellite rainfall products were

investigated: 1) the infrared (IR)-based 3B41RT prod-

uct available at 1 hourly and 0.258 scales and 2) the

combined microwave- and IR-based 3B42RT prod-

uct available at 3 hourly and 0.258 scales. It was found

that propagation of spatially downscaled satellite rain-

fall in the hydrologic model increased simulation un-

certainty in streamflow as scales became smaller than

0.258. The performance of the spatial downscal-

ing scheme was not influenced by rainfall data type be-

cause similar performance was achieved with NEXRAD

data. Although the downscaling scheme may preserve

the rainfall intensity within the square rainfall field over

which disaggregation is performed, the mean rainfall

rate preservation is found not to be honored for irreg-

ularly sized subbasins. Closer inspection at the subbasin

level confirmed that it was, indeed, this inability of the

selected spatial downscaling scheme to preserve the

FIG. 11. Cumulative (top) rainfall (3B42RT) and (bottom)

runoff along river reach 2 (Fig. 1) as a function of disaggregated

scale and subbasin location (for event 1). The cumulative rainfall is

calculated from the mean of 200 MC realizations, whereas runoff is

derived from HEC-HMS. Terms CF1, CF4, CF4a, and so on are

the HEC-HMS names for subbasins of the UC River basin shown

in Fig. 1.

TABLE 5. Cumulative rainfall–runoff relationship as a function of downscaled resolution for subbasins along the river reach. HEC-HMS

subbasin names are listed in parentheses in the column for rainfall.

Upstream Downstream

Scale (8) Rainfall (in.) Runoff (cfs h21) Rainfall (in.) Runoff (cfs h21)

River reach 1 0.125 2.6 (PF1) 20 000 11.4 (PF4d) 47 000

0.0625 1.5 (PF1) 12 000 12.5 (PF4d) 57 000

0.03125 1.1 (PF1) 9800 12.7 (PF4d) 56 000

River reach 3 0.125 8.0 (MF1) 104 000 9.5 (MF2b) 39 000

0.0625 7.5 (MF1) 84 000 12.1 (MF2b) 57 000

0.03125 6.8 (MF1) 87 000 10.4 (MF2b) 39 500
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mean rainfall intensity that led to the increase in sim-

ulation uncertainty as scales became smaller.

This study is not without limitations. The spatial

downscaling scheme used herein was a spatial disag-

gregation technique that did not leverage the space–

time relationship of rainfall during the evolution of a

storm event. Although the consideration of the mean of

200 MC realizations may be considered adequate to

minimize the lack of storm persistence modeling, future

extensions of this study should consider the more so-

phisticated variant of the Perica and Foufoula-Georgiou

(1996b) scheme developed by Venugopal et al. (1999)

where rainfall persistence is modeled during spatial

downscaling. Also, because most spatial downscaling

schemes are different in algorithm formulation, findings

from this study are also limited to the particular scheme

studied herein. In an earlier study, Ferraris et al. (2003)

compared three conceptually different downscaling

methods and reported that most downscaling tech-

niques, despite the conceptual differences, have similar

implications in streamflow prediction. Nevertheless,

conclusions from this study should not be generalized

for all spatial downscaling techniques currently avail-

able for disaggregation of satellite rainfall data.

This study is also conditioned on the specific hy-

drologic model used. HEC-HMS requires subbasin-

averaged rainfall for simulation of runoff and stream-

flow, wherein, we have specifically observed that the

rainfall average for irregularly sized subbasins is not

conserved during downscaling. Grid-based distributed

hydrologic modeling that requires no such averaging

for subbasins are likely to yield more consistent results

with downscaling (Bindlish and Barros 2000). The role

played by hydrologic modeling in the transformation

of downscaled rainfall to runoff is, therefore, an impor-

tant topic for future studies. Given that many down-

scaling schemes leverage physical information on the

storm systems [such as CAPE for Perica and Foufoula-

Georgiou (1996b)], it is also important that future studies

tackle the role played by the meteorological aspect of

storms.

Findings from this study are important, because satellite-

based estimates of precipitation are well known to in-

crease in error complexity at smaller (hydrologically

relevant) spatial scales (Hossain and Anagnostou 2006).

Recently, PEHRPP has formulated an agenda to un-

derstand these hydrologically relevant features of sat-

ellite rainfall uncertainty and devise more pertinent

error metrics. This work is currently in its nascent stages

and depends on community feedback for advancement.

In an earlier study, Hossain and Huffman (2008) have

articulated three major dimensions of satellite rainfall

uncertainty that should be part of any framework for

building such error metrics: 1) temporal dimension

(how does the error vary in time?); 2) spatial dimension

(how does the error vary in space?); and 3) retrieval

dimension (how ‘‘off’’ is each rainfall estimate from the

true value over rainy areas?).

As the GPM era approaches, more coherent and

higher-resolution rainfall data are being planned for the

user community. Hence, there is an urgent need now to

assess spatial downscaling along the three uncertainty

dimensions. Such an effort can help devise optimal

approaches for runoff generation over ungauged areas

when satellite rainfall products are the sole source of

rainfall. A natural extension of this study is, therefore, to

investigate methods for developing a ‘‘hybrid’’ down-

scaling scheme that can leverage knowledge of scale-

dependent uncertainty of satellite rainfall data (at the

native scale) during spatial downscaling. For a user, it

would be beneficial if hydrologically relevant uncertainty

estimates for downscaled satellite rainfall data is pro-

jected by the downscaling scheme. These estimates could

then provide guidance to the user on the level to which

the downscaled data could be reasonably implemented

in hydrologic models and the applications for which

downscaled satellite data would be acceptable.

FIG. 12. The 3B42RT rain rate histograms for basin-averaged

rainfall for (top to bottom) native scale, 0.1258, 0.06258, and

0.031258. For disaggregated scenarios, the histogram of the mean of

200 MC realizations is computed.
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APPENDIX

Verification of the Downscaling Scheme

a. Preservation of the mean

We first verified the Perica and Foufoula-Georgiou

(1996b) downscaling scheme in terms of its ability to

preserve the mean rainfall intensity over a 64 3 64

gridded domain using actual 3B42RT data. Table A1

and Figure A1 show the mean rainfall rate of 100 re-

alizations as a function of downscaled resolution for a

given rainfall distribution at the native scale of 0.258.

TABLE A1. Downscaling verification statistics.

Scale (8) Mean (mm h21)

0.25 0.0762

0.125 0.0762

0.0625 0.0762

0.03125 0.0762

0.015625 0.0762

FIG. A1. Mean rainfall map from 100 realizations of downscaled 3B42RT data from a 64 3 64 gridded domain.
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Statistically, we found that the downscaling scheme

also preserves the mean rainfall for each individual

realization.

b. Checking consistency of downscaling

For checking consistency of the downscaling scheme,

the satellite rainfall data product called PERSIANN

and NEXRAD stage IV data available at 0.048 were

used. First, the 0.048 data was aggregated up to 0.168

(via 0.088 and then 0.168), then downscaled back to 0.088

and 0.048. At each level of downscaling (0.088 and

0.048), downscaled data were compared to true (non-

downscaled) rainfall data at that scale to benchmark the

similarity in the spatial distribution of downscaled data.

Table A2 shows correlation and mean error (between

downscaled and true nondownscaled data) at scales of

0.048 and 0.088.

c. Equivalency of propagating mean 6 s

through HEC-HMS

In the current scheme of operations, HEC-HMS lacks

an automatic system for propagating multiple MC re-

alizations of rainfall. Each realization needs to be

propagated manually. Hence, we first propagated 25

MC realizations of downscaled 3B41RT for event 1

through HEC-HMS to verify if that would be closely

equivalent to propagating only the mean and 6s of the

ensemble. Figure A2 shows the streamflow simulation

for each of the 25 MC realizations for the downscaled

resolutions of 0.1258, 0.06258, and 0.031258. It is clear that

the spread of streamflow simulation is numerically very

similar to that obtained from propagating the mean 6 s

of 200 rainfall realizations (cf. with Fig. 8a).

REFERENCES

Ahrens, B., 2003: Rainfall downscaling in an alpine watershed

applying a multiresolution approach. J. Geophys. Res., 108,

8388, doi:10.1029/2001JD001485.

Barry, D. A., and K. Bajracharya, 1995: On the Muskingum-Cunge

flood routing method. Environ. Int., 21, 485–490, doi:10.1016/

0160-4120(95)00046-N.

Bindlish, R., and A. P. Barros, 2000: Disaggregation of rainfall for

one-way coupling of atmospheric and hydrological models

in regions of complex terrain. Global Planet. Change, 25,

111–132.

Ebert, E., J. E. Janowiak, and C. Kidd, 2007: Comparison of near

real-time precipitation estimates from satellite observations

and numerical models. Bull. Amer. Meteor. Soc., 88, 47–64.

Ferraris, L., S. Gabellani, N. Rebora, and A. Provenzale, 2003:

A comparison of stochastic models for spatial rainfall down-

scaling. Water Resour. Res., 39, 1368, doi:10.1029/2003WR002504.

Fulton, R. A., J. P. Breidenbach, D.-J. Seo, D. A. Miller, and

T. O’Bannon, 1998: The WSR-88D rainfall algorithm. Wea.

Forecasting, 13, 377–395.

Gaffin, D. M., and J. C. Lowery, cited 2008: A rainfall climatology

of the NWSFO Memphis county warning area. NOAA Tech.

Memo. NWS SR-175. [Available online at http://www.srh.noaa.

gov/meg/rainclim.html.]

Harris, A., and F. Hossain, 2008: Investigating the optimal config-

uration of conceptual hydrologic models for satellite-rainfall-

based flood prediction. IEEE Geosci. Remote Sens. Lett., 5,

532–536.

——, S. Rahman, F. Hossain, L. Yarborough, A. C. Bagtzoglou,

and G. Easson, 2007: Satellite-based flood modeling using

TRMM-based rainfall products. Sensors, 7, 3416–3427.

HEC, 2000: Hydrologic Modeling System, HEC-HMS. U.S. Army

Corps of Engineers, Hydrologic Engineering Center Tech.

Reference Manual CPD-74B, 157 pp.

Hong, Y., K.-L. Hsu, S. Sorooshian, and X. Gao, 2005: Improved

representation of diurnal variability of rainfall retrieved

FIG. A2. Propagation of 25 downscaled MC realizations of

3B41RT for event 1 for (top to bottom) 0.1258, 0.06258, and

0.031258.

TABLE A2. Checking consistency of the downscaling scheme

using fine-resolution data from NEXRAD and PERSIANN prod-

ucts (at 0.048).

NEXRAD Satellite

(PERSIANN)

Spatial scale (8) 0.088 0.048 0.088 0.048

Correlation 0.9046 0.8092 0.9024 0.7809

Mean error

(mm h21)

20.0030 20.0572 20.0011 20.0144

1078 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 10



from the Tropical Rainfall Measurement Mission Microwave

Imager adjusted Precipitation Estimation From Remotely

Sensed Information Using Artificial Neural Networks

(PERSIANN) system. J. Geophys. Res., 110, D06102,

doi:10.1029/2004JD005301.

——, R. F. Adler, F. Hossain, S. Curtis, and G. J. Huffman, 2007:

A first approach to global runoff simulation using satellite rain-

fall estimation. Water Resour. Res., 43, W08502, doi:10.1029/

2006WR005739.

Hossain, F., and E. N. Anagnostou, 2006: A two-dimensional sat-

ellite rainfall error model. IEEE Trans. Geosci. Remote Sens.,

44, 1511–1522, doi:10.1109/TGRS.2005.863866.

——, and G. J. Huffman, 2008: Investigating error metrics for

satellite rainfall at hydrologically relevant scales. J. Hydro-

meteor., 9, 563–575.

——, and D. P. Lettenmaier, 2006: Flood prediction in the future:

Recognizing hydrologic issues in anticipation of the Global

Precipitation Measurement mission. Water Resour. Res., 44,

W11301, doi:10.1029/2006WR005202.

Huffman, G. J., R. F. Adler, D. T. Bolvin, G. Gu, E. J. Nelkin,

K. P. Bowman, Y. Hong, E. F. Stocker, and D. B. Wolff, 2007:

The TRMM Multisatellite Precipitation Analysis (TMPA):

Quasi-global, multi-year, combined-sensor precipitation esti-

mates at fine scales. J. Hydrometeor., 8, 38–55.

Janowiak, J., R. J. Joyce, and Y. Yarosh, 2001: A real-time global

half-hourly pixel-resolution infrared datasets and its applica-

tion. Bull. Amer. Meteor. Soc., 82, 205–217.

Kull, D. W., and A. D. Feldman, 1998: Evolution of Clark’s unit

graph method to spatially distributed runoff. J. Hydrol. Eng.,

3, 9–19, doi:10.1061/(ASCE)1084-0699(1998)3:1(9).

Lin, Y., and K. E. Mitchell, 2005: The NCEP stage II/IV hourly

precipitation analyses: Development and applications. Pre-

prints, 19th Conf. on Hydrology, San Diego, CA, Amer. Me-

teor. Soc., 1.2. [Available online at http://ams.confex.com/ams/

Annual2005/techprogram/paper_83847.htm.]

Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting through

conceptual models part I—A discussion of principles. J. Hydrol.,

10, 282–290.

Nijssen, B., G. M. O’Donnell, D. P. Lettenmaier, D. Lohmann, and

E. F. Wood, 2001: Predicting the discharge of global rivers.

J. Climate, 14, 3307–3323.

Nykanen, D. K., E. Foufoula-Georgiou, and W. Lapenta, 2001:

Impact of small-scale rainfall variability on larger-scale spatial

organization of land–atmosphere fluxes. J. Hydrometeor., 2,

105–121.

Perica, S., and E. Foufoula-Georgiou, 1996a: Linkage of scaling

and thermodynamic parameters of rainfall: Results from mid-

latitude mesoscale convective systems. J. Geophys. Res., 101

(D3), 7431–7448.

——, and ——, 1996b: A model for multi-scale disaggregation of

rainfall based on coupling meteorological and scaling de-

scriptions. J. Geophys. Res., 101 (D21), 26 347–26 361.

Rahman, S., 2008: Investigating effectiveness of spatial downscal-

ing of satellite rainfall data for flood prediction. M.S. thesis,

School of Engineering, University of Connecticut, 113 pp.

Shepherd, J. M., H. Pierce, and A. J. Negri, 2002: Rainfall modi-

fication by major urban areas: Observations from space-

borne rain radar on the TRMM satellite. J. Appl. Meteor., 41,

689–701.

Smith, E. A., and Coauthors, 2007: The international global pre-

cipitation measurement (GPM) program and mission: An

overview. Measuring Precipitation from Space: EURAINSAT

and the Future, V. Levizzani, P. Bauer, and F. J. Turk,

Eds., Advances in Global Change Research, Vol. 28, Springer,

611–654.

Sorooshian, S., K. L. Hsu, X. Gao, H. V. Gupta, B. Imam, and

D. Braithwaite, 2000: Evaluation of PERSIANN system

satellite-based estimates of tropical rainfall. Bull. Amer. Meteor.

Soc., 81, 2035–2046.

Troutman, T. W., M. A. Rose, L. M. Trapasso, and S. A. Foster,

cited 2008: A Comprehensive Heavy Precipitation Climatology

for Middle Tennessee. [Available online at http://www.srh.

noaa.gov/bna/research/precip.htm.]

Venugopal, V., E. Foufoula-Georgiou, and V. Sapozhnikov, 1999:

A space-time downscaling model for rainfall. J. Geophys. Res.,

104 (D16), 19 705–19 721.

AUGUST 2009 N O T E S A N D C O R R E S P O N D E N C E 1079


