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ABSTRACT

The study presents a data-based numerical experiment performed to understand the scale relationships of

the error propagation of satellite rainfall for flood evaluation applications in complex terrain basins. A sat-

ellite rainfall error model is devised to generate rainfall ensembles based on two satellite products with

different retrieval accuracies and space–time resolutions. The generated ensembles are propagated through

a distributed physics-based hydrologic model to simulate the rainfall–runoff processes at different basin

scales. The resulted hydrographs are compared against the hydrograph obtained by using high-resolution

radar rainfall as the ‘‘reference’’ rainfall input. The error propagation of rainfall to stream runoff is evaluated

for a number of basin scales ranging between 100 and 1200 km2. The results from this study show that (i) use of

satellite rainfall for flood simulation depends strongly on the scale of application (catchment area) and the

satellite product resolution, (ii) different satellite products perform differently in terms of hydrologic error

propagation, and (iii) the propagation of error depends on the basin size; for example, this study shows that

small watersheds (,400 km2) exhibit a higher ability in dampening the error from rainfall to runoff than

larger-sized watersheds, although the actual error increases as drainage area decreases.

1. Introduction

Precipitation is one of the most important compo-

nents of the hydrological cycle and the driving force for

one of the most devastating natural hazards—that is,

floods. Model simulation of the hydrologic processes

(e.g., the generation of runoff) at watershed scale is the

basis for nowcasting floods and providing information

that is essential for the preservation of property and hu-

man lives. The primary input to a hydrological model is

precipitation. Consequently, the accuracy of the flood

prediction is tied to the accuracy of the precipitation

estimation. However, estimating rainfall rates at high

accuracy and continuously in space and time is an ex-

tremely difficult task because of the limitations of cur-

rent sensor technologies, both in terms of resolution and

spatiotemporal coverage, as well as uncertainty in the

inversion techniques.

Traditionally, rain gauges have been used to measure

surface rainfall rates. Gauges are considered as the most

accurate sensors for measurements over a limited area

(nearly a point), but their small coverage (especially over

complex terrain and tropical regions) limits the adequacy
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in representing the spatial structure of highly variable

rainfall fields over large spatial scales. Weather radars,

on the other hand, have advanced precipitation moni-

toring because of the spatially distributed information

these systems can provide, and they have created signif-

icant potential on the use of radar observations for flood-

related applications (Tilford 1987; Garrote 1992; Pessoa

et al. 1993; Borga et al. 2000; among others). Radar

rainfall estimates also suffer from a number of uncer-

tainties associated with issues in radar calibration, vari-

ability in the reflectivity-to-rainfall relationship, vertical

reflectivity profile, and atmospheric/rain-path attenu-

ation [more details on the issue can be found in Krajewski

and Smith (2002)]. Furthermore, beam blockage effects

due to complex terrain constrain the applicability of

radar observations in mountainous areas (mostly prone

to flooding), while the establishment of a network of

sensors that could resolve the coverage issue is rarely

a viable solution because of the high cost of deploying

such systems.

In recent times, there has been significant develop-

ment in space-based precipitation estimation that has now

opened up new horizons in hydrological applications at

global scale. Satellite sensors offer unique advantages

compared to gauges and weather radars because they

provide (i) global coverage and (ii) observations in re-

gions where in situ data are inexistent or sparse. Because

of this uniqueness, the use of satellite data for hydrologic

applications has gained growing interest. Guetter et al.

(1996) conducted numerical experiments using synthetic

satellite rainfall data, forcing a rainfall–runoff model to

estimate soil water and streamflow at three large-scale

basins (.2000 km2) in the United States. Tsintikidis et al.

(1999) examined the potential use of visible and infrared

images to derive mean areal rainfall estimates to force

a hydrologic model in the Blue Nile region. Wilk et al.

(2006) used passive microwave datasets to derive estimates

of the water balance over the Okavango basin. Su et al.

(2008 evaluated the use of Tropical Rainfall Measuring

Mission (TRMM) Multisatellite Precipitation Analysis

product (3B42) for streamflow simulations in the La Plata

basin. In a similar manner, Collischonn et al. (2008) used

the 3B42 dataset to estimate daily streamflow in the

Amazon basin.

Although these studies revealed the potential on the

use of satellite-based rainfall estimates for hydrologic

applications, they also reported deficiencies that differ in

significance depending on the use. The two main sources

of those deficiencies are (i) the error structure of the

satellite rainfall estimates and (ii) the rainfall error prop-

agation through the hydrologic model. For the first source,

several studies have been reported that deal with the as-

sessment and the characterization of the retrieval error

for a number of global satellite rainfall products (see

McCollum et al. 2002; Gebremichael and Krajewski 2004;

Ebert et al. 2007; Dinku et al. 2007; among others). Al-

though these studies provide useful information on sat-

ellite rainfall uncertainties, as Hossain and Anagnostou

(2006a) pointed out, they focus on the accumulation of

rainfall over large spatiotemporal scales as opposed to

the flux, involving error statistics that are more relevant

to large-scale meteorological phenomena. Hence, many

of these studies do not provide insight on the smaller-

scale surface hydrologic processes, such as floods and

flash floods, particularly over complex terrain (see, e.g.,

Griffith et al. 1978; Arkin and Meisner 1987; Huffman

et al. 2001; Steiner et al. 2003; among others). Hossain

and Anagnostou (2006b) and Bellerby and Sun (2005)

are some of the examples of recent effort to address this

issue of characterizing the satellite error structure at

scales relevant to flood processes.

On the second error source, the propagation of er-

ror in rainfall through a hydrologic model is a subject

that has long been identified as a critical issue. However,

most studies so far have involved the propagation of

radar rainfall error (see, e.g., Borga et al. 2000; Borga

2002; Sharif et al. 2004; Vivoni et al. 2007), and only

a few studies have investigated the satellite rainfall error

propagation in hydrologic simulations (Hossain and

Anagnostou 2004, 2005; Hong et al. 2006, 2007; Nijssen

and Lettenmaier 2004). Evaluating the error propaga-

tion of satellite rainfall through the prism of surface

hydrology is a very challenging task because it relates

too many factors, which include among others (i) speci-

fications of the satellite rainfall product, (ii) scale of the

basin, (iii) spatiotemporal scale of the hydrologic var-

iable of interest, (iv) the level of complexity and physical

processes represented by the hydrologic model used,

and (v) regional characteristics. As we now stand at the

doorstep of a global-scale precipitation mission, named

Global Precipitation Measurement (GPM, available on-

line at http://gpm.gsfc.nasa.gov/; Smith et al. 2007), a

comprehensive investigation/evaluation of the use of

current satellite products in small-scale hydrologic ap-

plications appears mandatory and can serve as a valuable

reference to the mission’s designers as well as highlight

its usefulness to society.

This paper aims to evaluate the scale characteristics of

satellite rainfall error propagation through a distributed

hydrologic model, with an emphasis on flood simulations

over complex terrain. Because the surface hydrologic

processes leading to surface runoff generation are con-

trolled by the complexity of the terrain, the use of a dis-

tributed and physically based model is a necessary, but it

is often an absent ingredient in literature on error prop-

agation. The general framework of this study follows the
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work by Hossain and Anagnostou (2004) and Hong et al.

(2006), in the sense that an error model is used for the

generation of ensembles of satellite rainfall fields, which

subsequently propagate through a hydrologic model to

evaluate the runoff error in a probabilistic manner. The

most notable novelty of our work is the higher level of

complexity in terms of both the satellite rainfall error

model and hydrologic model used as well as the fact that

two satellite products with contrasting space–time scales

are examined. Furthermore, the scale dependence of

the error propagation is addressed and investigated by

comparing the results for a number of basins ranging

from 100 to 1200 km2. Results in this study are based on

a single flash-flood event that took place in a mountain-

ous basin in northeast Italy. Although it is recognized

that results can be driven by the specific characteristic of

the analyzed event, we hope that this paper will provide

a proof of concept to trigger further studies involving

a wide range of systematic investigations involving hy-

drologic models of varying complexity, storm cases of

different spatiotemporal rainfall variability, basins of

varying characteristics, and satellite products of varying

resolutions and error characteristics.

In section 2 the study area and the datasets utilized in

this study are presented. The methodology for the gen-

eration of satellite rainfall ensembles along with an error

analysis is described in section 3, and the resulted sim-

ulated hydrographs from the propagation of those en-

sembles is discussed and analyzed in section 4. The main

results of the error propagation analysis are described

in section 5, and overall conclusions are summarized in

section 6.

2. Study area and data

The basin—Bacchiglione basin—considered in this

study is located in the Veneto region, which is part of the

northeastern Italian Alps (F F1ig. 1). An area of approxi-

mately 1200 km2 drains to its outlet just upstream from

the city of Montegaldella, with a drainage direction that

has a north–south alignment. The variability of the ter-

rain is very distinct, with the upper part (first 30 km from

the northern boundary of the basin) being highly irreg-

ular with an elevation that ranges from 200 to greater

than 2000 m, and the mid-to-lower par AU1t being quite flat

(elevation around 100 m and slopes lower than 0.58).

The vegetation follows in a sense that the elevation

pattern differentiates between forested (broadleaf and

conifer) areas in the higher elevation region (northern

basin, which is part of the eastern Italian Alps) and the

lower elevation (mid-to-lower basin) that is predominately

covered by croplands. The high precipitation amounts in

the area (.1000 mm annually) along with the very steep

irregular terrain (slopes greater than 408 in the highlands)

FIG. 1. Map showing the locations of the Posina and Bacchiglione basins in the northeastern Italian Alps. Note that the thin (4 km) and

thick (25 km) grids provide a visual comparison between the spatial resolution of the satellite products used and the basin scales.

Fig(s). 1 live 4/C
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make the region prone to the generation of floods and

thus suitable for hydrologic investigations.

Several sources of data are utilized in this study. The

precipitation data included both in situ measurements

(rain gauges) and remote sensing–based (radar and

satellite) retrievals. The rain gauges, located in the re-

gion (see Fig. 1), provided half-hourly rainfall accumu-

lations that were used for (i) bias adjustment of the radar

rainfall fields (Borga et al. 2000) and (ii) calibration of

the satellite rainfall error model (Hossain et al. 2009).

Distributed rainfall maps are obtained from a C-band

Doppler weather radar located at Mt. Grande, approx-

imately 10 km southeast of the basin’s outlet, and were

available at 1-km spatial and 1-h temporal resolution.

The algorithm used to generate rainfall estimates from

those radar measurements and performance evaluations

are described in Borga et al. (2000). Two different sat-

ellite products were used: the TRMM 3B42 version 6

(Huffman et al. 2007) and a dataset obtained from the

calibration of high-resolution global IR data from avail-

able passive microwave satellite rainfall estimates on

the basis of the algorithm described in Kidd et al. (2003),

hereafter named KIDD. TT1 able 1 summarizes the native

space–time resolution of each precipitation dataset used

in this study. The hydrologic data include stream gauge

observations that were available at half-hourly scale but

only for one subbasin (called Posina; see Fig. 1). Fur-

thermore, soil and land use/cover maps were used to

derive the soil and vegetation properties required for the

successful hydrologic model setup.

3. Satellite rainfall ensembles

We used the satellite rainfall error model developed

by Hossain and Anagnostou [2006b; a two-dimensional

satellite rainfall error model (SREM2D). SREM2D uses

stochastic space–time formulations to characterize the

multidimensional error structure of satellite retrievals

and combines that with input ‘‘reference’’ rain fields

(representing the ‘‘true’’ surface rainfall process) of higher

accuracy and resolution to simulate probable realizations

of satellite like rainfall estimates [for more details on the

error model, see Hossain and Anagnostou (2006b)]. One

of the model prerequisites is the regional calibration for

every satellite product; this means that for the simulation

of each satellite product, a different set of parameters

needs to be obtained. In our case, the model parameters

were calibrated for the study region using six months

(June–November 2002) of gauge and satellite data for

the 3B42 and KIDD satellite rainfall products. The cali-

bration of SREM2D parameters and the verification of

the predicted variability for the region and satellite prod-

ucts used in this study are described in Hossain et al.

(2009). The focus of this paper is on the analysis of the

generated ensembles from the SREM2D error model

and their error propagation.

The high-resolution (1 km–1 h) radar rainfall fields

were used as the reference to generate realizations for

(i) the 3B42 product at its nominal scale (see Table 1),

(ii) the KIDD product at high resolution (4 km–1 h,

hereafter KIDD-4 km), and (iii) the KIDD product

aggregated at coarser space–time resolution (25 km–3 h,

hereafter KIDD-25 km). The reason for aggregating the

KIDD product was to compare the error propagation

characteristics of (i) the two satellite products at the

same resolution (3B42 versus KIDD-25 km) and (ii) the

two resolutions for the same product (KIDD-4 km

versus KIDD-25 km). A total of 100 realizations were

generated for each satellite product; however, because

of computational limitations, subsamples of those realiza-

tions were used to force the hydrologic model. This was

done in the following procedure. Ensembles of each sat-

ellite product were ranked based on their overall rainfall

bias (compared to the reference field), and realizations

were selected starting at the fifth percentile with a step

increment of five percentiles (5th, 10th, 15th, etc.). Thus,

a total of 20 realizations (see F F2igs. 2 and 3 F3) plus the av-

erage of all 100 realizations from each set were used for

the error propagation experiment.

The results presented in this study are focused on a

major flood event that occurred in the study area during

October 1996 [started around 15:00 central European

time (CET) 15 October]. The rainfall event that caused

the flooding lasted for more than 60 hours and resulted

in mean areal rainfall accumulation (based on radar esti-

mates) of 200 mm for the Bacchiglione basin (;1200 km2)

and approximately 350 mm (see Figs. 2 and 3) for the

mountainous subbasin of Posina (;116 km2). In Figs. 2

and 3, we present the mean areal precipitation (MAP)

derived from reference (radar) and from the SREM2D

ensembles for the Bacchiglione and Posina basins, re-

spectively. MAP was calculated during a 96-h window

that extended a few hours before and after the flood-

induced storm. Mean areal precipitation for each basin

was based on the arithmetic average of all pixels (radar

TABLE 1. Nominal spatial and temporal resolution of the

precipitation data used.

Data type

Product

name

Resolution

Temporal (h) Spatial

Remote

sensing

3B42 3 0.258 3 0.258

KIDD 0.5 ;4 3 4 km

Radar 1 1 km

In situ Gauge 0.5 Point
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or satellite) that fully or partially overlapped the basin’s

area. Because of the high resolution of radar fields

(1 km) and the relatively large area of the basin ex-

amined (.100 km; see TT2 able 2), areal weighting was

not applied for the calculation of the reference MAP

but only for the satellite rainfall MAP (for all prod-

ucts). The generated ensembles are compared with the

reference rainfall, and the results are presented as box

plots of bias, relative root-mean-square error (relRMSE),

and Nash–Sutcliffe (N–S) AU2score defined AU3as

FIG. 2. (top) Mean areal rainfall accumulation curves for Bacchiglione basin calculated from radar (black) and SREM2D ensembles for

(left) 3B42, (middle) KIDD-25 km, and (right) KIDD-4 km. (bottom left) Bias, (middle) relRMSE, and (right) N–S score between MAP

time series derived from SREM2D ensembles and the reference rainfall (radar).

FIG. 3. Same as Fig. 2 but for the Posina basin.

Fig(s). 2,3 live 4/C
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where XRADAR(i) and XSREM2D(i) correspond to the

time series of MAP (or discharged for later use) at an

hourly time step i obtained from radar and SREM2D

ensembles, respectively. Here N is the total number

of hourly time steps in XRADAR and XSREM2D, and

XRADAR denotes the arithmetic average of XRADAR.

Several points are noted from Figs. 2 and 3. First, all

satellite realizations underestimate the total reference

rainfall (bias ,1). However, the magnitude of the un-

derestimation depends strongly on the satellite product

and on the scale of the basin. Specifically, for the larger

basin (Bacchiglione), the 3B42 and KIDD-4 km per-

form equally well with a bias about 0.6–0.7, whereas the

KIDD-25 km has a bias in the range of 0.4–0.5. For the

smaller basin (Posina), the KIDD-4 km outperforms

3B42, while the aggregated KIDD-25 km is the worse of

the three. The relative RMSE and the N-S score show

similar behavior. This scale dependence of the error can

be explained by the fact that coarse-resolution products

(e.g., 3B42) cannot represent well the mean areal pre-

cipitation of basins with areas much smaller than their

pixel size (see Fig. 1), simply because their sampling in-

volves a much larger area.

The comparison between 3B42 and KIDD-25 km

denotes the difference in retrieval error of two satellite

algorithms, whereas the comparison between KIDD-

4 km and KIDD-25 km denotes the resolution effect.

We note that a product with higher retrieval error, but

higher resolution (KIDD-4 km), can match (for the case

of Bacchiglione) a product with lower retrieval error but

with coarser resolution (3B42)—and even outperforming

it at the small-scale basin (case of Posina). This outcome

can serve as a reference to the satellite retrieval com-

munity, because it points out the necessity of having

high-resolution products for the efficient use of satellite

rainfall in hydrologic applications, especially for small-

scale phenomena, such as flash floods, even by compro-

mising the accuracy of the retrieval. Moreover, efforts

regarding the improvement of satellite rainfall retrievals

must continue because as we can observe from the results,

satellite rainfall for all products is associated with high

bias (.30%) and reduced ability to characterize the

‘‘true’’ process (N 2 S , 0.5).

4. Hydrologic simulations

The hydrologic model used in this study [triangulated

irregular network (TIN)-based Real-time Integrated

Basin Simulator (tRIBS)] is a fully distributed model

that can simulate multiple storm events and account

for the moisture losses during interstorm periods [see

Ivanov et al. (2004) for more details]. Here, tRIBS has

been applied successfully to several flood-related studies

(e.g., Vivoni et al. 2006b,a) that demonstrate the ability

of the model to represent the hydrologic response dur-

ing extreme events. A recent application of tRIBS to

describe the hydrological processes of flash floods in

mountainous basins was reported by E. I. Nikolopoulos

et al. (2010, unpublished manuscript) for one of the

subbasins (Posina) of the herein study area. One of the

major advantages of using tRIBS is its ability to repre-

sent the complex terrain with high accuracy while being

computationally very efficient (reduced number of com-

putational nodes) by leveraging the triangulated irregular

network’s scheme (Vivoni et al. 2004, 2005). This attri-

bute is very important when ensemble simulations are

considered (e.g., Forman et al. 2008; Mascaro et al. 2010).

In our case study, we used the model to simulate a single

storm-induced flood event (the October 1996 flood). The

distributed nature of the model allows retrieving the hy-

drograph response for several interior nodes of the basin,

TABLE 2. List of size and topography slope information of the

basins used in this study.

Basin Area (km2)

Slope (8)

Mean Std dev

1 108 5.07 4.8

2 148 12.45 8.85

3 244 11.02 7.37

4 269 9.59 9.03

5 398 13.55 9.27

6 584 15.24 9.89

7 627 14.87 9.83

Posina 116 20.61 9.23

Bacchiglione 1200 10.57 9.82
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thus providing the ability to compare the error propaga-

tion for different scales of drainage area. In this study, we

evaluated the error propagation for a number of basin

scales that ranged between 100 and 1200 km2 (see FF4 ig. 4;

Table 2).

The successful setup of this type of model requires

detailed information regarding the land descriptors (land

use/cover, soil type, etc.) of the simulation domain. The

Bacchiglione basin was categorized into four major land

use/cover classes that include barren land, grass, broad-

leaf forests, and conifer forests and into three soil classes

based on the general pattern of land use/cover. For the

parameterization of the soil and land cover variables in

the model, we relied on different sources found in the

literature (Jury et al. 1991; available online at http://

ldas.gsfc.nasa.gov/). To ensure that the model could prop-

erly describe the rainfall–runoff transformation processes

of the flood event used in this simulation exercise, we

carried out a minimal calibration of only 3 (out of ap-

proximately 30) parameters for which the flood hydro-

graph was most sensitive and relied on values derived

from the literature for the remaining parameters. The

FIG. 4. Stream network of the Bacchiglione basin and the locations (black dots) of the basin

outlets analyzed in this study. Note that the numeric identifications (IDs) correspond to the IDs

presented in Table 2.

Fig(s). 4 live 4/C
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parameters that were calibrated were the saturated hy-

draulic conductivity, the conductivity exponential decay

coefficient, and the anisotropy ratio (defined as the ratio

of horizontal to vertical hydraulic conductivity). The

model was forced with the reference (radar) rainfall in-

put, and the shuffle complex evolution (SCE) optimiza-

tion method (Duan et al. 1992) was used to minimize the

mean squared error between the observed and the sim-

ulated hydrograph. The calibration was performed on the

flood event used in this study, and as mentioned earlier,

the only available hydrograph measurements for the ba-

sin were at the Posina outlet. Thus, instead of using the

model’s output at the outlet of the domain (Bacchiglione

basin), we used the interior simulations that corre-

sponded to the Posina subbasin and compared those to

the available observations. Note that the total simula-

tion time was 160 h, and all the runoff quantities pre-

sented herein were calculated over that time window.

TT3 able 3 shows the final calibrated values of the three

parameters, and FF5 ig. 5 presents a comparison of the

simulated (based on calibrated parameters) and observed

hydrographs. While the simulated hydrograph appears

to be more sensitive to rainfall variations than the ob-

served, the general response is realistic and associated

with a relative error of ;20% for the peak discharge,

which is low relative to the range of runoff simulation

errors associated with the herein error propagation

experiment. A point to note is that the main objective

of the calibration exercise presented here was to ensure

that the transformation of rainfall to runoff for the spe-

cific event would be as realistic as possible because that

would have an effect on the results of the error propa-

gation analysis. Thus, we do not claim that the calibration

exercise presented here provides a model suitable for

general flood prediction of storm cases in this basin;

however, the reader is referred to NikolopoulosAU4 et al.

(2010) for a detailed assessment of tRIBS application

in other flash-flood storm cases in the region.

The calibrated hydrologic model was forced with the

generated SREM2D ensembles from each satellite rain-

fall product, and the simulated hydrographs for all nine

basins (Table 2) were analyzed. FF6 igures 6 and 7F7 show

the corresponding hydrographs for the rainfall ensembles

presented in Figs. 2 and 3, respectively. As expected, the

conclusions derived from the comparison between the

SREM2D-derived hydrographs and the reference is

in agreement with the comparison of the rainfall fields.

Again, 3B42 and KIDD-4 km behave similarly and sig-

nificantly better than the KIDD-25 km for the large-scale

(Bacchiglione) basin, whereas for the smaller-scale basin

(Posina), the hydrologic simulations based on the high-

resolution KIDD-4 km product outperforms all other

products. An interesting point to note is that for the larger

basin (Bacchiglione), the 3B42 exhibits higher variability

(larger whisker lengths of the boxplots) than the KIDD-

4 km in bias and N-S score, whereas for the smaller basin

(Posina) this is reversed. However, this difference is not

that apparent in the variability of rainfall statistics (Fig. 3),

which indicates that the rainfall-to-runoff transforma-

tion can magnify (or attenuate) the variability in rainfall

retrieval error. The spread of the simulated hydrographs

corresponds to the uncertainty in hydrologic simulations

due to uncertainty in rainfall; therefore, based on the

earlier-mentioned findings, the propagation of rainfall

uncertainty depends significantly on basin scale and hy-

drologic response (i.e., dominant runoff generation

mechanisms). This is discussed next.

5. Analysis of error propagation

To investigate the propagation of error in satellite

rainfall through the rainfall–runoff transformation, the

TABLE 3. Calibrated parameters of saturated hydraulic con-

ductivity, conductivity decay coefficient, and anisotropy ratio for

the three soil classes of the Bacchglione basin.

Soil

class

Saturated hydraulic

conduct (mm h21)

Conductivity decay

coefficient (3 1024)

Anisotropy

ratio

A 28 7.75 620

B 22.5 6.56 144

C 29 4.96 183

FIG. 5. (top) Observed (solid) and simulated (dashed) hydro-

graphs for the Posina basin during the October 1996 flood event.

(bottom) MAP over the Posina basin based on radar rainfall data.
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error in rainfall versus error in runoff is presented in FF8 ig. 8

based on the metrics of relative RMSE [Eq. (2)], and

relative error defined as

Relative Error 5

�
N

i51
X

radar
(i)��

N

i51
X

SREM2D
(i)

�
N

i51
X

radar
(i)

. (4)

A very distinct feature of the results is that the propa-

gation of error exhibits a linear behavior in terms of its

relative term. This linearity appears stronger for the case

of the Bacchiglione basin (1200 km2). Especially for the

scatterplot of relative errors in total rainfall versus rel-

ative errors in total runoff, the points are aligned very

close to the 1:1 line, which indicates that the relative

error in rainfall translates to an equal relative error in

runoff. A point to note from Fig. 8 is that the perfor-

mance of each satellite product manifests in distinct clus-

ters of the rainfall–runoff error domain (those clusters

are separated by different colors associated with different

satellite products). This effect is much more profound

in the case of Posina, where the points representing the

high-resolution satellite product (KIDD-4 km, blue color)

cluster in a distinct (from the other products) region in

the figure that is associated with lower relative error and

higher damping effect on the propagation of relative

RMSE. For the Bacchiglione basin, the two clusters of

KIDD-4 km and 3B42 mix in the same domain because

they perform equally, as mentioned earlier. This strength-

ens the argument made in the previous section that for the

smaller-scale basins, high-resolution products are critical

to moderate the retrieval error propagation in runoff.

The propagation of rainfall error to peak runoff is also

presented in Fig. 8. In the case of peak runoff, the prop-

agation has a different effect compared to the total run-

off. Most of the ensembles—for all products and both

basins—show magnification of the relative error. For the

Posina basin, the KIDD-4 km product shows high vari-

ability with the relative error in the peak discharge ranging

between 220% and 50%, while the rainfall error is be-

tween 20% and 40%. This can be attributed to the highly

nonlinear rainfall-to-runoff transformation and to the in-

creased spatial variability of the high-resolution product,

which, we speculate, can have a significant effect in the

runoff production (especially for the highly complex ter-

rain of Posina).

Similar analysis was carried out for all basins pre-

sented in Table 2, to further investigate the dependency

of error propagation with basin scale. Results are pre-

sented in Fig. 9 in terms of the ratio of the error metric

(relative error and relRMSE) in runoff over the corre-

sponding error metric in rainfall versus basin scale.

Ratios equal to one indicate that statistics of the error in

rainfall would translate to an equal statistical measure of

the error in runoff, whereas ratios lower (higher) than

one would indicate that the error dampens (magnifies)

FIG. 6. (top) Simulated hydrographs based on radar (black) and SREM2D (gray) rainfall ensembles for (left) 3B42, (middle) KIDD-

25 km, and (right) KIDD-4 km, for the Bacchiglione basin. (bottom left) Bias, (middle) rel. RMSE, and (right) N–S score between

reference (radar) and SREM2D hydrographs.
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through the rainfall–runoff transformation process. An

increase of ratio with catchment area up to 600 km2 and

an approximate plateau for larger basins is consistent for

all ratios presented in Fig.F9 9. These results clearly state

the scale dependence of the propagation of error and

indicate that for smaller-scale basins (,600 km2), the

damping effect of the error is greater than in larger ba-

sins. Moreover, the variability among products (scatter

of solid circles) as well as the variability within each

product (length of error bars) is higher for smaller-scale

basins (,600 km2) and consistent for all metrics. While

all metrics exhibit similar trends, we need to point out

that the magnification or damping of the error depends

on the ‘‘error metric’’ itself. For example, the relative

RMSE shows consistent damping (ratio ,1) of the error

from rainfall to runoff volumes at all scales, whereas the

relative error magnifies from rainfall to peak runoff

(ratio .1) in the majority of products and basin scales.

Thus, one should clearly state the reference metric when

deriving conclusions about the effect of rainfall error

propagation on runoff simulations.

6. Conclusions

This paper presented results from a numerical ex-

periment designed to evaluate the error propagation of

satellite rainfall though a distributed hydrologic model

to provide insight regarding the potential use of satellite

rainfall for flood simulations. Our study focused on

complex terrain wherein precipitation and the hydro-

logic process controls are strongly nonuniform and dic-

tated by this complexity (in topography, vegetation, and

soil properties). We used appropriate models to char-

acterize this complexity in both the satellite rainfall error

and the simulation of hydrologic processes. This sto-

chastic data-modeling error framework allowed a proba-

bilistic evaluation of the error propagation. The analysis

was based on two satellite products at different resolu-

tions and retrieval accuracies and a number of basins that

ranged in scale (100–1200 km2).

The principal conclusions of the study are summarized

as follows:

1) The mean areal precipitation is consistently under-

estimated by satellite realizations. Bias can vary

significantly depending on the product and the basin

size. For the largest basin (Bacchiglione), 3B42 and

KIDD-4 km performed equally well with bias around

0.6–0.7, whereas the KIDD-25 km dropped to 0.4–0.5.

For the smaller-scale Posina basin, the KIDD-4 km

maintains its performance, but the coarser-resolution

products (3B42 and KIDD-25 km) give biases be-

low 0.5. This is a clear indicator that the performance

of a given product relates to both its resolution and

scale of application.

2) The low N – S scores presented in the results indicate

that satellite ensembles have low ability in character-

izing the ‘‘true’’ process. This is essential, especially

when we are interested in the hydrologic variability

(e.g., runoff production) triggered by the rainfall forc-

ing; because even if the bias in total rainfall can be low,

FIG. 7. Same as Fig. 6 but for the Posina basin.
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the distribution of that rainfall in space and time can

alter significantly the hydrologic response at a basin.

3) The simulated hydrographs based on the satellite

ensembles show the same behavior regarding the

effect of resolution and basin scale. The highest reso-

lution product (KIDD-4 km) outperforms the coarser-

resolution products in all cases. This delivers a strong

message to the satellite retrieval community about

the necessity to provide high-resolution precipitation

products for flood-related applications.

4) The propagation of error exhibits a linear behavior,

especially for the larger-scale basins. The error’s

damping or magnification depends on the metric

of reference. For example, the relative RMSE in

FIG. 8. Error propagation metrics: (top) relative error in total runoff vs relative error in total rainfall for the (left)

Bacchiglione and (right) Posina basin, (middle) relRMSE in discharge vs relRMSE in rainfall, and (bottom) relative

error in peak runoff vs relative error in total rainfall. Errors were calculated between SREM2D ensembles and the

reference (radar). Note that the blue, black, and red triangles correspond to the ensemble average of KIDD 4 km,

KIDD 25 km, and 3B42, respectively.
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rainfall propagates to a lower relative RMSE in run-

off, whereas the relative error in total rainfall results in

a magnified relative error in peak discharge (in most

cases).

5) There is a definitive dependence of error propaga-

tion on basin scale. A consistent trend revealed in

this study showed that the ability of dampening the

error reduces as the basin scale increases and ap-

proaches a plateau for basins larger than 600 km2.

As stated in the introduction, the findings of this study

can be considered as a proof of concept regarding the

use of satellite rainfall for complex terrain flood simula-

tions. We acknowledge that the results presented herein

are, to some extent, model dependent and strongly af-

fected by the spatial structure of the specific storm rain

patterns and basin characteristics (including antecedent

conditions). However, our findings demonstrate a de-

finitive potential in the use of satellite rainfall for flood

simulations, and identify the key issues that require at-

tention to further enhance that potential. For example,

a point we make in this study is that product resolution

is a critical issue for small-scale applications. Arguably,

this makes the use of high-resolution IR-driven prod-

ucts, such as the Precipitation Estimation from Remotely

Sensed Information using Artificial Neural Networks–

Cloud Classification System (PERSIANN–CCS) neural

network–based fusion technique (Hong et al. 2004) pro-

viding 4 km(½-h)21 rainfall fields, worthwhile for com-

plex terrain flood simulations. On the other hand, the

study also revealed a rather counterintuitive result,

that error magnifies as a function of drainage area (and

that there is a strong dependency on the metric used).

To generalize and gain a holistic understanding of these

issues, more systematic investigations of similar nature

are needed to involve different satellite products, ad-

ditional flood cases associated with varying storm and

basin characteristics, and hydrologic models of varying

complexity.
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