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ABSTRACT

In this study, the authorAU1 s ask the question can a more superior precipitation product be developed by

merging individual products according to their a priori hydrologic predictability? The performance of three

widely used high-resolution satellite precipitation products [Tropical Rainfall Measuring Mission (TRMM)

real-time precipitation product 3B42 (3B42-RT), the NOAA/Climate Prediction Center morphing technique

(CMORPH), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural

Networks-Cloud Classification System (PERSIANN-CCAU2 S)] was evaluated in terms streamflow predictability

for the entire Mississippi River basin using the Variable Infiltration Capacity (VIC) macroscale hydrologic

model. A merging concept that was not based on a single universal merging formula for the whole basin but

rather used a ‘‘localized’’ (gridbox by gridbox) approach for merging precipitation products was then ex-

plored. In this merging technique, the a priori (historical) hydrologic predictive skill of each product for each

grid box was first identified. Prior to streamflow routing, the corresponding accuracy of the spatially dis-

tributed simulations of soil moisture and runoff were used as proxy for weights in merging the precipitation

products. It was found that the merged product derived on the basis of runoff predictability outperformed its

counterpart merged product derived on the basis of soil moisture simulation. Results indicate that such

a gridbox by gridbox merging concept that leverages a priori information on predictability of individual

products has the potential to yield a more superior product for streamflow prediction than what the individual

products can deliver for hydrologic prediction.

1. Introduction

Satellite precipitation (hereafter interchanged with

‘‘rainfall’’) has witnessed considerable improvement in

scale over the last two decades from degree daily reso-

lutions in Global Precipitation Climatology Project

(GPCP; Huffman et al. 2001) to 0.258 3-hourly resolution

during the Tropical Rainfall Measurement Mission

(TRMM) era (Huffman et al. 2010). TRMM has been

designed to monitor and study the tropical rainfall for

the first time with the help of both active and passive

microwave sensors. Before TRMM, rainfall estimates

were mostly obtained from satellites with visible, in-

frared, and passive microwave sensors, which were

typically affected by cloud covers and resulted in less

accurate rainfall estimation. TRMM’s collection of in-

struments, such as a microwave imager, a visible and

infrared scanner, and lightning imaging sensors, now

provide finescale observations of precipitation and its

vertical distribution. The success of TRMM mission has

paved the road for the Global Precipitation Measure-

ment (GPM) mission. With a newer set of instruments

added to the existing constellation, the GPM mission will

usher in a new era in precipitation estimation from space

in terms of higher spatial resolution, global extent, and

frequency of sampling of rainfall (Hou et al. 2008).

Despite the progress in developing finer-scale prod-

ucts, obtaining precipitation information at the required

accuracy level for hydrology still remains a challenge

(Hossain and Huffman 2008). Because satellite rainfall

estimation is not a direct observation, the uncertainty that

is inherent in the satellite estimates originate from sam-

pling and retrieval algorithm error. Satellite rainfall data

can also have large uncertainties depending on the type of

sensors and their resolution (Kidd et al. 2003; Hong et al.

2006; Gebremichael et al. 2003). Although there have

been several studies that have assessed the impact of

using pre-GPM satellite precipitation datasets (such as

TRMM-based multisatellite products) for hydrologic
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modeling (see, e.g., Su et al. 200AU3 8; Nijssen and Lettenmaier

2004, among many others), the utilization of such

‘‘performance’’ information of each product toward

optimal merging for a more superior product has re-

ceived virtually no treatment in literature. In this study,

our goal is therefore to investigate a fundamental par-

adigm shift in improving the accuracy of satellite rainfall

products, which is to leverage a priori knowledge on how

each product typically performs in hydrologic modeling

as a guide toward a single ‘‘universal’’ product with

more superior predictability.

So far, most of the merging application has been car-

ried out based on rainfall but not on hydrologic features

to the best of our knowledge. For example, Huffman et al.

(1995) have used linear optimal coefficients that are in-

versely proportional to the square of the error to merge

gauge rainfall data with satellite estimates by assuming all

the rainfall products free of bias. Xie and Arkin (1996)

have developed a merging algorithm for model pre-

diction and satellite rainfall products based on the as-

sumption of random and unbiased observation error that

are normally distributed. To the best of our knowledge,

such merging technique is based on one universal (i.e., for

the entire application region) merging algorithm/formula

rather than recognizing that a spatially varying merging

approach might be more appropriate.

Recently, work has been reported on estimation of the

statistical error properties of satellite rainfall products

by Kalman filtering method using spaceborne surface

soil moisture retrievals (Crow and Bolten 2007). This

leveraging of remotely sensed surface soil moisture data

has shown that robust information about the relative

error of satellite rainfall product is possible. Conse-

quently, this appears to indicate that predicted soil

moisture, using a hydrologic model, may also hold sim-

ilar promise in estimating relative errors of a rainfall

product.

Because there are large numbers of high-resolution

precipitation products (HRPP) that are derived from

various algorithms, we are now faced with issues related

to uncertainty of these various satellite rainfall products.

The general question we ask herein is, how does merging

of satellite rainfall products based on individual hydro-

logic predictability improve the accuracy of simulated

hydrologic variables? More specifically, we seek an an-

swer to the question, does merging based on spatially

varying features (grid box by grid box) advance the

predictive ability of hydrologic model from satellite

rainfall compared to the more common but spatially

uniform merging approach? From the recent work of

Crow and Bolten (2007), it appears that soil moisture

predictability can be a useful proxy for identifying the

uncertainties associated with satellite rainfall products.

Thus, merging diverse satellite rainfall products based

on hydrologic predictability may lead to a superior sat-

ellite rainfall product if the spatial error signatures of

individual products are properly leveraged.

For example, if product A is historically more con-

sistent in yielding more accurate soil moisture estimates

at valley regions over product B, then, in place of using

a universal merging formula (i.e., one merging algorithm

for the whole basin), it makes more sense to merge the

two products over valley regions with higher weight for A.

Therefore, it is our hypothesis that leveraging the spatial

signatures of hydrologic variable predictability can be

a more useful guide in merging products for better hy-

drologic prediction. Because of a plethora of satellite

rainfall products, this hypothesis should now be tested in

a scientific and systematic approach in the lead up to

GPM. As a broader impact, the outcome of our research

will act as a pathfinder to optimal use of emerging satellite

rainfall products in operational hydrology in the near

future (i.e., the GPM era).

2. Study area, model description, and data

The study was conducted in Mississippi River basin

(MRB), which is one of the biggest and most important

basins in the United States, with major contributions to

the physical and economic growth of the nation (F F1ig. 1).

It has four major tributary rivers, which include the

Missouri, Ohio, Arkansas–Red, and Tennessee Rivers.

The basin has a total area of 3 224 535 km2 (1 245 000 mi2)

and it encompasses more than 32% of the U.S. land area.

The basin covers wide range of topographic regimes

from low land, such as 1 m above mean sea level (MSL) to

mountainous area (above 4300 m MSL). Higher-elevation

regions mostly dominate the western part of the basin

and the extreme edges of the eastern border. The land

use of the western part of the basin is characterized by

forest, shrub land, and savanna/grassland. The eastern

and southern parts are described by forest and central,

whereas the northern parts are dominated by cropland

and natural vegetation. Average annual precipitation

increases from approximately 200 mm in the west to

1800 mm in the east. The diverse climate, land use, to-

pography, and hydrologic features make the MRB an

ideal test bed to explore concepts on leveraging spatial

characteristics of satellite rainfall outlined earlier.

In this study, the Variable Infiltration Capacity (VIC)

macroscale hydrological model (Liang et al. 1994; Liang

and Xie 2001; Liang et al. 1996; Liang et al. 1999) was

implemented for estimation of runoff and soil moisture

of the basin. A unique feature of VIC is its capability to

carry out complete water and energy balance on a grid-

cell basis at subdaily time steps. VIC can simulate the
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partitioning of incoming energy and moisture at the land

surface into separate components of energy and water

balance (Su et al. 2008). The model also considers the

spatial variability of soil moisture, precipitation, vege-

tation cover, and topography, and the subgrid variability

in soil properties is represented by a spatially varying in-

filtration capacity (Liang 1994; Cherkauer and Lettenmaier

199AU4 9; Su et al. 2008). Therefore, this feature makes the

model ideal for understanding the spatial features of

runoff and soil moisture simulation.

The VIC model inputs include meteorological forcing

data (daily precipitation, maximum temperature, mini-

mum temperature, and wind speed), soil data, vegeta-

tion cover, gridcell elevation, and snowband elevation.

The VIC model was set up for ingestion of three high-

resolution satellite rainfall products. In addition, the

merged satellite rainfall and gridded ground rainfall

data, which were considered as ground validation (GV),

were also ingested in VIC. VIC simulated runoff and

base flow of grid cells were then routed to the outlet

points using the Horizontal Routing Model (HRM;

Lohmann et al. 1998). Streamflow simulation was as-

sessed at six internal gauging stations (Fig. 1). Model

parameters, such as variable infiltration curve parameter,

maximum velocity of base flow, fraction of velocity of

base flow, fraction of maximum soil moisture, and depth

of soil layers that control infiltration and subsurface

moisture storage, were calibrated to maximize the

agreement between predicted and observed streamflow

at the gauging stations as indicated inAU5 FF3 ig. 3a,b.

The ground observation of rainfall data was available

from Washington University Surface Hydrology Group.

In their native format, the data originate from a point

gauge network. For application in VIC, the gauge data

were gridded for the entire nation based on the SYMAAU6 P

interpolation algorithm (Bowling et al. 2004) at a spatial

resolution of 0.1258 and a temporal resolution of a day.

During the preparation of input dataset for the VIC

model, the only varying aspect for different scenarios was

the precipitation, which was obtained from different satel-

lite products. These satellite products were research-graded

satellite rainfall product [TRMM real-time precipitation

product 3B42 (3B42-RT); Huffman et al. 2007]; passive

microwave (PMW)-derived rainfall estimate [the Na-

tional Oceanic and Atmospheric Administration

(NOAA)/Climate Prediction Center morphing technique

(CMORPH); Joyce et al. 2004]; and neural network

algorithm-based generated rainfall product [Precipitation

Estimation from Remotely Sensed Information using

Artificial Neural Networks-Cloud Classification Sys-

tem (PERSIANN-CCS); Hong et al. 2004; Hsu et al.

2010].

3. Methodology

As mentioned earlier, the core science question

addressed was related to the merging of satellite

FIG. 1. (left) The location of MRB in the United States. (right) Elevation of the study basin, river system, and river

gauging stations where simulation was performed.

FIG. 2. Mean annual rainfall in MRB (mm yr21).
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precipitation product to improve the simulation accu-

racy of hydrological variables: namely, streamflow in

this case. In this study, a linear combination of weight

factors that are inversely proportional to error variance

[i.e., mean squared error (MSE)] of soil moisture and

runoff were applied to merge the satellite rainfall

products. First, the a priori MSE [Eq. (1)] in soil mois-

ture and runoff simulation for each grid box was calcu-

lated using as reference, the simulation obtained from

gauge precipitation. Next, the MSEs were inverted and

used as weights according to Eq. (2). The weights were

relative and unbiased and hence they added up to one.

Finally, the merged rainfall product for each grid box

was a linear weighted combination of the weights per

Eq. (3),

MSE(i, j) 5

�
m

k51
[Psat(i, j)k 2 Pgrd(i, j)k]2

m
, (1)

w(i, j)r 5
1=MSE(i, j)r

�
n

r51
1=MSE(i, j)r

, (2)

Pmgd(i, j)r 5 �
n

r51
w(i, j)rP(i, j)r, and (3)

�
n

r51
w(i, j)r 5 1, (4)

where Psat is prediction from satellite rainfall data; Pgrd

is prediction from ground data; Pmgd is merged satellite

rainfall; i, j is the location of the grid cell; m is the total

number of data used; n is the number of satellite prod-

ucts in the merging; and w is the weight factor for in-

dividual grid cell for particular satellite product. Although

the focus of our study was not on the development of

a mathematical theory for merging, it should be re-

membered that the use of a linear combination of weights

implies the following three assumptions for theoretical

validity: (i) the input/output response is linear; (ii) the

errors are unbiased and normal; and (iii) the measure-

ments in the individual satellite products are statistically

independent. Although our study does not make these

assumptions explicitly [i.e., clearly assumption (i) does not

hold for the case of rainfall–runoff transformation,

whereas assumptions (ii) and (iii) cannot be completely

FIG. 3. Streamflow simulation performance of various rainfall products. (a) Calibration and

(b) validation sample results for the VIC model using GV rainfall data on the Ouachita River at

Camden, Arkansas. (c),(d) Simulated streamflow from three satellite rainfall products (3B42-

RT, CMORPH, and PERSIANN-CCS) on the Ohio and Wabash Rivers, Illinois.
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proved or disproved for satellite data), we recognize that

any generalizable mathematical theory of hydrologically

relevant merging of satellite precipitation products

based on the linear combination of weights will need to

address these assumptions at some point.

The VIC model was calibrated for GV rainfall data

using measured streamflow as shown in Figs. 3a,b. The

periods of calibration and validation were 2003 (1 yr)

and 2004–05 (2 yr), respectively. The soil moisture and

runoff were predicted for all satellite rainfall datasets for

FIG. 4. Plot of spatially distributed average merging weight factors generated for MRB for the calibration period (2003). The merging

weight factors are derived based on (top) runoff error and (bottom) soil moisture error for three satellite rainfall products (3B42-RT,

CMORPH, and PERSIANN-CCS).

FIG. 5. Comparison of observed and simulated streamflow from two merged satellite products

at three streamflow gauging stations.
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the calibration period. Using this period, the a priori

(historical) weights for each product were derived from

soil moisture and runoff error (relative to that simulated

by GV rainfall data). The MSE at each grid box was used

as the proxy for weight of each product at that specific

grid box according to Eqs. (1)–(4). The merging concept

was tested on independent satellite rainfall data (i.e., not

used for calibration or deriving merging weights) and

period set that extended beyond the calibration period

from 2004 to 2005 (2 yr).

4. Results

In this study, we analyzed the performance of three

satellite rainfall products in hydrologic modeling and

employed merging methodology that leveraged a priori

hydrologic predictability to yield a more accurate merged

product. A comparison of streamflow simulation based

on various satellite rainfall products with observed flow

revealed clear differences. During the validation period

(2004–05), satellite products (except for the merged

products) were mostly found to overestimate the stream-

flow at the selected gauging stations. In Figs. 3c,d, the

CMORPH rainfall product overpredicted the streamflow

much more compared to the other satellite products. The

PERSIANN-CCS product yielded better flow simula-

tion during the recession stages of a flooding event, and

it also captured the low-flow regime realistically. When

compared to CMORPH and PERSIANN-CCS, the

3B42-RT satellite product seemed to yield better simu-

lation of streamflow. Because of the spatial and tem-

poral variation in performance among satellite rainfall

products, it seems logical to use of more than one

product (combined products). By using a gridbox by

gridbox merging algorithm, such a combined product

can potentially account for the space–time performance

limitations (and complement the strength) of each in-

dividual product.

Figure 4 illustrates the spatially distributed merging F4

weight factors of the basin which is generated based on

the error variance (MSE) of runoff and soil moisture

(top and bottom panels, respectively). Large differences

and distinct patterns are seen across the whole basin for

all products and for both scenarios (runoff and soil

moisture). A higher the weight factor indicates greater

accuracy in prediction by the rainfall product. From Fig. 4

(top), the values of the weighting factors for 3B42-RT lie

between 0.2 and 0.3 at the western edge of the basin

(Missouri subbasin). This area is mainly characterized

by high mountains (Fig. 1). It also receives an average

TABLE 1. Evaluation of performance of various rainfall products in simulating streamflow at six gauging stations in MRB for the

period of 2004–05. Note that, in this study, error is defined as satellite rainfall estimate minus GV rainfall.

Stations

Performance

measures

Rainfall products for streamflow simulation

Drainage area

(mi2)

Gridded GV

rainfall data

3B42-

RT CMORPH

PERSIANN-

CCS M_SM M_ROF

Ouachita River at

Camden, AR

5510 Relative BIAS (%) 14 22 21 277 266 22

Relative RMSE (%) 41 38 90 85 73 42

Correlation coef 0.9 0.9 0.6 0.4 0.7 0.8

Nash–Sutcliff efficiency 20.4 0.0 21.4 0.3 0.4 0.1

Ohio River at

Metropolis, IL

241 000 Relative BIAS (%) 67 141 191 44 253 14

Relative RMSE (%) 89 112 230 95 71 56

Correlation coef 0.7 0.2 20.4 0.0 0.1 0.3

Nash–Sutcliff efficiency 0.0 0.1 29.1 20.4 21.2 0.6

Wabash River at

Mt. Carmel, IL

28 932 Relative BIAS (%) 157 261 238 44 230 44

Relative RMSE (%) 132 227 223 71 68 66

Correlation coef 0.7 0.8 0.3 0.6 0.6 0.6

Nash–Sutcliff efficiency 21.9 28.6 25.6 0.3 0.0 0.3

French Broad River

near Newport, TN

1972 Relative BIAS (%) 70 84 41 250 262 216

Relative RMSE (%) 94 141 98 75 74 60

Correlation coef 0.6 0.2 0.2 0.3 0.5 0.5

Nash–Sutcliff efficiency 21.0 23.6 20.9 0.6 0.6 0.6

Missouri River at

Hermann, MO

570 650 Relative BIAS (%) 12 100 708 284 229 10

Relative RMSE (%) 56 117 813 321 51 42

Correlation coef 0.4 0.5 0.3 0.5 0.4 0.6

Nash–Sutcliff efficiency 20.4 26.8 2304 250.9 0.5 20.3

Canadian River at

Calvin, OK

28 900 Relative BIAS (%) 134 138 646 233 25 59

Relative RMSE (%) 89 80 276 132 34 53

Correlation coef 128 128 511 230 72 81

Nash–Sutcliff efficiency 0.6 0.5 0.3 0.2 0.6 0.6
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annual rainfall of 600–800 mm (FF2 ig. 2). CMORPH, on

the other hand, has the minimum weight factor, between

0 and 0.1, extending into northern, central, and southern

parts of Mississippi basin. As was shown earlier in Fig. 3,

the CMORPH product overestimated the streamflow

for most seasons and therefore has relatively small

weights over most of the basin. PERSIANN-CCS has

moderately high weights, particularly in the eastern part

of the basin, which receives the maximum mean annual

rainfall (above 1200 mm).

For the case of soil moisture–based merging, the

bottom-left panel map indicates a good performance of

3B42-RT product in the western part of the basin. In this

region, the weight factors ranges from 0.5 to 0.7, whereas,

in the other part of the basin, the merging weight varies

between 0.2 and 0.4. Unlike the runoff-based merging

weights, all the three satellite rainfall products have fairly

similar range of weight factors (between 0.2 and 0.4) over

most part of the basin (Fig. 4, bottom). This is because the

rainfall first accounts for the soil moisture storage in the

hydrologic process for unsaturated soils. Thus, regardless

of the magnitude of the rainfall rate, the soil moisture

distribution remains the same and results in similar

weight factors across the basin.

FF5 igure 5 shows the performance of merged satellite

rainfall product for simulation of streamflow at the three

gauge stations. Accordingly, the soil moisture–based

merged satellite rainfall product (M_SM) under-

estimated the streamflow in most cases. It appears that

the merged satellite rainfall product obtained by

leveraging only soil moisture error simulates only the

low-flow regime well. Closer inspection indicated that

the soil moisture–based merged product failed to cap-

ture the peak flows (Fig. 5). This revealed an inherent

weakness of a merging concept that leverages only soil

moisture predictability. For example, if all products

yield saturation of soil, then the soil moisture error will

be the same. Consequently, this will result in similar

weight factors, despite different rainfall estimation er-

rors of individual products.

When we observe the performance of merging based

on runoff predictability, a different picture is revealed.

The runoff-based merged product (M_ROF) captures

the peak flows and reflects the seasonal flow pattern

remarkably better than soil moisture–based merging or

individual satellite products. In terms of both the cor-

relation coefficient and scalar performance measures,

this merged satellite rainfall product yields the highest

performance in predicting streamflow during the vali-

dation period (T T1able 1 and F F6ig. 6). The mean and stan-

dard deviation of the runoff-based merged product is

apparently very similar with the observed streamflow in

six gauge stations. Runoff is basically unbounded flux so

that it can be more dictated by the spatial and temporal

FIG. 6. Statistical comparison (mean and standard deviation) of observed and simulated streamflow from various

rainfall products for the period of 2004–05. The area of each subbasin is shown in Table 1. The following are were

shown (abbreviated accordingly): standard deviation, observed streamflow, gridded GV rainfall, 3B42-RT satellite

product, CMORPH, PERSIANN-CCS, M_SM, and M_ROF.
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variability of the rainfall in the basin. Hence, the runoff-

based merged rainfall product has produced a more

accurate streamflow simulation. Unfortunately, the

CMORPH shows a significant variation from the ob-

served both in mean and standard deviation (Fig. 6). The

nature of underestimation of streamflow for the soil

moisture–based merged product is also reflected in Fig. 6

because the soil moisture is bounded by the maximum

moisture storage capacity and thickness of soil layer. In

all cases, the mean and standard deviation of streamflow

FIG. 7. The histogram of (top) relative bias and (bottom) RMSE of streamflow vs subbasin area

(name of subbasin as per Table 1).

FIG. 8. Qualitative comparison of rainfall pattern and distribution among the three satellite rainfall products (3B42-RT, CMORPH, and

PERSIANN-CCS), ground observation, M_SM, and M_ROF for randomly selected 3 days during validation period.
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simulated from the soil moisture merged product is less

than the observed flow. In FF7 ig. 7, the CMORPH product

yielded high positive streamflow bias for the Missouri

River basin at Herman and for the Canadian River at

Calvin. These basins are mainly characterized by semi-

arid regions (Fig. 2). In semiarid area, because the actual

average soil moisture content is below saturation, the

actual runoff generated was considerably less (by the

infiltration-excess mechanism). Hence, a positive

streamflow simulation bias is not unexpected using

rainfall products with high overestimation.

Qualitative rainfall pattern, distribution, and magni-

tude of merged satellite rainfall products are compared

with individual satellite products and ground observa-

tion data for randomly selected dates from the valida-

tion period. As is shown in F F8ig. 8, the merged product’s

FIG. 8. (Continued)

FIG. 8. (Continued)
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performance is by far the closest to that of the GV data.

FF9 igure 9 also shows the scatterplot of satellite versus GV

daily rainfall for a particular grid cell within the Mis-

sissippi basin during the study period. From the graph, the

correlation is seen to improve for both runoff-based and

soil moisture–based merged satellite rainfall products.

The performance of rainfall product in simulating the

streamflow was also assessed using relative bias, root-

mean-square error (RMSE), correlation coefficient, and

Nash–Sutcliff efficiency as shown in Table 1. The rela-

tive bias for the merged satellite product was moder-

ately acceptable in comparison with the other products.

For the worst case, the runoff-based merged product

shows 44% and 59% of positive relative bias for the

Wabash and Canadian Rivers, respectively. This means

that it overpredicted the mean streamflow by 44% and

59% at these two streamflow gauging stations. For the

other stations, it performs considerably better. On the

other hand, the soil moisture–based merged product

underestimated the mean flow by 62% and 66% for the

Ouachita and French Broader Rivers, respectively. The

correlation and Nash–Sutcliff efficiency prove the better

accuracy of the merged product than individual satellite

products.

5. Discussion

As a preliminary analysis, leveraging a priori hydro-

logic predictability, like runoff and soil moisture, for

merging satellite products seems to yield clear benefits for

predicting streamflow in a macroscale hydrologic model.

This is an important and promising finding for hydrologic

modeling applications using satellite precipitation prod-

ucts. Because of the differences in performance among

various satellite rainfall products, it makes more sense to

optimize performance by merging them accordingly to

their spatially (and temporally) varying individual pre-

dictability. Such a gridbox by gridbox merging concept

should be advocated for hydrologic prediction.

Because the merging coefficients vary spatially, the

merged rainfall product may not always be smooth like

a real rainfall pattern. Thus, spatial smoothing techniques

need to be devised to get the real representation of

rainfall pattern. In our proposed merging methodology,

the sum of the weight factor is also constrained to one for

each grid cell. This can be a major limitation under spe-

cific circumstances. For example, if all the three satellite

products overestimate or underestimate the rainfall value

at the same time over the same grid box, then the merged

FIG. 9. Scatterplots of ground observation vs satellite rainfall data at a particular grid cell. It shows the improvement

of correlation coefficients of the merged satellite products for the period of 2004–05.
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satellite will also do likewise. Application of unconstrained

optimization may thus be able to overcome this limitation

of the ‘‘unbiased estimator’’ weight factor merging ap-

proach.

Finally, the result of this particular study also suggests

that further exploration into the merging concept with

respect to climate and landform features may have great

significance in developing globally applicable rules for

merging rainfall products for ungauged basins. Because

in situ GV data are likely to be unavailable for most

river basins around the world, using climate and land-

form features as a proxy for the relative weight for hy-

drologic predictability of an individual satellite product

may have merit. The result shown in Fig. 4 also assures

the possibility of transferring the merging weights from

gauged to ungauged basins that have similar landform

feature and climate characteristic. A similar approach

reported by Tang and Hossain (2011) has revealed that

certain error metrics for satellite rainfall bear similari-

ties across different continental landmasses within the

same Koppen climate class. Abdulla and Lettenmaier

(1997) have reported work on the transfer of model

parameters for large river basins (ungauged) for the VIC

model. They found that simulations based on the regional

regression transfer scheme performed significantly supe-

rior to parameter interpolations. Hence, it is plausible

that streamflow predictability of satellite rainfall products

may exhibit similar climate-centric behavior and trans-

ferability at ungauged river basins. Work is currently un-

derway to explore some of the above open issues, and we

hope to report our further explorations in the near future.
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