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Assessment of a Multidimensional Satellite Rainfall
Error Model for Ensemble Generation of

Satellite Rainfall Data
Faisal Hossain and Emmanouil N. Anagnostou

Abstract—This letter presents preliminary insights from the
pursuit of the following scientific query: “How realistic is en-
semble generation of satellite rainfall data by a multidimen-
sional satellite rainfall error model?” The authors first evaluated
the scale-dependent multidimensional error structure for two
satellite rainfall algorithms developed at the NASA Goddard
Space Flight Center, namely: 1) the infrared (IR) estimates known
as the 3B41RT product and 2) the combined passive microwave
(PMW) and IR estimates known as the 3B42RT product. Ground
radar (WSR-88D) rainfall fields from the Southern Plains of the
U.S. were used as reference. Next, by reversing the definition of ref-
erence and corrupted rain fields produced by a multidimensional
satellite rainfall error model (SREM2D, developed by Hossain and
Anagnostou), the authors derived the inverse multidimensional
error structure of WSR-88D rainfall fields with respect to the
satellite rainfall estimation algorithms. SREM2D was then applied
on actual satellite rainfall data with the pertinent inverse error
parameters to generate an ensemble of most likely realizations of
the reference WSR-88D rainfall fields. The simulated ensemble
was then compared with that derived from a simpler (bidimen-
sional) inverse error modeling approach. The accuracy of the
SREM2D rainfall ensemble was observed to be higher than the
simpler error-modeling scheme for the 3B41RT product. No tan-
gible improvement was observed for the 3B42RT product, which
is attributed to the heterogeneous nature of 3B42RT data statistics
that was not accounted for in the inverse SREM2D approach. The
overall conclusion is that a multidimensional error modeling ap-
proach such as SREM2D has the potential to generate realistic en-
sembles of satellite rainfall fields, which should be considered as an
improvement over the more widely used simpler error-modeling
scheme. A combined use of the multidimensional error model with
a sequential error correction scheme could therefore potentially
improve the diagnosis of satellite rainfall-based predictability of
the global water and energy cycle.

Index Terms—Ensemble satellite rainfall generation, global
energy, infrared (IR), inverse model, multidimensional error
structure, passive microwave (PMW), scale, water cycle.
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I. INTRODUCTION

THE SATELLITE sensors [such as infrared (IR) and pas-
sive microwave (PMW)] that provide observations for rain

estimation operate on distinct physical principles and exhibit
different types of indeterminacy in estimation. This explains,
to a large extent, the lack of unity and consistency among
various types of satellite rainfall estimates [3]. As a natural
consequence, numerous error studies have evolved on the quan-
tification of the accuracy of various satellite rainfall estimation
algorithms. Most of these studies, however, concentrate on
rain estimation uncertainty issues associated with large spa-
tiotemporal scales involving limited number of error statistics
(such as [1], [8], [13], and [18], among others). Although
useful for assessing the application of satellite rainfall data for
long-term climatologic or water balance studies, these error
statistics do not offer significant insight toward gauging the
predictability of more dynamic and finer scale land surface
hydrologic processes such as floods or soil moisture dynamics
[9], [10]. Also, most satellite rainfall error models to date focus
primarily on the sampling uncertainty arising from the low
frequency of PMW sensor overpasses wherein the algorithm
uncertainty has often been assumed a negligible component
of the total rainfall error budget [2], [7], [24], [25]. However,
with the anticipated abundance of PMW sensor rainfall data
from the proposed global precipitation measurement (GPM)
[23] mission that is expected to begin in 2010, it now appears
critical to have the ability to accurately model the error struc-
ture of satellite rainfall at fine space–time scales (< 0.1◦ and
1–3 hourly) [10].

A problem encountered with application of satellite rainfall
data at fine scales is the increasing frequency of mismatches
(with the ground reference) that satellite rainfall data is pro-
gressively exposed to at these finer spaces and times. Under
such a circumstance, simpler error statistics (such as root-mean-
square error) have been found inadequate in distinguishing
the physical consistency (or the lack of it) among satellite
rainfall products [15]. Recent research also indicates that the
desired progression to finer scales in satellite rain estimation is
actually counterbalanced by an increasing dimensionality of the
retrieval error, which has a consequentially complex effect on
the propagation through land surface–atmosphere interaction
simulations [4], [10]–[12]. In essence, this scale incongruity
between meteorological data and its hydrologic application rep-
resents a competing tradeoff for lowering the satellite retrieval
error versus modeling finest scale land–vegetation–atmosphere
processes that is necessary. It is therefore obvious that if the
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predictability of the global water and energy cycle is to move
forward on the basis of satellite rainfall data, then a generic sys-
tem is needed that can address this scale-dependent incongruity
without resorting to larger spatiotemporal averaging.

In the spirit of tackling this scale-dependent incongruity,
Hossain and Anagnostou [9]–[12] have demonstrated that a
detailed decomposition of the satellite rainfall error structure
to a multidimensional stochastic hyperspace can indeed distin-
guish the various facets of physical consistency among satellite
rainfall products and consequently improve our understanding
of the utility of satellite rainfall data for predicting dynamic hy-
drological processes. The two-dimensional satellite rainfall er-
ror model (SREM2D) is one such stochastic multidimensional
error modeling approach developed and verified by Hossain
and Anagnostou [10]. SREM2D corrupts reference rain fields
(of higher accuracy) to generate an ensemble of equiprobable
traces of satellite-like estimates, which can subsequently be
used to construct scientific inquiries on advancing the satellite-
based predictability of the global water and energy cycle
(see [11] and [12] for an example). Herein, the term “mul-
tidimensional” refers to the multiple facets (> 2) of satellite
rainfall estimation that extend beyond the simpler aspects (=2)
of systematic and random retrieval error components, whereas
the term “two dimensional” coined with SREM2D refers to the
spatial nature (x, y) of satellite rain fields simulated by the error
model. A nonexhaustive list of the multiple facets of satellite
rainfall estimation could be as follows: 1) the probability of
successful detection/delineation of rainy and nonrainy areas
with coherent spatial structures; 2) the probability distribution
of false rain rates over nonrainy areas; 3) the temporal dynamics
of rain estimation bias, etc. We provide a more exhaustive
elaboration of these multiple facets of SREM2D model in the
latter section of this letter.

In this letter, we therefore share our preliminary insights
with the research community (comprising the satellite data
producers and users) from an ongoing pursuit of the following
scientific query: “How realistic is ensemble generation of satel-
lite rainfall data from a multidimensional satellite rainfall error
model?” We particularly focus on ensemble generation because
of two reasons: 1) ensemble quantitative precipitation forecast-
ing (QPF) is a well-established protocol nowadays among the
scientific community and operational data producers [5]; and
2) ensemble generation allows the assessment of hydrologic
error propagation in probabilistic terms, thereby relaxing the
common assumption of satellite rainfall estimation as being
a deterministic process [28]. In addressing our question, we
used reference rain fields from rain gauge-calibrated ground
radar (WSR-88D) measurements in the Southern Plains of the
U.S. to evaluate the multidimensional error structure for two
contrasting satellite-based rain retrieval algorithm developed
at NASA Goddard Space Flight Center. Next, we derived the
inverse (retrieved) multidimensional error structure of ground
radar rain fields with respect to the algorithm by reversing
the definition of reference and corrupted rain fields (produced
by SREM2D). SREM2D was then applied on actual satellite
rainfall data with the pertinent inverse error parameters to
simulate realization of reference rain fields.

It is appropriate to highlight at this stage that SREM2D
is conceptually different from the recently emergent body of

work on quantifying the scale-dependent uncertainty of satellite
rainfall estimates (see [26]–[28], among others). SREM2D
has been conceptualized with the following three design ob-
jectives: 1) it should function as a filter wherein the hydro-
logical implications of fine-scale components of the satellite
precipitation error structure can be explicitly determined by
coupling it with a hydrological/land surface model; 2) it should
be modular in design with the capability to allow uncertainty
assessment of any satellite rainfall algorithm; and, finally,
3) the error parameters of SREM2D should be such that their
hydrologic implications are physically interpretable by the data
producers and thus provide better focus to the development of
next generation multisensor algorithms in anticipation of GPM.
To the best of our knowledge, other frameworks on the scale-
dependent error quantification, although useful in their unique
ways, do not possess all these three attributes simultaneously in
one single package. We would also like to highlight that the
approach adopted herein does not address satellite rainfall
estimation per se. Furthermore, our work should also not be
construed as a suggestion of redundancy of the physically based
breakthroughs in satellite precipitation remote sensing. The
singular focus of our study is on advancing our ability to extract
more useful hydrologic information from satellite rainfall data
by harnessing knowledge of its scale-dependent multidimen-
sional error structure. In the following section, we briefly
describe SREM2D, the datasets, study region, simulation ex-
periment, and, finally, the insights extracted from our study.

II. SREM2D

The major dimensions of error structure in satellite estima-
tion modeled by SREM2D are as follows: 1) the joint prob-
ability of successful delineation of rainy and nonrainy areas
accounting for a spatial structure; 2) the temporal dynamics
of the conditional rainfall estimation bias (rain > 0 unit);
and 3) the spatial structure of the conditional (rain > 0 unit)
random deviation. The spatial structure in SREM2D is mod-
eled as spatially correlated Gaussian random fields, whereas
the temporal pattern of the systematic deviation is modeled
using a lag-one autoregressive process. The spatial structures
for rain and no-rain joint detection probabilities are modeled
using Bernoulli trials of the uniform distribution with a cor-
related structure. This correlation structure is generated from
Gaussian random fields transformed to the uniform distrib-
ution random variables via an error function transformation.
In total, SREM2D models the satellite rainfall error structure
via nine parameters (and hence a nine-dimensional stochastic
hyperspace). These SREM2D error parameters are as follows:
1) probability of successful detection of rain pixels (as a func-
tion of reference rainfall); 2) probability of successful detection
of nonrainy pixels; 3) second-order moments of the probability
density function of false satellite rain rates over nonrainy pixels;
4) conditional rainfall retrieval bias (multiplicative); 5) standard
deviation of conditional rainfall retrieval error (multiplicative);
6) correlation length for the successful delineation of rainy
areas; 7) correlation length for the successful delineation of
nonrainy areas; 8) correlation length for the conditional re-
trieval error (multiplicative); and 9) lag-one time-step auto-
correlation of rainfall estimation bias. For more details on



HOSSAIN AND ANAGNOSTOU: ASSESSMENT OF A MULTIDIMENSIONAL SATELLITE RAINFALL ERROR MODEL 421

Fig. 1. Study region in the Southern Plains bounded between −100◦W
and 95◦W and 37◦N and 34◦N. At 1/4◦ resolution, the domain comprises
20 × 12 pixels. The boxed areas represent the three spatial integration area
domains used in the study. The solid circles show locations of the Oklahoma
Meso-network meteorological stations.

SREM2D, the reader is referred to the formulation and vali-
dation assessment provided in [10].

III. DATA, STUDY REGION, AND METHODS

We selected two satellite rainfall data products and corre-
sponding ground radar rainfall fields as the reference input for
corruption by SREM2D. In terms of the satellite retrievals, we
selected the following two algorithms: 1) hourly IR estimates
with homogeneous statistics known as the 3B41RT product
and 2) three hourly combined PMW and IR estimates with
heterogeneous statistics known as the 3B42RT product. Both
these products are produced at NASA Goddard Space Flight
Center at the 0.25◦ spatial resolution and are publicly avail-
able in pseudo real time on a best effort basis [14]. Radar
rainfall fields were derived from WSR-88D observations us-
ing the National Weather Service multicomponent precipita-
tion estimation algorithm with real-time adjustments based on
mean-field radar-rain gauge hourly accumulation comparisons
[6], [21], [22]. To minimize effects due to complex terrain and
range effects, the calibration exercise was performed over the
region of Oklahoma bounded by −100◦W to 95◦W and 37◦N to
34◦N (Fig. 1). We selected a study period of four months (May
1, 2002 to August 31, 2002; 2952 hourly time steps each with
20 × 12 pixels at 0.25◦ resolution) to determine the SREM2D
error parameters for 3B41RT. For determination of the
SREM2D error parameters for the three hourly 3B42RT prod-
uct, we considered radar rain fields at the corresponding
three hourly time scales. The error modeling performance of
SREM2D was compared against a simpler but more widely
used version of error modeling (examples of such models
can be found in [19] and [29]). We name this error-modeling
approach as SIMP where we modeled the rain rate estimation
error (assuming perfect delineation of rainy and nonrainy areas)
without any coherent spatiotemporal structure. This means that
the SIMP methodology employed mainly two error parameters,
namely: 1) systematic (mean) and 2) random (variance) errors.
These two parameters were assumed the same as those used in
SREM2D. Further details on the SREM2D calibration of error
parameters over the study region can be found in [10].

Next, we derived the multidimensional SREM2D error pa-
rameters in the inverse mode. In this mode, the actual satel-
lite rainfall retrievals were assumed as our “reference” for
derivation of the multidimensional deviation of the reference
WSR-88D rain fields. By applying SREM2D with these in-
verse “error” parameters on actual satellite data, we simulated

Fig. 2. Two modes of SREM2D error parameter estimation. The forward
mode (upper panel) is an already demonstrated concept used in recent error
propagation studies by Hossain and Anagnostou [10]–[12]. The inverse mode
is proposed as a way to provide ensembles of satellite rainfall fields calibrated
to reference rainfall observations.

TABLE I
FORWARD AND INVERSE SREM2D ERROR PARAMETERS EVALUATED

AT 0.25◦ RESOLUTION FOR 3B41RT AND 3B42RT

realizations of WSR-88D rain fields. In this way, this inverse
approach allowed us to evaluate the ability of SREM2D to
further improve the accuracy and precision (discussed next)
of ensemble of satellite rainfall data by exploiting knowledge
of its scale-dependent multidimensional error structure. The
inverse approach of SREM2D was next compared with the
inverse approach of SIMP with the same pertinent inverse
error parameters. Fig. 2 summarizes schematically the inverse
approach undertaken in this letter and presents it in perspective
of the more usual forward approach used for error propagation
studies. In Table I, we summarize the SREM2D error parame-
ters for both the forward and inverse approaches that were com-
puted according to [10]. Significantly lower bias and standard
deviation of conditional retrieval error is observed for 3B42RT
as compared with 3B41RT, which can be attributed to the
merging of the more accurate PMW rainfall estimates with the
IR rainfall data. The lower spatial correlation lengths reported
for the 3B42RT product is possibly a manifestation of the
heterogeneous statistics of the data due to the merging of PMW
instantaneous rain rates with IR estimates [14]. Twenty Monte
Carlo (MC) simulations were run for the inverse SREM2D and
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Fig. 3. Ensemble envelopes of satellite-retrieved cumulative hyetographs
(dotted lines) for two error-modeling schemes, namely: 1) SREM2D (upper
panel) and 2) SIMP (lower panel). Solid line represents the ground reference
WSR-88D cumulative hyetograph. Long-dashed line is the actual 3B41RT
cumulative hyetograph used as input to the inverse error models.

SIMP approaches. Hossain and Anagnostou [10] have reported
that about 15 MC runs are usually adequate to converge to the
global error statistics for the study region. The corresponding
prediction range (maximum and minimum) of the cumulative
rainfall hyetograph (over the whole study period) were then
derived from the ensemble of simulated rain fields averaged in
three areal domains (see Fig. 1): 1) 5◦ × 3◦ (20 × 12 pixels),
2) 2.5◦ × 1.5◦ (10 × 6 pixels), and 3) 0.5◦ × 0.5◦ (2 × 2 pixels).

IV. RESULTS AND DISCUSSION

Figs. 3 and 4 (upper panels) show the ensemble envelope
of the simulated rainfall hyetographs produced by the inverse
SREM2D approach for the three areal domains. This is com-
pared with the ensemble envelope produced by the inverse
SIMP approach in the lower panels of Figs. 3 and 4. The
following two considerations are used to compare the two
ensemble error simulations. If the ensembles (i.e., uncertainty
limits) are too narrow, and the whole ensemble envelope
is biased (i.e., WSR-88D rainfall hyetograph is outside the
upper/lower bounds), it suggests that the inverse error modeling
approach lacks the statistical consistency to constrain/improve
the uncertainty of satellite rainfall estimates. On the other hand,
if the ensemble envelope is too wide, it could be concluded
that the inverse approach has inadequate predictive ability. The
dual paradigms of statistical consistency and predictive ability
are analogous to the notions of accuracy and precision of the
ensemble simulation. We observe significant differences in the
hyetograph ensemble ranges between the inverse SREM2D and
SIMP for the 3B41RT product. Inverse SREM2D envelops
consistently the observed rainfall hyetograph of WSR-88D in
all scales of aggregation, whereas inverse SIMP is found to be
inadequate (Fig. 3). The inverse SREM2D and SIMP ensemble
envelops are comparable in terms of width (SREM2D is slightly
wider), whereas the width changes consistently with scale.
However, the inverse SREM2D approach is found to impart no
tangible improvement for ensemble generation of the 3B42RT
product (Fig. 4). We attribute this behavior to the absence
of homogeneous statistics in 3B42RT data [14] that possibly

Fig. 4. Same as Fig. 3, but for the 3B42RT product.

rendered the inverse SREM2D approach ineffective. We spec-
ulate that the adoption of separate statistics for the PMW and
IR rainfall pixels could have potentially resolved this issue.
However, detailed feasibility assessment is required to identify
the algorithm modifications necessary for the inverse SREM2D
approach to be suitable for data with heterogeneous statistics.
Overall, findings from this study indicate that modeling the
rainy/nonrainy area delineation and spatiotemporal correlation
of error in the inverse mode can considerably improve the
accuracy satellite rainfall estimates with homogeneous statisti-
cal distribution without compromising the predictive capability
(precision) of the algorithm.

One implication of the above-observed difference between
multidimensional and simpler (bidimensional) error modeling
strategies could be on the potential amelioration of satellite
rainfall products to make them more suitable for advancing the
predictability of the water cycle at fine space–time scales. This
amelioration could be achieved for any satellite rainfall prod-
uct via the inverse SREM2D approach and knowledge of the
regional/seasonal variability of the error model parameters. A
very important issue that concerns the operational precipitation
producer in this regard is the development of an on-line error-
correction scheme to adjust the near real-time precipitation
products from operational systems at instantaneous timescales.
Currently, there is a wide body of literature on successful
application of instantaneous sequential techniques for dynamic
updating of time varying parameters (see [17] for an exhaustive
list). Although beyond the scope of this letter, findings from
our work demonstrate that there is merit in pursuing the devel-
opment of a real-time dynamic error correction scheme for re-
alistic ensemble generation of satellite rain fields on the basis of
inverse SREM2D. The improved ensembles of satellite rainfall
data from a real-time inverse SREM2D could then be integrated
in a more optimal fashion in off-line land surface models. Two
widely used systems that rely on off-line LSMs and satellite
rainfall data to provide high-resolution estimates of the land
surface hydrologic state are the Land Data Assimilation System
(LDAS) [20] and the Land Information System (LIS) [16].

V. CONCLUSION

Our preliminary investigations showed that a multidimen-
sional error modeling strategy such as that formalized by
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Hossain and Anagnostou [10] can provide progressive answers
to the question that we posed earlier in this study, namely,
“How realistic is ensemble generation of satellite rainfall data
from a multidimensional satellite rainfall error model?”. Our
overall conclusion is that a multidimensional error modeling
approach such as SREM2D has the potential to generate re-
alistic ensembles of satellite rainfall fields with homogeneous
statistics, which should be considered as an improvement
over the more widely used simpler error-modeling scheme.
The greater accuracy was manifested by the use of inverse
SREM2D through generating satellite rain ensembles capable
of enveloping the reference rain fields derived from the more
definitive ground radar observations. On the other hand, a
simpler error modeling strategy, such as a stochastic error
field generator with no acknowledgement of rainy/nonrainy
area delineation and spatiotemporal error structure, revealed
limited capability in producing realistic ensembles from satel-
lite rainfall data and constrain them it to the ground truth. In
anticipation of future water cycle and climate missions such
as GPM and HyDROS, it is our hope that the multidimen-
sional error modeling strategy of SREM2D proposed herein
will trigger detailed investigations to study ways to improve
satellite rainfall estimation for hydrologic and water cycle
applications on the basis of an a priori knowledge of the
multidimensional error structure at the region of application.
Such investigations could potentially provide further insights
into the optimal integration of satellite rainfall and near-surface
soil moisture retrievals in land data assimilation systems. One
immediate extension of our work in this regard is to explore
the combined use of our multidimensional error model with
a sequential error correction scheme to improve the diagnosis
of satellite rainfall-based predictability of the global water and
energy cycle. We hope to report our findings on this aspect
to the scientific community when we complete these extended
investigations.
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