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1 Understanding the Geophysical Sources of Uncertainty
2 for Satellite Interferometric (SRTM)-Based Discharge
3 Estimation in River Deltas: The Case for Bangladesh
4 Md. Safat Sikder and Faisal Hossain

5 Abstract—Like most river deltas, Bangladesh represents a geo-
6 graphically small region with numerous crisscrossing rivers. The
7 total number of rivers in Bangladesh exceeds 300, of which 57 rivers
8 are transboundary. Given the widespread unavailability of flow
9 data across the entire river basins of Ganges, Brahmaputra, and

10 Meghna, combined with a declining measurement network and
11 political challenges of sharing the data, satellite remote sensing of
12 discharge has recently become a viable alternative. This study was
13 motivated by the need to understand the geophysical sources of
14 uncertainty of satellite interferometric-based discharge estimation
15 in Bangladesh. A consequential goal of this study was to contextu-
16 alize the understanding as a function of river’s geophysical char-
17 acteristics (river width, reach averaging length, and bed/water
18 slope) and also to explore a pragmatic approach to uncertainty
19 reduction using water level climatology. Discharge was estimated
20 according to the slope-area (Manning’s) method using elevation
21 data from Shuttle Radar Topography Mission (SRTM). A high-
22 resolution hydrodynamic (HD) model was accurately calibrated to
23 simulatewater level andflowdynamics along the river reaches of the
24 river network and serve as reference for comparison with satellite-
25 based estimates. It was found that satellite interferometric (SRTM)-
26 based discharge estimates yielded estimation error variance an
27 order smaller than the natural flow variability only if the river
28 width was at least three times larger the width of the native
29 resolution of satellite elevation data. Rivers narrower than this
30 width (for SRTM, this cutoff is 270 m) yielded a coefficient of
31 variation larger than 1 due to contamination of land elevation data
32 in hydraulic parameter calculations. It was also found that water
33 level climatology can be useful in significantly reducing the estima-
34 tion uncertainty for these narrow rivers. While reach averaging
35 length appeared insensitive to accuracy for wide rivers (width
36 >1 km), a few rivers seemed to have an optimal reach averaging
37 length at which the highest accuracy is obtained. Finally, it was
38 found that if reach-averaged hydraulic parameters (area, slope, and
39 radius) are used for the calculation of reach-averaged discharge, the
40 needed linear (bias) correction factors, although unique and
41 arbitrary for each river reach, can improve accuracy of flow
42 simulations.

43 Index Terms—Discharge estimation, hydrodynamic (HD) model,
44 interferometry, Manning’s approach, uncertainty.

45I. INTRODUCTION

46B ANGLADESH is a low-lying delta in the foothills of the
47Himalayan Mountains. Like most river deltas, it repre-
48sents a geographically small region with numerous crisscrossing
49rivers. The total number of rivers in Bangladesh exceeds 300
50(Fig. 1). Among them, 57 rivers are transboundary—i.e., they
51cross the international border with Bangladesh. Of these, only
52three flow fromMyanmar, whereas the rest drain into Bangladesh
53from India. The three major rivers, Ganges, Brahmaputra, and
54Meghna rivers, drain about 1:72 million km2 of catchment area
55and yet only 7% of the area is within the country (http://www.
56jrcb.gov.bd/) [12].
57The average annual flow through the Ganges river is about
5812 120 m3=s, Brahmaputra river is about 19 200 m3=s, and the
59Meghna river is about 3510 m3=s [23]. However, this average
60flow belies the one order of inter-annual variability that these
61rivers experience. For example, the totalflowof these threemajor
62rivers during February is 18 200 m3=s, which then gradually
63rises to 243 500 m3=s during August [24].
64Almost every year Bangladesh suffers from flooding. The
65low-frequency floods of recent years have occurred in 1954,
661955, 1970, 1974, 1984, 1987, 1988, 1998, 2004, and 2007 [8],
67[16]. Such flooding mainly takes place when the peak discharges
68in the Brahmaputra, the Ganges, and the Meghna rivers coincide
69at the confluence (the Meghna Estuary) before draining into the
70Bay of Bengal. Twenty percent of the country is usually inun-
71datedwith the average annualflood,whereas the less frequent but
72more extreme floods typically inundate more than 35% of the
73area [16].
74Bangladesh adopts both structural and nonstructural mea-
75sures to mitigate flood damage. Among the nonstructural
76measures, the Flood Forecasting and Warning Center (FFWC;
77www.ffwc.gov.bd) is mandated with producing flood forecasts
78using a combination of hydrologic model and country-wide in situ
79rainfall/flow measurement network [6]. However, due to unavail-
80ability of data on discharge from the upstream transboundary
81region of Bangladesh (which represents 90% of the total drainage
82area), FFWC is only able to forecast up to 3-day lead time [25].
83Under such a scenario of data unavailability, remote sensing
84can be an alternative source. For example, the Scanning Multi-
85channel Microwave Radiometer (SMMR) on Nimbus-7 is an
86example of a passive microwave (PMW) sensor that can be used
87to determine the seasonal inundation pattern of rivers [32]. The
88radar altimeters on board Topex/POSEIDON [3], ERS1/2 [4],
89[30], ENVISAT [30], and JASON [27] are also proficient in
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90 measuring water level of wide rivers [29]. Synthetic aperture
91 radars (SARs) such as ERS-1 [11], JERS-1 [33], and RADAR-
92 SAT [35] are capable of measuring inundation during any
93 weather condition [22], [32].
94 Discharge, however, cannot be directly measured by any
95 remote sensing technique. As discharge represents the flux of
96 water though a channel cross-sectional area, a combination of
97 spaceborne observables such as water level (h), river width (w),
98 surfacewater slope (@h=@x), sinuosity, andwater body area need
99 to be used to estimate discharge [22]. A thorough review of

100 various approaches to determine discharge from space is provid-
101 ed in [1], which has recently been revisited and updated in [28].
102 For example, discharge can be estimated from the fluvial surface
103 velocity of rivers using airborne data (e.g., [7]) or spaceborne
104 data [26]. Discharge can also be determined by regression
105 analysis of spaceborne measurement of river width or inundated
106 area with in situ discharge data (e.g., [31]) or with estimated
107 shoreline elevation (e.g., [5]). Another approach is regression
108 analysis of radar altimeter and in situ measured discharge
109 (e.g., [17]). Among currently used techniques, one of the more
110 physically grounded approaches is that using Manning’s equa-
111 tion to derive discharge from spaceborne-derived water surface
112 slope and stage data using satellite interferometry (e.g., [9], [15],
113 [19], and [34]).
114 The water surface slope-based discharge estimation technique
115 using the Manning’s equation has particular importance due to
116 the upcoming Surface Water Ocean Topography (SWOT)

117mission. The SWOT mission will use a new type of Ka band
118radar interferometer (KaRIN), which will be mounted on either
119side of a 10 m long mast and will cover a 120 km wide swath [1]
120(http://swot.jpl.nasa.gov). With significantly higher quality water
121surface elevation image data on rivers and water bodies that is
122anticipated from the SWOT mission on a global and routine
123scale, it should be possible to improve the skill of the forecasting
124system for transboundary floods for Bangladesh [2], [13].
125The basic inputs in Manning’s equation to calculate discharge
126from satellite interferometry of elevation are: water surface slope
127(So) instead of friction slope (Sf ), cross-sectional area (A),
128Manning’s n as roughness of the channel and hydraulic radius
129(R), which can be derived from wetted perimeter (P ), and cross-
130sectional area (A). Stage (h) and slope (So) can be derived from
131radar interferometry and cross-sectional area (A), wetted perim-
132eter (P ) can be determined using stage (h), if in situ bathymetry is
133available. Manning’s n can be assumed (or calibrated) to derive
134discharge. For scenarios where in situ bathymetry is unavailable,
135Durand et al. [9], among others, have proposed a technique for
136discharge estimation by invoking the continuity equation or
137alternative approaches.
138However, due to the inherent uncertainty in measurement of
139spaceborne water elevation and river width parameters, errors
140propagate to estimated discharge regardless of the technique
141used. In addition, reach averaging is also required for slope
142(@h=@x) calculation, which consequently is likely to have a
143direct impact on the derived slope. Thus, accuracy of spaceborne

F1:1 Fig. 1. Calibration of the HEC-RAS (HD) showing the level of match at two key river locations for two unique rivers during the period of 2000–2002. The highlighted
F1:2 reaches shown in thick red lines represent the study reaches. Note: The flow observations for Mohadevpur are not continuous and are often biweekly.
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f144 estimated discharge can depend on various factors ranging from
145 the derived slope, reach averaging length, derived water eleva-
146 tion, and river width. In [34], Woldemichael et al. showed a
147 sensitivity analysis of change of section factor (AR2=3) along the
148 river reach. They suggest that the use of minimumwater level for
149 low-flow regimes can alleviate the uncertainty that can arise from
150 uncertainty in section factor estimation. In general, a broader
151 understanding is required for these controlling factors, namely
152 the geophysical sources that dictate the accuracy of satellite
153 discharge estimation using the slope-area method of Manning’s
154 equation. This understanding is critical to set the stage for
155 improvement of algorithms during the SWOT era building on
156 existing approaches that do not depend on the need for in situ
157 bathymetry measurements (such as [9] and [20]).
158 This study is motivated by the need to understand the river’s
159 geophysical sources of uncertainty for satellite interferometric-
160 based discharge estimation in the river delta of Bangladesh.
161 A consequential goal of this study is to contextualize the
162 understanding as a function of river characteristics (river width,
163 flow regime, and bed slope) and also to explore a pragmatic
164 approach of uncertainty reduction using flow climatology. Until
165 SWOT becomes a reality, the only global source of satellite
166 interferometric elevation data of water bodies that is also the
167 closest analog to the SWOT mission is the SRTM, albeit with
168 significant difference in scale, precision, and accuracy. Jung et al.
169 [15] and Woldemichael et al. [34] recently reported a case study
170 on the Brahmaputra river using the SRTM measurements
171 of @h=@x. This one-time SRTM mission (which flew over
172 Bangladesh on February 20, 2000) provided a global coverage
173 of digital elevation data using interferometry. Nevertheless, this
174 study is expected to have value for SWOT ifwe aremindful of the
175 following caveats (i.e., premise) that apply.

F2:1 Fig. 2. Steps to satellite-based discharge estimation using SRTM elevation data, in situ bathymetry, and Manning’s equation (after Woldemichael
F2:2 et al. [34]).

F3:1Fig. 3. Classification of LANDSAT-7 (band 4) image and comparison with
F3:2RADARSAT.

SIKDER AND HOSSAIN: UNDERSTANDING THE GEOPHYSICAL SOURCES OF UNCERTAINTY 3
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176 1) If the SRTM elevation data exhibit quantifiable skill in
177 estimating the discharge according to the Manning’s ap-
178 proach at a particular river section or reach, SWOT-era
179 elevation data should have similar or higher skill. This is
180 because the elevation measurements during the SWOT era
181 are expected to be more accurate, more precise, and have a
182 smaller native resolution by an order. In ours words, this
183 can be phrased as, if it works for SRTM elevation data, then
184 it must work equally well or better for SWOT-era elevation
185 data. We argue that this knowledge of the circumstances
186 forwhich discharge estimation is conclusively effective for
187 SRTM data is the logical first step to push the envelope of
188 accuracy for SWOT-era discharge algorithms.
189 2) Given the coarser resolution and larger uncertainty associ-
190 ated, the performance of SRTM elevation data-based
191 discharge estimation is neither a necessary nor a sufficient
192 condition for identifying the circumstances for which
193 SWOT-era elevation data can be equally ineffective. In
194 our words, this can be phrased as, if SRTM elevation data
195 does not work conclusively for a given case, one cannot
196 make the same claim about SWOT-era elevation data until
197 SWOT data is actually available.
198 3) Given that observed discharge and water level data are not
199 sampled (in space and time) frequently enough and are also
200 sparsely distributed for a river network (including the

201Bangladesh Delta), derived discharge estimates and water
202level dynamics froman accurately calibrated hydrodynamic
203(HD) model are the acceptable candidates for benchmark-
204ing the spaceborne technique of discharge estimation.
205This study is organized as follows. Section II provides a
206summary of the study region (river network) and HD model
207used. Section III elaborates the Manning’s slope-area method of
208discharge estimation using spaceborne observables from SRTM.
209Section IV describes the uncertainty assessment of estimated
210discharge for various rivers followed by Section V (discussion)
211on ways to reduce uncertainty. Finally, Section VI addresses key
212conclusions and the likely way forward in advancing spaceborne
213discharge estimation.

214II. THE HD MODEL

215An HD model was used to estimate the water level and
216discharge dynamics at closely spaced locations along a channel
217in the vastly intricate river network of Bangladesh. The key
218motivation that drove the building of this model was the absence
219of direct measurement of river stage and rated discharge along
220most river reaches of Bangladesh. The Hydrologic Engineering
221Centers River Analysis System (HEC-RAS) was used as the HD
222model by building on an earlier work of [29]. HEC-RAS is a
223one-dimensional (1-D) HD model which can simulate natural or

Q2

F4:1 Fig. 4. LANDSAT-7 imagery used for Land–Water classification for the extraction of elevation of water pixels in Bangladesh Delta from SRTMdata on February 20,
F4:2 2000. (Source: USGS).
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224 designed open channel network. It can simulate both steady and
225 unsteady flow conditions. The steady flow simulation is based on
226 1-D energy equation. Here, Manning’s equation is used to
227 calculate the energy loss. HEC-RAS can generate flow and stage
228 hydrographs at each cross section in unsteady flow condition. An
229 earlier setup of HEC-RAS model comprising only three major
230 rivers (Ganges, Brahmaputra, and Meghna) [29] was updated to
231 include the numerous (and smaller dendritic) rivers (Fig. 1). For
232 further details on the HEC-RAS setup, the reader is referred
233 to [29].
234 A total of 124 rivers with over 2200 river bathymetric cross
235 sections were used to create a comprehensive HEC-RAS model
236 setup (Fig. 1). This updated setup has a total of 56 boundaries (48
237 upstream and 8 downstream). The setup is as stable “as is” during
238 the Monsoon period. During the dry period of the year (October
239 toMay), the ephemeral streams, which become dry, require to be
240 switched off to achieve numerical stability in the unsteady
241 simulations. The calibration period for the model covered
242 2000–2002 (i.e., 3 years). Fig. 1 provides a summary of the
243 calibrated and acceptable water level simulations during this
244 period that are compared against observations. The RMSE of the

245calibratedwater levelwith observedwater level ranged from0.45
246to 1.33 m. Fig. 1 indicates that the calibrated model is quite
247satisfactory during the dry period for use as a reference for water
248level dynamics along the river reaches.

F5:1 Fig. 5. Land–Water classification of LANDSAT imagery for the extraction of
F5:2 water elevations from SRTM data during February 20, 2000 in Bangladesh.

F6:1Fig. 6. Extraction of water elevation for the river Arial Khan from SRTM data
F6:2and LANDSAT-classified land–water mask.

SIKDER AND HOSSAIN: UNDERSTANDING THE GEOPHYSICAL SOURCES OF UNCERTAINTY 5
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249 III. DISCHARGE ESTIMATION FROM SATELLITE-DERIVED

250 ELEVATION DATA

251 A. General Methodology

252 Most of the studies using SRTMdata to estimate discharge are
253 performed with the Manning’s approach (e.g., [15] and [34]).
254 This technique of discharge estimation is based on theManning’s
255 equation. The Manning’s equation can be rearranged as follows
256 considering that the flow is uniform, so that the friction slope Sf

257 can be replaced by surface water slope So:

Q ¼ 1

n
AR2=3 @h=@xð Þ1=2 (1)

258 where n is Manning’s roughness parameter, A is the cross-
259 sectional area of flow,R is the hydraulic radius, and @h=@x is the
260 surface water slope. Here, stage and slope can be determined
261 using SRTM data. If the in situ section data are available, cross-
262 sectional area and hydraulic radius are also derivable.
263 SRTM data provide water surface elevation data for water
264 bodies and rivers alongside land surface elevation. To extract the
265 water surface elevation data to determine the stage and slope
266 from SRTM data, a land–water mask is needed as the simplest
267 methodology. So the steps to determine the spaceborne discharge
268 using the Manning’s approach with in situ bathymetry are:
269 1) creation of a land–water classification mask; 2) extraction of
270 water surface elevation from SRTM data using the mask to
271 determine the slope and water level; 3) calculation of cross-
272 sectional area and hydraulic radius; and 4) applying Manning’s
273 equation to determine discharge. A flowchart of these steps to
274 discharge estimation is provided in Fig. 2.

275 B. Classification of Land–Water Mask

276 In this study, water bodies were classified from available
277 LANDSAT image using an unsupervised process reported in
278 [21]. According to [21], water can be classified from land using
279 the following simple rule of using bands 4 and 5 imagery of the
280 Thematic Mapper (TM) sensor of LANDSAT:

281 Band 4 (0:76� 0:90 μm) < 45 value of digital image [¼water]
282 Band5 (1:55� 1:75 μm) < 35valueof digital image [¼water].

283 Because the band 4 of ETM+ and TM uses same wavelength
284 range while band 5 uses almost same wavelength range to take
285 images, the unsupervised rule suggested by [21] for Landsat-TM
286 imagery is also applicable for Landsat-ETM+ imagery. The
287 quality of the land–water classification from LANDSAT image
288 was verified by an independent SAR image of water bodies from
289 RADARSAT [14], which is immune to cloud cover problems.
290 For verification of land–water classification from LANDSAT
291 image, a classified RADARSAT image of the study area was
292 collected for August 3, 2007. The nearest LANDSAT-7 image
293 (August 10, 2007) corresponding to the RADARSAT image had
294 17% cloud cover. Fig. 3 shows that the unsupervised scheme
295 used for LANDSAT image classification into water and non-
296 water pixels yielded 80% of the pixels correctly classified even
297 with a fairly high cloud coverage (of 17%).
298 For extracting the water level data from SRTM, LANDSAT-7
299 imagery that was as close as possible to the SRTM overpass

300(February 20, 2000) was used. There are four such LANDSAT
301scenes that are available near February 20 (on February 19 and
30228, 2000) with fairly low cloud cover (less than 10%; Fig. 4). All
303four images were classified as water and land and merged to
304create amosaic over Bangladesh river networks (see Fig. 5) using
305the simple rule suggest by [21].

306C. Estimation of Water Elevation and Slope

307The water surface elevation data of February 20, 2000 from
308SRTM data were extracted using LANDSAT water–land classi-
309fied image and a GIS technique as follows. To simplify the
310extraction process, a line shapefile of the target river reach was
311used. Using this line shape, a buffer polygon of the river was
312created to extract only the river area. The buffer width was broad
313enough to cover the maximumwidth of a river reach and include
314the water areas of a river. The water surface elevation grid of the
315target river reach from SRTM data was extracted using the land–
316water mask of the reach. The extracted water surface elevation
317grid was then converted into point shapefile with grid values.
318Chainage (i.e., distance from upstream along river centerline) of
319each cell was calculated along the river. The slope was then
320determined from the relationship between the water surface
321elevation change and the horizontal distance of cells from the
322upstream end of the river. An example of water elevation
323extraction and slope calculation for the Arial Khan River (see
324Fig. 1 for its location) is shown in Fig. 6.

325D. Estimation of Discharge

326The water level at a particular river cross section was derived
327from the regression equation of derived slope from SRTM
328elevation data. Another set of discharge was estimated using
329the water level directly extracted from SRTM data at in situ
330section’s location. There are two approaches to estimate dis-
331charge that were followed, with the former approach (using slope
332information to derive water elevation) being used in the hope that
333it would make the discharge estimates less sensitive to the noise
334in SRTM elevation data. The datum of SRTM-derived water
335elevation is an ellipsoid. But the datum of the available in situ
336cross sections/bathymetry is called “mPWD” and is set by the
337public work department (PWD) of the country. Thus, the SRTM-
338derived water level data were adjusted to the mPWD datum. The
339area and wetted perimeter of the available in situ cross section
340were calculated using simple geometric calculations. The

TABLE I
T1:1GENERAL CHARACTERISTICS OF STUDY REACHES OF RIVERS

6 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING
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341 hydraulic radius was derived from the area and wetted perimeter
342 of the cross section. The derived area (A), hydraulic radius (R),
343 water surface slope (@h=@x), and approximated Manning’s
344 roughness (n) were used to determine the discharge through
345 Manning’s equation (1).

346 IV. UNCERTAINTY ANALYSIS

347 A. Error Metrics for Uncertainty Analysis

348 The uncertainty of the spaceborne estimated discharge with
349 the calibrated model-simulated discharge was calculated by the
350 coefficient of variation of the root-mean-square error of CV
351 (RMSE), which can be defined by the following equation:

CV ðRMSEÞ ¼ RMSE

Q
(2)

352 where RMSE is the root-mean-square error of the estimated
353 discharge relative to the model (HEC-RAS) discharge and Q
354 is the average of reference (i.e., HD modeled) discharge.

355Root-mean-square error of the estimated discharge was deter-
356mined using

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
t¼1

Qe;t �Qr;t

� �2

n

vuuut
(3)

357where Qe;t represents estimated discharge, Qr;t is the reference
358discharge at same location, and n is the number of total cross
359sections, where discharge were estimated.
360CV(RMSE) indicates the variation of estimated discharge
361relative to the reference (i.e., HEC-RAS model output in this
362case). In other words, a low CV smaller than 1 indicates that the
363error variability is an order smaller than the natural variability of
364(measured) flow and thus quite reliable.
365Six rivers were selected to carry out the accuracy analysis of
366discharge estimation (Fig. 1). The reaches are selected to afford
367variability in width, bed slope, and topographic regions (flat
368versus mountainous) of Bangladesh. The selected reaches, in
369order of increasing river width, were: Atrai, Baulai, Mohananda,

F7:1 Fig. 7. Estimated discharge at study reaches with Manning’s approach using minimum SRTM water surface elevation for different Manning’s n.

SIKDER AND HOSSAIN: UNDERSTANDING THE GEOPHYSICAL SOURCES OF UNCERTAINTY 7
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370 Lakshya, Arial Khan, and Ganges. General characteristics of the
371 selected river reaches are shown in Table I.

372 B. SRTM-based Discharge Estimation of Rivers

373 Discharge was estimated for all six study reaches with
374 varying Manning’s n (Fig. 7). In this scenario, water level at
375 each in situ cross section was determined using the first-order
376 polynomial regression equation of the derived slope. Fig. 7
377 shows that the accuracy of estimated discharge generally in-
378 creases with the use of higher assumed Manning’s n. The
379 estimated discharge of the Ganges and the Arial Khan rivers
380 were closest to the reference (model- HEC RAS)-simulated
381 discharge. Both rivers are wider than 250 m. The Atrai River,
382 which was the narrowest river of the six, yielded the highest
383 uncertainty in discharge estimation. Calculated discharge at each
384 section of the Atrai River is found to be at least one order higher
385 than the reference discharge from the HD model, indicating that
386 the Manning’s approach using SRTM data is inappropriate
387 without further corrections.

388Next, the best-fitted Manning’s n, among the evaluated
389Manning’s n, was selected for the next set of analyses. The
390discharge was estimated for different reach averaging lengths
391with the best-fitted Manning’s n (shown in Fig. 8). Two reach
392averaging lengths of each river were selected based on available
393total length of the river reach and the slope of the river. The
394accuracy of the estimated discharge generally seemed insensi-
395tive, particularly for the wider rivers such as Ganges and Arial
396Khan. However, for Baulai and Lakshya rivers, where discharge
397was estimated for more than two reach-averaged lengths, there
398appeared to be an “optimal” reach averaging length. For Baulai
399and Lakshya rivers, this optimal length appears to be about
40040km.Apoint to note is that the discharges estimated herein used
401only the reach-averaged slope, whereas all other hydraulic
402parameters were derived for each in situ cross section. Later in
403Section V, we revisit this issue by performing a truly reach-
404averaged discharge estimation using reach averaging for all
405hydraulic parameters.
406A sensitivity analysis was also done to compare the discharge
407estimated using water level extracted by the two contrasting

F8:1 Fig. 8. Estimated discharge with best-fitted Manning’s n using minimum SRTM water surface elevation for different reach averaging length. “Model” refers to
F8:2 discharge estimated by HEC RAS HD model.

8 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING
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F9:1 Fig. 9. Estimated discharge with optimized reach-averaged length and best-fittedManning’s n for different approaches of water level acquired. “Model” refers to flow
F9:2 simulated by HEC RAS HD model.

TABLE II
T2:1 CV(RMSE) OF SPACEBORNE ESTIMATED DISCHARGE COMPARE TO SIMULATED DISCHARGE WITH DIFFERENT AVERAGE WIDTHS,
T2:2 AVERAGE WATER SURFACE SLOPE, AND AVERAGE BED SLOPE

SIKDER AND HOSSAIN: UNDERSTANDING THE GEOPHYSICAL SOURCES OF UNCERTAINTY 9
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408 approaches mentioned earlier (Fig. 9). The first approach of
409 water level derivation was simply to use the regression equation
410 (first order polynomial) of water slope. For this approach, the
411 minimum water level was estimated along each river reach, and
412 river cross section was used. The second approach was directly

F10:1 Fig. 10. Accuracy of discharge estimation with (a) change of river top width (classified from LANDSAT); (b) change of average water surface slope; (c) change of
F10:2 average bed slope; and (d) change of reach averaging length.

TABLE III
T3:1 CV(RMSE) OF SPACEBORNE ESTIMATED DISCHARGE COMPARE TO SIMULATED

T3:2 DISCHARGE WITH DIFFERENT REACH AVERAGING LENGTHS

F11:1Fig. 11. Comparisons of SRTM-derivedwater level with simulated and observed
F11:2water level along with change of river width. Here, width is computed from
F11:3classified LANDSAT image.

10 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING
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413 extracted water level from SRTM data at in situ section location.
414 In this case, discharge was determined using both minimum and
415 average water level at each cross section of reaches as suggested
416 in [17]. Fig. 9 shows that the discharge calculations using the
417 slope-derived water level are very similar to that obtained
418 through minimum water level directly acquired from SRTM
419 data. For Atrai and Ganges rivers, the slope-derived water level

420yields marginally better accuracy than that using the directly
421estimated minimum water level.

422C. Assessment of Uncertainty

423Accuracy of satellite-based discharge estimation was calcu-
424lated by CV(RMSE) (2). Calculated values of CV(RMSE) for

TABLE IV
T4:1 DERIVED WATER LEVEL USING DIFFERENT APPROACHES IN THREE RIVERS (ALL WATER LEVELS ARE SHOWN IN METERS ABOVE THE PWD DATUM OF BANGLADESH)

F12:1 Fig. 12. Upper panel—correlation between water level climatology and water level from SRTM data (left is for slope-derived WL and right is for directly extracted
F12:2 minimum WL). Lower panel—adjusted SRTM water level using flow climatology (left is for slope-derived WL and right is for directly extracted minimum WL).

SIKDER AND HOSSAIN: UNDERSTANDING THE GEOPHYSICAL SOURCES OF UNCERTAINTY 11
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425 different rivers with varying average width (i.e., average top
426 width from classified LANDSAT image), water surface slopes,
427 and bed slopes are shown in Table II. A point to note herein is that
428 negative bed slope means a downward slope along the down-
429 stream direction downstream and positive bed slope means
430 upward slope to downstream.
431 The plots of CV(RMSE) versus average width, average slope,
432 average bed slope, and reach averaging length are shown in
433 Fig. 10. The CV(RMSE) versus average width plot [Fig. 10(a)]
434 appears to follow a logarithmic function with CV decaying

435rapidly at river widths larger than 250 m. In relative terms, this
436equates to about three times the native spatial resolution of the
437spaceborne elevation data. While this rule cannot and should not
438be generalized for the SWOT-era elevation data, given the
439contrasting scale, accuracy, and precision, it is fair to claim that
440SWOTdata should be able to improve on this rule and yieldmore
441accurate discharge estimates for rivers that are narrower than
442three times the native resolution of SWOT elevation data. An
443issue to keep in mind is the science requirement of the SWOT
444mission (at the time of writing this manuscript) is that height

F13:1 Fig. 13. Comparison between discharge estimation using climatology-adjusted SRTMwater level and unadjusted SRTM-derived water level along withmodel (HD)-
F13:2 simulated flow (left panel for slope-derived water level and right panel from directly extracted minimum water level from SRTM).

TABLE V
T5:1 COMPARISON OF CV(RMSE) BETWEEN DISCHARGE DERIVED FROM CLIMATOLOGY-ADJUSTED AND UNADJUSTED SRTM WATER LEVEL
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445 accuracy (sigma) will be 10 cm or lower when averaged over an
446 area that is 1 km2. For a river that is 100mwide, this translates to
447 a reach length of 10 km, and seems quite promising during the
448 SWOTera for the narrow rivers (width <270 m) thatwere found
449 not as promising using SRTM data.
450 For CV(RMSE) versus average surface water slope plot
451 [Fig. 10(b)], two extreme water surface slopes of the Ganges
452 river (11.7 and 16.9 cm/km) were excluded as outlier. The plot
453 shows that theCV(RMSE) generally follows aweakly decreasing
454 trendwith decreasing surfacewater slope and in general the trend
455 is rather inconclusive (note: negative slope means the slope is
456 downhill). The plot of CV(RMSE) versus average bed slope
457 shows a similarly weak but increasing trend of CV(RMSE)
458 with decreasing bed slope (compared to water surface slope)
459 [Fig. 10(c)].
460 Another accuracy analysis was performed with reach averag-
461 ing length. Table III shows the CV(RMSE) for different reach
462 averaging lengths in different rivers. The sensitivity to accuracy
463 of discharge estimation with change of reach averaging length is
464 shown in Fig. 10(d). The Baulai and the Lakshya rivers, where
465 more than two reach averaging lengths were used to determine
466 the discharge, showed an optimal reach averaging length. Thus,
467 too much or too little reach averaging length can increase
468 uncertainty in discharge estimation for such rivers with medium
469 width (between 100 and 250 m).

470 V. REDUCING UNCERTAINTY OF DISCHARGE ESTIMATION

471 A. Key Sources of Uncertainty

472 Analysis according to [10] shows that uncertainty can arise
473 from change in cross-sectional area (@A), width (W ), slope (Sw),
474 cross-sectional area at lowest stage, andManning’sn (Ao andn).
475 Astudy reported in [18] analyzed theOhioRiver and showed that
476 95% uncertainty in discharge calculation occurred due to rough-
477 ness coefficient and friction slope. In our study, in situ bathyme-
478 try data were used. Therefore, it is directly measurable and
479 uncertainty from should be less significant. Furthermore, optimal
480 Manning’s n was used to find the best-fit with observed dis-
481 charge to reduce uncertainty fromManning’s n (Fig. 7). Finally,
482 discharge was estimated for various slopes estimated from reach-
483 averaged lengths (Fig. 8) to minimize the uncertainty from slope.
484 Thus, the major source of uncertainty is likely to be contributed
485 by the error in estimation of cross-sectional area and hydraulic
486 radius due to erroneous estimation of river stage from
487 SRTM data.
488 To verify whether the erroneous estimation of river stage is the
489 key source of uncertainty, Fig. 11 shows the comparison of
490 extracted water level from SRTMwith HDmodel simulated and
491 observed water level measurement for Lakshya River. In this
492 river reach, a large error in elevation measurement occurred
493 at upstream locations, where top width of the river (from
494 LANDSAT image) was about 150 m. This top width of the
495 river is seen to increase along the downstream direction, as
496 discharge estimation error decreases. Another example of Arial
497 Khan River (Fig. 11) shows that the error in stage measurement
498 is relatively large at upstream locations. The error becomes
499 minimum and almost constant beyond a 250-m river top width.

500The Ganges River is the widest river among all the study reaches
501and width is considerably higher than 250 m at each section.
502Accuracy ofwater level estimation fromSRTMwas significantly
503higher and closer to the observed data for the Ganges River
504(see Fig. 11).
505From Fig. 11, it is clear that the accuracy of water level
506measurement using SRTM data depends mostly on the width
507of the river that consequently dictates the likelihood of contami-
508nation by land elevation data and overestimation of section factor
509and discharge. The accuracy is relatively high and almost
510constant for river width larger than 250 m, which is almost equal
511to width of three times the native spatial resolution (90 m) of
512SRTM data (noted earlier in Section IV).

513B. Using Flow Climatology to Reduce Estimation Uncertainty

514A statistical climatology-driven correction approach was ap-
515plied to reduce the high levels of uncertainty that was found to
516occur in the narrower rivers. First, a simple regression analysis
517(mapping) was established between SRTM-derived water level
518and a 10-year climatology of water level for the month of
519February for the three riverswithwidth less than 270m:Lakshya,
520Baulai, and Atrai. Here, a 10-year water level climatology was
521used instead of daily water level (for February 20, 2000) to
522correlate with SRTM data. Daily data may contain reading error,
523as it represent only a single measurement. Climatology is a long-
524time average of data where the RMSE is expected to minimize
525significantly.
526In Table IV, water level climatology shows the daily average
527for the month of February over 10 years at each station. Both
528slope-derived (Table IV, column 5) and directly extracted

F14:1Fig. 14. Reach-averaged discharge using reach-averaged hydraulic parameters
F14:2and correction factor k (4). Upper panel for Atrai River (width less than 100 m)
F14:3and lower panel for Arial Khan river (width usually larger than 250 m).
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529 minimum (Table IV, column 7) water level from SRTM data
530 were correlatedwith observedwater level climatology (Table IV,
531 column 3). The observed climatology and SRTM water level
532 correlation are found to follow a second-order polynomial trend.
533 Fig. 12 (upper panel) shows the correlation and regression
534 equation for both slope-derived and directly extracted SRTM
535 water level. Using these regression equations, the SRTM water
536 elevation data were “mapped” to the climatology (Table IV,
537 column 6 and 8). Fig. 12 (lower panel) shows the impact of this
538 climatology adjustmentwhen compared to reference (HDmodel)-
539 derived water level. Next, discharge was reestimated using
540 the climatology-adjusted SRTM water level for both slope-
541 derived and directly extracted elevation scenarios. Fig. 13 and
542 Table V show the improvement in discharge estimation accuracy

543for the Atrai, Baulai, and Lakshya rivers using climatology-
544adjusted corrections. It is quite evident from the figure and table
545that the climatology-based adjustment of satellite elevation data
546can significantly enhance the skill of discharge estimates in rivers
547narrower than three times the native spatial resolution.

548C. Using Correction Factor in Reach-Averaged Discharge to
549Reduce Uncertainty

550Aswas noted earlier in Section IV, the discharges estimated up
551to this point used only the reach-averaged slope in theManning’s
552equation, while all other hydraulic parameters were derived as
553“point” values at each in situ cross section. Thus for two rivers of
554contrasting widths (Atrai and Arial Khan), discharge was

F15:1 Fig. 15. Inherent uncertainty of Manning’s approach (i.e., model structural uncertainty) when there is no error assumed in slope or elevation.

TABLE VI
T6:1 CV(RMSE) OF DISCHARGE ESTIMATION USING SRTM WATER LEVEL AND HEC-RAS WATER LEVEL
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555 reestimated using truly reach-averaged hydraulic parameters
556 (area A and radius R) and assuming a correction factor k that
557 is needed for adjustment (4)

Q ¼ AR
2=3

S
1=2

n 1þ kð Þ : (4)

558 For each river averaging length segment, the point-based
559 calculations of area of flow and hydraulic radii were averaged
560 along with reach-averaged slope. Fig. 14 shows the estimation of
561 reach-averaged discharge for various arbitrary k factors for Atrai
562 (upper panel) and Arial Khan rivers (lower panel). It is evident
563 that an arbitrary and river-specific k factor can yield reach-
564 averaged discharge that matches closely with model-derived
565 discharge. However, the consistency of this correction factor
566 for other times and diverse flow regimes remain untested due to
567 SRTM sampling only for 1 day in February 20, 2000.

568 D. Inherent Uncertainty of the Manning’s Approach

569 It is important at this stage, given the range of uncertainty in
570 SRTM-derived discharge estimation that has been shown, to ask
571 what could be the baseline or inherent uncertainty of the
572 Manning’s approach. The Manning’s equation is essentially a
573 grossly simplified form of the full HD flow equation, where it is
574 assumed that the energy gradient line, the river bed and water
575 surface are all parallel and thus the water surface slope is an
576 acceptable proxy for driving discharge. Since we have treated
577 HEC-RAS-derived water level as our reference, we, therefore,
578 chose to recalculate the Manning’s discharge using HEC-RAS-
579 derivedwater level and compare it with that obtained fromSRTM-
580 derived water level. Fig. 15 and Table VI show that the inherent
581 uncertaintyof theManning’s approach can range from10% to30%
582 depending on the river reach and flow conditions. This is an
583 important issue tokeep inmind as akey limitation of theManning’s
584 approach when assessing the potential of satellite-based water
585 elevation data that is expected from the SWOT mission. Other
586 discharge algorithms beyond the Manning’s approach should be
587 considered when creating SWOT discharge products.

588 VI. CONCLUSION

589 This study was motivated by the need to understand the
590 uncertainty of discharge estimation using the slope-area (Man-
591 ning’s equation) method using satellite interferometric elevation
592 data. The study tried to contextualize the understanding as a
593 function of river’s geophysical characteristics (river width, reach
594 length, and bed/water slope) of a riverine country in a humid
595 deltaic environment (Bangladesh). The study also explored a
596 pragmatic approach to uncertainty reduction using flow clima-
597 tology. A high-resolution HDmodel was accurately calibrated to
598 simulate water level and flowdynamics along the river reaches of
599 the river network and serves as reference for comparison with
600 satellite-based estimates. It was found that satellite interferomet-
601 ric (SRTM)-based discharge estimates yielded estimation error
602 variance an order smaller than the natural flow variability only if
603 the river width was at least three times larger the width of the
604 native resolution of elevation data. It was also found that water

605level climatology can be useful in significantly reducing the
606estimation uncertainty for these narrow rivers. While reach
607averaging length appeared relatively insensitive to accuracy for
608wide rivers (width >1 km), a few rivers seemed to have an
609optimal length at which the highest accuracy is obtained. Finally,
610it was found that if reach-averaged hydraulic parameters (area,
611slope, and radius) are used for calculation of reach-averaged
612discharge, then the necessary linear (bias) correction factors
613needed are not only unique but also arbitrary for each river.
614While the studyfindings are conditionedon the scale, accuracy,
615and precision aspects of SRTM data, the conclusions that emerge
616can provide guidance to the further development of discharge
617algorithms for the SWOT era. The typical 22-day (maximum)
618repeat sampling for the proposed mission at the planned 78°
619inclination will provide at least two observations in 3 weeks over
620the humid tropics and delta environments such asBangladesh.Yet,
621when it comes to rigorous assessment of the potential of satellite
622remote sensing of freshwaterfluxes, ungauged riverine deltas have
623remained a rather poorly studied region. This study has shown the
624scenarios for which SWOT-era elevation may be expected to
625provide skill in discharge estimationandperhapswith considerably
626lower uncertainty than that obtained using SRTM data. Further-
627more, the study has shown that the use of water level climatology
628and correction factors have promise for improving the quality of
629discharge estimates.
630A key limitation of the study, due to the nature of the SRTM,
631was the reliance on a single day (February 20, 2000) for assessing
632the uncertainty of satellite-based discharge estimation. A natural
633extension of this study is, therefore, to overcome this sampling
634limitation through the use of a simulator that can mimic SWOT-
635like interferograms, albeit with SWOT-like precision, orbit,
636sampling, and accuracy, from accurately measured water eleva-
637tion maps. A first task for authors in the use of the SWOT
638simulator is to assess the minimum river top width for which
639reliable estimates of discharge can be obtained consistently
640during Monsoon and non-Monsoon seasons. Work is underway
641to use such a simulator and the findings will be reported in a
642forthcoming publication.

643ACKNOWLEDGMENT

644The Institute of Water Modeling, Dhaka, Bangladesh, is
645gratefully acknowledged for their generous support with data
646acquisition and hydrodynamic modeling as part of a 5-year
647memorandum of understanding with the Department of Civil
648and Environmental Engineering, University of Washington,
649Seattle, WA, USA. The authors also acknowledge the critique
650from the anonymous reviewers and the editor that helped
651improve the quality of the manuscript.

652REFERENCES

653[1] D. E. Alsdorf, E. Rodriguez, and D. P. Lettenmaier, “Measuring surface
654water from space,” Rev. Geophys., vol. 45, no. 2, Jun. 2007.
655[2] S. Biancamaria, F. Hossain, and D. P. Lettenmaier, “Forecasting trans-
656boundary river water elevations from space,” Geophys. Res. Lett., vol. 38,
657no. 11, Jun. 2011.
658[3] C. M. Birkett, “The contribution of TOPEX/POSEIDON to the global
659monitoring of climatically sensitive lakes,” J. Geophys. Res., vol. 100,
660no. C12, pp. 179–204, Dec. 1995.

Q3

SIKDER AND HOSSAIN: UNDERSTANDING THE GEOPHYSICAL SOURCES OF UNCERTAINTY 15



IE
EE

Pr
oo

f

661 [4] G. R. Brakenridge, J. C. Knox, E. D. Paylor II, and F. J. Magilligan, “Radar
662 remote sensing aids study of the great flood of 1993,” Eos Trans. AGU,
663 vol. 75, no. 45, pp. 521–527, Nov. 1994.
664 [5] G.R. Brakenridge, S. V.Nghiem, E.Anderson, and S. Chien, “Space-based
665 measurement of river runoff,” Eos Trans. AGU, vol. 86, no. 19,
666 pp. 185–188, May 2005.
667 [6] M. R. Chowdhury, “An assessment of flood forecasting in Bangladesh:
668 The experience of the 1998 Flood,” Nat. Hazards, vol. 22, no. 2,
669 pp. 139–163, Sep. 2000.
670 [7] J. E. Costa et al., “Measuring stream discharge by non-contact methods: A
671 proof-of-concept experiment,” Geophys. Res. Lett., vol. 27, pp. 553–556,
672 Feb. 2000.
673 [8] M. Dewan, M. Nishigaki, and M. Komatsu, “Floods in Bangladesh: A
674 comparative hydrological investigation on two catastrophic events,” J. Fac.
675 Environ. Sci. Technol., vol. 8, no. 1, pp. 53–62, Mar. 2003.
676 [9] M. Durand, E. Rodriguez, D. E. Alsdorf, and M. Trigg, “Estimating river
677 depth from remote sensing swath interferometry measurements of river
678 height, slope, and width,” IEEE J. Sel. Topics Appl. Earth Observ., vol. 3,
679 no. 1, pp. 20–31, Mar. 2010.
680 [10] M. Durand, K. Andreadis, Y. Yoon, and E. Rodriguez, “Sensitivity of
681 SWOT discharge algorithm to measurement errors: Testing on the
682 Sacramento River,” in Proc. EGU Gen. Assem., Vienna, Austria, Apr.
683 2013, vol. 15.
684 [11] A. Giacomelli, M. Mancini, and R. Rosso, “Assessment of flooded areas
685 from ERS-1 PRI data: An application to the 1994 flood in Northern Italy,”
686 Phys. Chem. Earth, vol. 25, no. 5–6, pp. 469–474, 1995.
687 [12] F. Hossain and D. E. Alsdorf, “Understanding surface water flow and
688 storage changes using satellites: Emerging opportunities for Bangladesh,”
689 in Climate Change Flood Security in South Asia, ch. 5. New York, NY,
690 USA: Springer, 2011, pp. 57–67.
691 [13] F. Hossain, A. H. M. Siddique-E-Akbor, S. Biancamaria, H. Lee, and
692 C. K. Shum, “Proof of concept of altimeter-based forecasting system for
693 transboundary flooding,” IEEE J. Sel. Topics Appl. Earth Observ., vol. 7,
694 no. 2, pp. 587–601, Feb. 2014, doi: 10.1109/JSTARS.2013.2283402.
695 [14] A. S. Islam, S. K. Bala, and M. A. Haque, “Flood inundation map of
696 Bangladesh using MODIS time-series images,” J. Flood Risk Manage.,
697 vol. 3, no. 3, pp. 210–222, Sep. 2010.
698 [15] H.C. Jung et al., “Characterization of complex fluvial systems using remote
699 sensing of spatial and temporal water level variations in the Amazon,
700 Congo, and Brahmaputra Rivers,” Earth Surf. Processes Landforms,
701 vol. 35, no. 3, pp. 294–304, Mar. 2010.
702 [16] M. Khalequzzaman, “Flood control in Bangladesh through best manage-
703 ment practices,” Expatriate Bangladeshi 2000, Short Note 17, 2000.
704 [17] V. Kouraev, E. A. Zakharovab, O. Samainc, N. M. Mognard, and
705 A. Cazenave, “Ob’ River discharge from TOPEX/Poseidon satellite altim-
706 etry (1992–2002),”Remote Sens. Environ., vol. 93, pp. 238–245,Oct. 2004.
707 [18] H.L. Lee andL.W.Mays, “Hydraulic uncertainties inflood levee capacity,”
708 J. Hydraul. Eng., vol. 112, no. 10, pp. 928–934, 1986.
709 [19] G. LeFavour and D. E. Alsdorf, “Water slope and discharge in the Amazon
710 River estimated using the shuttle radar topographymission digital elevation
711 model,”Geophys. Res. Lett., vol. 32, no. 17, Sep. 2005, article no. L17404.
712 [20] M.K.Mersel, L. C. Smith,K.M.Andreadis, andM. T.Durand, “Estimation
713 of river depth from remotely sensed hydraulic relationships,”Water Resour.
714 Res., vol. 49, pp. 3165–3179, doi: 10.1002/wrcr.20176.
715 [21] L. Moller-Jensen, “Knowledge-based classification of an urban area using
716 texture and context information in Landsat-TM Imagery,” Photogramm.
717 Eng. Remote Sens., vol. 56, no. 6, pp. 899–904, 1990.
718 [22] J. Neal et al., “A data assimilation approach to discharge estimation from
719 space,” Hydrol. Process., vol. 23, pp. 3641–3649, 2009.
720 [23] P. K. Parua, “Flood management in Ganga-Brahmaputra-Meghna basin:
721 Some aspects of regional co-operation,” ASCE-IS, Mar./Apr. 2003.
722 [24] P. K. Parua, “The Ganga’s Hydrology,” in The Ganga: Water Use in
723 the Indian Subcontinent, ch. 4. New York, NY, USA: Springer, 2010,
724 pp. 23–34.
725 [25] G. N. Paudyal, “Forecasting and warning of water related disasters in a
726 complex hydraulic setting—The case of Bangladesh,” Hydrol. Sci. J.,
727 vol. 47(S), pp. S5–S18, Aug. 2002.
728 [26] R. Romeiser, J. Sprenger, D. Stammer, H. Runge, and S. Suchandt, “Global
729 current measurements in rivers by spaceborne along-track InSAR,” inProc.
730 IEEE Int. Geosci. Remote Sens. Symp. (IGARSS’05), Jul. 2005, vol. 1.
731 [27] R. Rybushkina, “Validation of the retracked Jason l, 2-altimeterwater levels
732 over Gorky Reservoir of the Volga River,” in Proc. EGU Gen. Assem.,
733 Vienna, Austria, May 2010, vol. 12.

734[28] G. Schumann, P. D. Bates, M. S. Horritt, P. Matgen, and F. Pappenberger,
735“Progress in integration of remote sensing-derived flood extent and stage
736data and hydraulic models,” Rev. Geophys., vol. 47, Nov. 2009.
737[29] A. H. M. Siddique-E-Akbor, F. Hossain, H. Lee, and C. K. Shum, “Inter-
738comparison study of water level estimates derived from hydrodynamic–
739hydrologic model and satellite altimetry for a complex deltaic environment,”
740Remote Sens. Environ., vol. 115, pp. 1522–1531, Jun. 2011.
741[30] J. S. Silva et al., “Water levels in the Amazon Basin derived from the ERS 2
742and ENVISAT radar altimetry missions,” Remote Sens. Environ., vol. 114,
743no. 10, pp. 2160–2181, Oct. 2010.
744[31] L. C. Smith, B. L. Isacks, A. L. Bloom, and A. B. Murray, “Estimation of
745discharge from three braided rivers using synthetic aperture radar (SAR)
746satellite imagery: Potential application to ungaged basins,” Water Resour.
747Res., vol. 32, pp. 2021–2034, Jul. 1996.
748[32] L. C. Smith, “Satellite remote sensing of river inundation area, stage,
749and discharge: A review,” Hydrol. Process., vol. 11, pp. 1427–1439,
7501997.
751[33] Y. Wang, “Seasonal change in the extent of inundation on floodplains
752detected by JERS-1 Synthetic Aperture Radar data,” Int. J. Remote Sens.,
753vol. 25, no. 13, pp. 2497–2508, Jul. 2004.
754[34] A. T. Woldemichael, A. M. Degu, A. H. M. Siddique-E-Akbor, and
755F. Hossain, “Role of land–water classification and manning’s roughness
756parameter in space-borne estimation of discharge for braided rivers: A case
757study of the Brahmaputra river in Bangladesh,” IEEE J. Sel. Topics Appl.
758Earth Observ., vol. 3, no. 3, pp. 395–403, Sep. 2010.
759[35] O. Yoshiaki, I. Tadao, and I. Hideshige, “Time-series inundation mapping
760using RADARSAT-SAR,” J. Remote Sens. Soc. Jpn., vol. 20, no. 4,
761pp. 440–448, 2000.

762Md. Safat Sikder received the B.S. degree in water
763resources engineering from Bangladesh University of
764Engineering and Technology, Dhaka, Bangladesh,
765and the M.S. degree from Tennessee Technological
766University, Cookeville, TN, USA, in 2013. Currently,
767he is pursuing the Ph.D. degree in civil and envi-
768ronmental engineering from the University of
769Washington, Seattle, WA, USA.
770His research interests include hydrologic and
771hydrodynamic modeling and application of remote
772sensing for surface water and flood forecasting.

773Faisal Hossain received the B.S. and M.S. degrees
774from the Indian Institute of Technology, Varanasi,
775UP, India, and National University of Singapore,
776Singapore, respectively, and the Ph.D. degree from
777the University of Connecticut, Storrs, CT, USA, in
7782004.
779Currently, he is an Associate Professor with the
780Department of Civil and Environmental Engineering,
781University of Washington, Seattle, WA, USA. He has
782published over 100 peer-reviewed journal articles,
783authored an undergraduate-level textbook, edited two
784book volumes, and contributed eight book chapters.His research interests include
785hydrologic remote sensing, uncertaintymodeling ofwater cycle variables, human
786modification of extreme hydro-climatology, sustainable water resources engi-
787neering, spaceborne transboundary water resources management, engineering
788education, and public outreach.
789Dr. Hossain is also a recipient of awards such as NASA New Investigator
790Award in 2008, National Association of Environmental Professionals Education
791ExcellenceAward in 2010,US Fulbright FacultyAward in 2012,Graduate Of the
792Last Decade (G.O.L.D.) award from the University of Connecticut in 2012, and
793American Geophysical Union (AGU) Charles Falkenberg Award in 2012.

794

Q4

Q5

Q6

Q7

16 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING


