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Radar for South Asian Conditions
Shahryar K. Ahmad , Faisal Hossain , Hisham Eldardiry, and Tamlin M. Pavelsky

Abstract— Consistent estimation of water surface area from1

remote sensing remains challenging in regions such as South2

Asia with vegetation, mountainous topography, and persistent3

monsoonal cloud cover. High-resolution optical imagery, which4

is often used for global inundation mapping, is highly impacted5

by clouds, while synthetic aperture radar (SAR) imagery is not6

impacted by clouds and is affected by both topographic layover7

and vegetation. Here, we compare and contrast inundation extent8

measurements from visible (Landsat-8 and Sentinel-2) and SAR9

(Sentinel-1) imagery. Each data type (wavelength) has comple-10

mentary strengths and weaknesses which were gauged separately11

over selected water bodies in Bangladesh. High-resolution cloud-12

free PlanetScope imagery at 3-m resolution was used as a13

reference to check the accuracy of each technique and data type.14

Next, the optical and radar images were fused for a rule-based15

water area classification algorithm to derive the optimal decision16

for the water mask. Results indicate that the fusion approach17

can improve the overall accuracy by up to 3.8%, 18.2%, and18

8.3% during the wet season over using the individual products19

of Landsat8, Sentinel-1, and Sentinel-2, respectively, at three20

sites, while providing increased observational frequency. The21

fusion-derived products resulted in overall accuracy ranging from22

85.8% to 98.7% and Kappa coefficient varying from 0.61 to23

0.83. The proposed SAR-visible fusion technique has potential for24

improving satellite-based surface water monitoring and storage25

changes, especially for smaller water bodies in humid tropical26

climate of South Asia.27

Index Terms— Area classification, remote sensing, synthetic28

aperture radar (SAR), visible imagery, water bodies.29

I. INTRODUCTION30

WETLANDS and small surface water bodies play an31

important role in groundwater recharge, flood control,32

ecosystem services, wildlife habitat, and even rural liveli-33

hood [1], [2]. Knowledge of the areal extent or size of34

water bodies is crucial to the understanding of access and35
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availability of water in the natural environment. However, 36

manual identification and tracking of these numerous water 37

bodies in a feasible and cost-effective way is challenging due 38

to their dynamic inundation extent and depth controlled by the 39

local hydrology of the region [3]. 40

To address the challenges of manual identification, satel- 41

lite remote sensing can be a valuable tool for automated 42

extraction of water surface area. Satellites are particularly 43

effective where in situ measurement networks for water sur- 44

face elevation (which can be used to derive surface area in 45

concert with a digital elevation model) are limited. In the 46

past two decades, the use of optical and synthetic aperture 47

radar (SAR) satellite remote sensing data has expanded for 48

mapping and monitoring wetlands [1]. The usage of satellite 49

imagery at optical wavelengths for water body delineation 50

has been primarily derived from band ratios and indices 51

that use the differences in spectral signature of water and 52

surrounding features [18], [35]. The Landsat satellite products 53

have, therefore, been extensively explored for monitoring lake 54

dynamics [13]–[15], [19], [36], [37]. A detailed review of the 55

literature on monitoring of surface water using optical sensors 56

is presented in [8]. Although optical data have proven itself for 57

areal classification of water bodies [3], the presence of vegeta- 58

tion and cloud cover in the scene can seriously limit scientific 59

applications [8]. While the former obscures the inundation 60

underneath the vegetation, blocking and shadow effects by 61

clouds can reduce the image information and seriously impact 62

the mapped water extent. 63

SAR data, on the other hand, collected by active sensors 64

at longer wavelengths, are able to penetrate the clouds and 65

vegetation to varying degrees, working both diurnally and 66

nocturnally. Water, which has a high dielectric constant and is 67

a specular reflector at the wavelengths of most SAR sensors, 68

often produces very low backscatter, which aids in extracting 69

the water bodies from sensed radar data [16]. Shen et al. [20] 70

reviewed the existing literature for principles and methods in 71

the SAR-based inundation mapping. Despite the advantages 72

of active SAR data in mapping water extent, the side-looking 73

geometry and the requirement of specular reflection may lead 74

to misclassification of some water surface areas as radar 75

shadow due to waves, uneven surface, vegetation (commission 76

error), and layover or topography (omission error) [3], [16]. 77

Extracting inundation extent using only one type of data 78

(visible or SAR), therefore, provides limited value when the 79

region has persistent clouds or mountainous topography and 80
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vegetation around the water body. Such conditions are notably81

pronounced in tropical humid climates of South Asia, such as82

Bangladesh.83

Mapping surface water bodies in South Asian environment84

presents a unique challenge. The tropical monsoon climate85

with strong seasonal cycle leads to a highly dynamic response86

of lakes and wetlands. The lake inundation expands swiftly87

over the peak flow season from May to October and then dries88

up as the monsoon recedes. The surface of the lakes usually89

hosts an abundance of dense vegetation, often in the form of90

thick free-floating plants that obstruct the inundation beneath91

from being accurately mapped. Given the high number of such92

small-scale bodies present in the region [see Fig. 1(d)], their93

monitoring is both challenging and important for the effective94

management of water and ecosystems.95

In an effort to develop a more robust water extraction96

technique that is tailored to overcome challenges in humid97

tropical climates of South Asia, we aim to fuse complemen-98

tary strengths of remote sensing data types. Various studies99

have targeted fusion of multiple sensor products for vari-100

ous goals, such as shoreline extraction [4], change detec-101

tion [5], retrieving daily normalized difference vegetation102

index (NDVI) and leaf area index (LAI) [6], and temporal103

aggregation for land cover mapping [7]. Studies by Kaplan104

and Avdan [1], Huang et al. [8], and Irwin et al. [12] have105

monitored wetlands and surface water by different fusion106

techniques. Huang et al. [21] presented an automated classifi-107

cation of SAR data trained using prior surface water masks108

derived from Shuttle Radar Topography Mission (SRTM)109

water body data set (SWBD), and Landsat 8 derived compos-110

ited dynamic surface water extent (DSWE) class probabilities111

and tested it on North American sites representing inland and112

coastal wet landscape. Slinski et al. [27] used passive Landsat113

and active SAR data in a clustering analysis to generate water114

masks in the drier climates of Ethiopia. Despite a large body115

of the literature on the fusion of remote sensing products,116

no study, to the best of author knowledge, has explored water117

bodies or wetlands of South Asia impacted by both monsoonal118

cloud cover and dense vegetation and has smaller extents.119

This article assesses a fusion technique to address water area120

classification in regions, where cloud cover and vegetation are121

major challenges in remote sensing-based monitoring of water122

bodies. Unlike other published methods, the computational and123

data storage constraints were addressed in our approach by124

using the cloud-based computing platform of Google Earth125

Engine (GEE) [9] and a computationally efficient rule-based126

classification approach.127

II. STUDY AREAS AND DATA SOURCES128

A. Test Sites129

The accuracy and robustness of the proposed approach were130

tested on three lakes/wetlands (also locally termed “Haors”)131

with varying water extents located in northeastern Bangladesh132

(Fig. 1). Haors are seasonal water bodies with dual-land use133

during the course of a year [28]. From the months of May to134

October, the low-elevation land is inundated with transbound-135

ary runoff generated by the monsoon rains from mountains in136

neighboring India. These water bodies become a productive137

fisheries ecosystem during the monsoon season [28]. As the 138

waters recede in the postmonsoon season spanning Novem- 139

ber to April, the soil becomes rich in nutrients and organic 140

matter. The Haor land becomes primed for rice cultivation 141

from groundwater that is recharged by the preceding monsoon 142

rains. The rice cultivation during this season (known as Boro 143

rice) is existential to food security of Bangladesh [29], [30]. 144

Hence, accurate and automated mapping of the spatial extent 145

of Haors in the context of changing land use can inform 146

policy decisions for managing postmonsoon water availability, 147

premonsoon flash floods, and rice cultivation. 148

The “true” boundaries of all the test water bodies, encom- 149

passing the wet season extent, were digitized manually from 150

reference data that are described in Section II-B. The maxi- 151

mum extents used for the water extraction analysis were 65.6, 152

7, and 1.3 km2 for Korchar, Dekhar, and Ashulia Haors. The 153

locations and digitized water boundaries of each site are shown 154

in Fig. 1(a)–(c). 155

B. Tools and Data Used 156

We used three satellite remote sensing products with dif- 157

ferent spatial, temporal, and spectral characteristics. These 158

include: 1) Landsat 8 Operational Land Imager (OLI) Tier 1 159

surface reflectance and top of atmosphere (TOA) reflectance, 160

with 30-m spatial resolution and 8–16-day revisit period (here- 161

after “L8”); 2) Sentinel-1A C-band synthetic aperture radar 162

ground-range detected (SAR GRD) with a spatial resolution 163

of 10 m and 6-day revisit period (labeled as “S1”); and 164

3) Sentinel-2 multispectral instrument (MSI, Level-1C) with a 165

spatial resolution of 10 m (for red, green, blue (RGB) and 166

near-infrared (NIR) bands) and revisit period of five days 167

(labeled as “S2”). These visible, NIR, and SAR sensors were 168

chosen due to the public availability of their data and their 169

complementary strengths in water detection. The three satellite 170

products were retrieved for a three-year time period spanning 171

2016 to 2018. The number of scenes used for each product 172

over this period of analysis is summarized in Table I, where 173

multiple scenes were used within a day for some sites to cover 174

the entire water boundaries (see Fig. 1) to be classified. 175

Each of the products has at least one strength that the 176

fusion technique relies upon, namely, the difference in spectral 177

signatures of water and its surroundings in the optical wave- 178

lengths and the ability of radar to penetrate cloud and certain 179

vegetation coverage. The JavaScript API of GEE platform [9] 180

was used for the processing of these remote sensing products, 181

all of which are available in the GEE data catalog. GEE 182

provides access to satellite data sets on a planetary scale and 183

provides extensive computing power for image processing and 184

analysis without the need for high-end processing capability 185

locally. Details on the preprocessing and water extraction 186

algorithm applied to each product are presented in Section III. 187

C. Reference Data 188

For the accuracy assessment of the delineated water extent, 189

we used higher resolution imagery in the visible and NIR 190

bands. Planet (formally known as Planet Labs) [10], with a 191

constellation of more than 170 active CubeSats, has realized 192
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TABLE I

NUMBER OF SCENES USED FOR EACH PRODUCT OVER 2016–2018.
MULTIPLE SCENES WERE USED PER DAY TO COVER THE STUDY AREA

Fig. 1. (a)–(c) Locations and digitized boundaries for the three surface water
bodies used in this study. (d) Surface water bodies (lakes and wetlands) over
Bangladesh shown in blue.

daily global imaging in the visible and NIR at 3-m resolu-193

tion. Recent studies have demonstrated the capabilities and194

usefulness of Planet data in easily extracting the water extent,195

such as those by Cooley et al. [22], [23]. Thus, the Level 3A196

PlanetScope Ortho Tile Product from Planet Labs with the197

orthorectified pixel size of 3.125 m and daily revisit time at198

nadir was acquired using the Planet Explorer imagery explo-199

ration tool [17] to obtain the reference water map, as explained200

later in Section III.201

III. METHODOLOGY202

An overview of the water area classification approach used203

in this study is shown in Fig. 2. The methodology begins first204

with processing the visible, NIR, and SAR reflectance data205

over the selected sites using two different water extraction206

algorithms as described in Sections III-A–III-C. The satellite207

data were acquired for the dates closest to the date of interest208

(DoI). The DoI is the user-defined day for which the water209

extent needs to be obtained. The output water extents from210

each satellite product were later fused together based on rules211

specific to each image type to derive the fused water extent.212

Accuracy assessment of fused water extent was then performed213

using high-resolution images.214

A. Landsat-8-Based Water Extraction215

The DSWE offered by U.S. Geological Survey (USGS) [11]216

for the L8 OLI product was incorporated here for water217

extraction. The algorithm was coded in the GEE platform218

using JavaScript API to produce the DSWE output over any 219

custom region of interest. The specifics of the algorithm 220

are briefly described next. For details on DSWE algorithm, 221

the reader is referred to [11]. 222

The purpose of the DSWE algorithm is to account for veg- 223

etation over surface water bodies in the delineation procedure. 224

It involves multiple levels of processing using geophysical 225

information including a digital elevation model, slope, and hill- 226

shade, as well as quality flags encoding data on cloud, cloud 227

shadow, and snow within each L8 scene. These are calculated 228

based on the function of mask (FMask) algorithm [26]. The 229

model used to generate DSWE is composed of five decision- 230

rule-based diagnostic tests applied uniformly to all the pixels 231

without requiring scene-based training. Three of the diagnostic 232

tests are designed to detect if the pixel under consideration 233

is fully covered by water (open water tests), while the other 234

two tests detect inundation in the presence of vegetation or 235

other nonwater land covers at the subpixel scale (partial water 236

tests). Using the RGB, NIR, and shortwave IR bands 1 and 237

2 (SWIR1/2) from L8 surface reflectance product, the fol- 238

lowing indices are calculated: 1) modified normalized differ- 239

ence wetness index (MNDWI) = (green − SWIR1)/(green + 240

SWIR1); 2) multiband spectral relationship visible (MBSRV) 241

= green + red; 3) multiband spectral relationship near-infrared 242

(MBSRN) = NIR + SWIR1; 4) automated water extent 243

shadow (AWESH) = blue + (2.5 × green) − (1.5 × MBSRN) 244

− (0.25 × SWIR2); and 5) NDVI = (NIR − red)/(NIR + red). 245

The open and partial water diagnostic tests are then performed 246

for each pixel based on multiple thresholds applied to the 247

spectral bands and the five calculated indices to produce a 248

preliminary DSWE output. This study used default values for 249

each threshold as specified in [11]. 250

The next step is to refine the DSWE output by filtering 251

out low-confidence water pixels using geophysical parameters 252

including topography, slope, and hillshade for each pixel. 253

Percent slope is used to remove the locations where the terrain 254

is too steep to hold water. Similarly, any location where the 255

terrain is too shaded is also filtered out. Next, the quality 256

assessment (QA) bands obtained from the L8 TOA reflectance 257

product are used to mask the cloud, cloud shadow, and snow, 258

resulting in the final delineated DSWE output. The output 259

band results into six possible values: 0 (not water), 1 (water— 260

high confidence), 2 (water—moderate confidence), 3 (potential 261

wetland/ partial surface water conservative), 4 (low-confidence 262

water/partial surface water aggressive), and 5 (masked out due 263

to cloud, cloud shadow, or snow) [11]. Different confidence 264

levels of inundation as well as the differentiation between 265

no water and cloud/snow masked pixels were used later as 266

one of the guiding factors in the fusion scheme described in 267

Section III-D. 268

B. Sentinel-1-Based Water Extraction 269

The SAR imaging sensors of S1 send radar signals from 270

the satellite toward the Earth at an off-nadir angle, and the 271

backscatter off the Earth’s surface is measured. The amount 272

of backscatter is determined in part by the roughness of the 273

surface, with smoother surfaces scattering less. Large flat 274

surfaces like water scatter very little at C-, X-, and L-band 275
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wavelengths most commonly used in SAR imaging, and they276

stand out as dark spots against relatively high-scattering land277

surface. This property is used to extract the surface water278

extent using a threshold on the backscatter value.279

The S1 data were first preprocessed to filter the type280

of signal received by the sensor. The S1 GRD images in281

GEE catalog are detected, multilooked, processed to remove282

thermal noise, radiometrically calibrated, orthorectified, and283

geo-referenced SAR data. The co-polarized scenes with the284

vertical (VV) transmitter–receiver polarization (vertical trans-285

mitted and vertical received) were selected to ensure the286

images have same transmit/receive polarizations. One of the287

issues that exists with the radar product is the degradation of288

its quality with the signal dependent granular noise, also called289

“speckle.” The speckle is primarily caused by the phenomenon290

of interference of the returning wave at the transducer aperture.291

A focal median filter with 30 m × 30 m window was applied292

to smoothen the image and, thus, reduce down the speckle293

noise. The incidence angle of the SAR images also plays294

an important role in the quality of the resulting classified295

product. At lower look angles, the surface spatial resolution296

in range decreases significantly (becomes coarser), while at297

higher angles, the signal-to-noise ratio is quite small for low-298

reflectivity targets such as wetlands [38]. Hence, the incidence299

angles (θ ) were limited to the range 31.7◦ < θ < 45.4◦.300

With the processed S1 image, a gray-level thresholding algo-301

rithm was applied for delineation. Considering the dynamic302

range of backscatter values for standing water of −24.3 to303

−12.6 dB as found by Liu [31], a threshold value of −13 dB304

was selected for classifying pixels less than the threshold as305

water.306

C. Sentinel-2-Based Water Extraction307

The third satellite product used for inundation area estima-308

tion is the multispectral S2 data set. The 10-m resolution (for309

RGB and NIR reflectance bands) adds value in terms of spatial310

granularity to the water extraction relative to the previously311

chosen 30-m L8 multispectral data set. The DSWE algorithm312

was also applied over the S2 bands to obtain the classified313

water map. However, as the algorithm in its current state and314

its thresholds are designed specifically for Landsat satellites,315

modifications are needed to apply the same thresholds for316

S2 due to differences in sensor characteristics and spectral317

bands [32]. Because the algorithm is yet to be modified318

by the official algorithm developer for a reliable application319

with S2, an approach that transforms the surface reflectance320

of S2 bands to that of L8 bands was incorporated so that the321

same thresholds for L8 can be used. The surface reflectance322

transformation functions for the approximately equivalent323

spectral bands of L8 and S2 were given by Zhang et al. [32]324

whose study region was located in southern Africa with325

different land cover classes, representative of a wide range of326

reflectance spectra and covering multiple seasons. The linear327

mapping functions from S2 to L8 for the bands used by328

the DSWE algorithm are tabulated in Table II. Furthermore,329

the QA60 bitmask band (at 60-m resolution) provided in330

S2 was used to obtain the cirrus and opaque cloud mask331

information.332

TABLE II

TRANSFORMATION FUNCTIONS BETWEEN APPROXIMATELY EQUIVALENT
BANDS OF L8 AND S2 FOR APPLYING L8-BASED DSWE

THRESHOLDS TO S2 (AFTER ZHANG et al. [32])

Fig. 2. Overview of the methodology for applying the fusion algorithm using
three different satellite image products—L8, S1, and S2.

D. Proposed Fusion Approach 333

After each satellite image was independently processed to 334

delineate the surface water extent, a fusion algorithm was 335

created to take the advantage of the complementary strengths 336

of the optical and radar data products. The fusion algorithm 337

was applied on a per-pixel-basis, i.e., each pixel was evaluated 338

for the optimal decision for water extraction. The algorithm 339

(see Fig. 2) is described in detail below. 340

First, all three water extracted data sets were brought to the 341

finest available resolution of 10 m to allow for a consistent 342

comparison using GEE’s inbuilt reduceRegion function, with 343

a scale argument set to 10 m across all data sets. Next, 344

the dates of acquisition for each of the individual data sets 345

were compared with the DoI for which the water extent was 346

required. As the optical and radar images often cannot be 347

acquired contemporaneously [8], any product falling outside 348

the 30-day period from DoI was discarded from the fusion 349

scheme. Although noteworthy changes to water extent can 350

occur within the 30-day period, the period was selected based 351

on the minimum gap for S1 of nearly 30 days between two 352

consecutive acquisitions over the three-year period of analysis. 353

A monthly timestep was also used by Slinski et al. [27] in 354

obtaining the time series of surface water extent. Composite 355

median of all the S1 images over the 30-day interval was 356

obtained by calculating the focal median value at each pixel. 357

Despite higher observational frequency, L8 and S2 exhibited 358

larger gaps in available imagery due to high cloud cover, 359

especially in monsoon seasons. This combination of imagery 360

generates the following four scenarios: 1) all three data sets are 361

available in the one-month interval; 2) only L8 and S1 avail- 362

able; 3) only S2 and S1 available; and 4) only S1 available. 363

These cases require different fusion rules to be applied for 364

the water extraction. The fourth scenario where only S1 is 365
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TABLE III

FUSION ALGORITHM WITH DECISION RULES TO OBTAIN THE OPTIMAL WATER MASK FOR EACH PIXEL. THE THREE SCENARIOS ARE TABULATED IN
(A)–(C), WHILE THE FOURTH (WITH ONLY S1 AVAILABLE) ASSUMES THE SAME OUTPUT AS S1. W: WATER; NW: NO WATER PRESENT; LNW:

LOW CONFIDENCE OR NO WATER PRESENT (DSWE OUTPUT OF 0 OR 4); HLW: HIGH/MODERATE/LOW CONFIDENCE WATER (DSWE
OUTPUT OF 1–4); HW: HIGH CONFIDENCE WATER (DSWE OUTPUT OF 1); HMW: HIGH/MODERATE CONFIDENCE WATER (DSWE

OUTPUT OF 1–2); CLOUD: CLOUD COVERED PIXEL (DSWE OUTPUT OF 5); AND “–”: THE OUTPUT IS INDEPENDENT OF
THE PIXEL’S STATE FOR THAT PRODUCT. (A) SCENARIO 1: ALL SATELLITE PRODUCTS (S1, L8, AND S2) AVAILABLE.

(B) SCENARIO 2: ONLY S1 AND L8 AVAILABLE. (C) SCENARIO 3: ONLY S1 AND S2 AVAILABLE

available assumes the same output as the S1-based water366

extent. The decision rules implemented in the fusion scheme367

are summarized in Table III.368

The rules presented in Table III were selected to compensate369

for the limitations of each product with the complementary370

strength of other products. For instance, the speckle noise in371

SAR (that persists even after applying the focal median filter)372

is reduced using the L8 and S2 results from the nearest day of373

acquisition. Similarly, on days when L8 or S2 experiences high374

cloud cover, the cloud-free S1 imagery was capitalized on in375

the fusion scheme to produce the most optimal estimate of the376

water mask over the selected water body. Different confidence377

levels from DSWE output were used to infer the cases of high378

confidence in classifying the output pixel state as water. For379

instance, when the L8 and S2 classify a pixel as water with380

either high or moderate confidence, there is a high confidence381

in the output pixel being water, irrespective of S1, and hence382

is classified as water [see decision rule 3 in Table III(a)].383

Such a rule-based classification is computationally efficient384

and requires little or no training data for calibration.385

E. Assessment of the Proposed Fusion Technique386

To assess the accuracy of delineated water area using the387

individual satellite products and the fusion approach, 3-m res-388

olution PlanetScope image was used to classify water extent.389

Due to the absence of in situ data, the classified PlanetScope390

map was used as reference [22], [33], [34]. It needs to be 391

mentioned here that the use of Planet imagery for assessment 392

has weaknesses of its own such as the product’s optical nature 393

which can lead to biases similar to other optical sensors 394

used here regarding vegetation and cloud cover. To minimize 395

some of these biases, care was taken while acquiring the 396

PlanetScope scenes to ensure they were completely cloud-free 397

and as closely matched in time as possible to the available 398

L8, S1, and S2 scenes over each water body. Images for 399

three different seasons (wet, dry, and intermediate) were 400

downloaded and processed separately for the comparison. 401

Supervised classification was performed on each of them using 402

the maximum likelihood classification. The accuracy of fusion- 403

based output was quantified in terms of the confusion matrix 404

and user’s/producer’s accuracy values for specific days in 405

different seasons. A time series of surface water extent was 406

also derived from the individual water extraction procedures 407

and the fusion approach to assess the temporal consistency. 408

In addition, spatial maps were visually compared to evaluate 409

spatial consistency. 410

IV. CASE STUDY RESULTS 411

A. Temporal Consistency: Time Series of Water Inundated 412

Area 413

The areas derived from the extraction algorithms of L8, S2, 414

S1, and the fusion technique over 2016–2018 are shown in 415

Fig. 3 for the three selected sites. The cyclical pattern of water 416
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TABLE IV

ACCURACY ASSESSMENT FOR THE THREE SITES OVER DIFFERENT SEASONS

TABLE V

COMPARISON OF SURFACE WATER AREA DERIVED

FROM THE THREE TECHNIQUES

area due to monsoonal hydrology is clearly apparent at all the417

three sites.418

It is apparent from Fig. 3 that L8 and S2 suffered from419

high-cloud cover issues especially during the wet seasons that420

leads to lower area estimates. In addition, while S1 tends to421

produce lower estimates of inundation extent, L8 and S2 result422

in similar results during cloud-free days. The fused technique423

is able to reproduce a temporally consistent estimate of water424

areas, filling up the gaps left by the optical images during425

high-cloud cover in monsoon-dominated months. Some of the426

sudden changes in fusion-derived time series persist due to427

the unavailability of one or both the optical data sets (due to428

high-cloud cover).429

B. Spatial Consistency: Maps of Delineated Water Extent 430

The spatial consistency of the resulting inundation extent is 431

first assessed by visually comparing the classified water maps 432

produced by different sensors against that obtained from the 433

reference PlanetScope imagery. The delineated water maps are 434

shown for different seasons (wet, dry, and intermediate) for all 435

the three sites in Fig. 4, along with the respective surface water 436

area. It can be observed that the fusion-based water extent 437

is spatially consistent with the PlanetScope’s reference map. 438

Also, the area values from PlanetScope and fusion-derived 439

water mask are closest, as compared to those from individual 440

products. 441

C. Accuracy Assessment 442

Accuracy was assessed for each remote sensing data type 443

and technique against the reference data set. For estimation 444

of the classification accuracy, 2000 points were selected using 445

stratified random strategy. The points were randomly distrib- 446

uted within the two classes of water and no water, where 447

each class has a number of points proportional to its relative 448

area. Among four different sampling techniques, the stratified 449

random sampling method resulted in the highest classification 450

accuracy in a study by Ramezan et al. [24], and it was also 451
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Fig. 3. Time series of extract water surface areas over 2016–2018 from L8,
S1, S2, and fusion approach are compared for three selected sites. (a) Korchar
Haor. (b) Dekhar Haor. (c) Ashulia.

used by Slinski et al. [27]. The confusion matrix and detailed452

accuracy assessment with user and producer accuracies are453

shown in Table IV for each of the three sites. The accuracy is454

reported for both the water and nonwater class detection. The455

overall accuracy and Kappa coefficient that accounts for the456

possibility of agreement occurring by chance are also obtained.457

The highest overall accuracies were obtained during the458

dry seasons for all the three sites, with the overall accuracy459

between 85.8% and 98.7% and Kappa coefficients ranging460

from 0.61 to 0.83. During the wet season, the fusion approach461

resulted in improvements in overall accuracy of up to 3.8%,462

18.2%, and 8.3% over using the individual products of L8,463

S1, and S2, respectively, across the three sites, while not464

considering the cloud-affected L8/S2 images. For the con-465

sidered dry/intermediate seasons, the improvements reaching466

up to 1%, 28.2%, and 4% were obtained over L8, S1, and467

S2, respectively. The underestimation of water area using468

S1 is apparent, with lower producer and user accuracies for469

the water and nonwater classes, respectively. The effect of 470

S1 speckle can be seen for Korchar Haor during the dry season 471

(March 2018) with very low user accuracy of the water and 472

nonwater classes (pixel on classified map not corresponding 473

to the same on ground). The highest accuracies were obtained 474

during the dry seasons with the three products performing 475

similar to the fusion output, except S1, which suffers from high 476

speckle for Korchar Haor in the March 2018 water-classified 477

map. 478

D. Comparison of the Fusion Approach With a Comparable 479

Method 480

Comparison of results obtained from the fusion approach 481

was made against a recently published and comparable algo- 482

rithm recent literature. This method is called active–passive 483

surface water classification (APWC) [27] and was imple- 484

mented over the three Haors in GEE to obtain the water extent 485

for comparison with the fusion-derived estimates. The APWC 486

method was chosen specifically because it uses the combi- 487

nation of active (Sentinel-1 SAR) and passive (Landsat 7/8) 488

sensors and is one of the first studies to generate accurate 489

monthly water body maps at 10-m resolution, in this case in 490

Ethiopia. However, the assessment of the technique for more 491

humid, monsoonal environments such as those found in South 492

Asia has not yet been performed. The APWC method uses 493

K -means cluster analysis to obtain the water mask which can 494

be implemented on the GEE platform. 495

This makes comparison more convenient with the fusion 496

approach in this study coded in the same GEE environment. 497

For performing the K -means cluster analysis, five clusters 498

were used (K = 5) and the cluster corresponding to water 499

was selected based on the PlanetScope-derived water map. The 500

results for classified water extent from APWC for each site are 501

shown in Fig. 5, while Table V shows the comparison of the 502

respective areas with those derived from fusion approach and 503

PlanetScope’s reference imagery. 504

As our comparison suggests, for small water bodies in 505

Bangladesh for which APWC has not yet been tested, 506

the method tends to underestimate the inundation extent while 507

detecting more classes within the water mask. Furthermore, 508

decreasing the number of clusters from five (not shown here) 509

resulted in a greater number of false positives. This result 510

suggests that our proposed fusion algorithm based on decision 511

rules and synergistic use of active and passive remote sensing 512

data is appropriately tailored for water body delineation in 513

South Asian environments. 514

V. DISCUSSION AND CONCLUSION 515

This article proposes a fusion technique for water area 516

classification tailored for the humid climate of South Asia, 517

where persistent cloud cover, vegetation, and mountainous 518

topography present challenges. The technique takes advantage 519

of complementary strengths of different remote sensing data 520

and produces the most optimal water mask possible with the 521

available data and higher observational frequency. Remote 522

sensing images from L8, S1, and S2 were processed inde- 523

pendently to extract surface water extent over three different 524
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Fig. 4. Water inundation maps derived from the individual satellite products and the fusion approach for the three sites during representative months of
wet, dry, and intermediate seasons, compared with the PlanetScope reference water inundation. The water areas and the corresponding dates of acquisition in
brackets are specified below each map.
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Fig. 5. APWC-derived water mask (black) using K -means clustering for the three Haors. Other colors denote the remaining four classes resulting from the
APWC K -means cluster analysis (K = 5). (a) Korchar (October 2018). (b) Dekhar (October 2016). (c) Ashulia (September 2018).

surface water bodies (lakes) with different areas and seasonal525

dynamics. The GEE platform used here also allows for appli-526

cation and assessment of the technique over any other region527

of interest.528

The fusion approach yielded temporally consistent time529

series over the three-year period of analysis. The output was530

able to fill the major gaps in L8 and S2 time series due531

to high cloud cover, especially during the monsoon seasons.532

Moreover, the fusion approach is able to address the limitation533

of underestimation in the radar-based S1 sensor. The speckle534

noise was also reduced using the spatially consistent results535

from L8 and S2 images. The disagreement and misclassifica-536

tion from the individual remote sensing techniques highlight537

the weaknesses of each technique and the advantage of using538

a fusion approach over small lakes in a tropical monsoon539

climate.540

The fusion technique applied over the South Asian waters541

was compared with outputs from the already published APWC542

algorithm [27]. The latter, based on the K -means clustering,543

resulted in a greater number of missed water pixels and544

underestimation in surface water extent. The relatively better545

estimate from the proposed fusion approach is indicative of its546

ability to perform in challenging environments with shallower,547

smaller, and vegetation-dominated water bodies. While the548

clustering-based APWC successfully generates accurate water549

body maps in drier climate of Ethiopia in [27], it may need550

modification to be suitable for South Asian water bodies. To be551

fair to APWC, the proposed fusion technique benefits from the552

well-established DSWE algorithm for L8 and S2, while APWC553

does not. It should also be noted that the fusion approach554

is limited by the time difference in the acquisition dates555

between optical and radar images. The worst-case scenario556

with the difference of one month might cause discrepancies557

in the derived area, especially during the wetter seasons with558

high-cloud cover for optical images.559

Overall, the proposed fusion scheme is able to produce560

spatially and temporally robust and more frequent estimate561

of water area when compared with those obtained from562

individual sensors. It is important that such a technique, using563

freely available remote sensing products, be used to improve564

automated space-based monitoring of water bodies and, hence,565

inform policy for better management of the Earth’s freshwater566

resources. Future extension of this work should consider the567

use of polarimetric SAR data as an alternative approach to the568

SAR data used here [39].569

In combination with water surface elevations obtained from 570

in situ gauges, some of which we have installed in the Haors 571

described here as part of a citizen science project, it may be 572

possible to use the satellite-based measurements of inundation 573

extent described here to estimate changes in water volume over 574

time. This measurement, which is critical for understanding 575

regional water balance variations, is also a focal point of 576

the upcoming Surface Water and Ocean Topography (SWOT) 577

satellite mission, scheduled for launch in 2021 [25]. Fusion 578

of SWOT with other sensors, using methods stemming from 579

this study, may result in improved understanding of water 580

resources in monsoonal environments like South Asia. 581
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