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Abstract:

Radar estimates of rainfall are being increasingly applied to flood forecasting applications. Errors are inherent both
in the process of estimating rainfall from radar and in the modelling of the rainfall–runoff transformation. The study
aims at building a framework for the assessment of uncertainty that is consistent with the limitations of the model
and data available and that allows a direct quantitative comparison between model predictions obtained by using radar
and raingauge rainfall inputs. The study uses radar data from a mountainous region in northern Italy where complex
topography amplifies radar errors due to radar beam occlusion and variability of precipitation with height. These
errors, together with other error sources, are adjusted by applying a radar rainfall estimation algorithm. Radar rainfall
estimates, adjusted and not, are used as an input to TOPMODEL for flood simulation over the Posina catchment
(116 km2). Hydrological model parameter uncertainty is explicitly accounted for by use of the GLUE (Generalized
Likelihood Uncertainty Estimation). Statistics are proposed to evaluate both the wideness of the uncertainty limits and
the percentage of observations which fall within the uncertainty bounds. Results show the critical importance of proper
adjustment of radar estimates and the use of radar estimates as close to ground as possible. Uncertainties affecting
runoff predictions from adjusted radar data are close to those obtained by using a dense raingauge network, at least
for the lowest radar observations available. Copyright  2004 John Wiley & Sons, Ltd.
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INTRODUCTION

Early warning with the use of radar rainfall observations and hydrologic models is crucial for minimizing
flood and flash flood-related hazards. The potential benefit of using radar observations is particularly large in
mountainous areas, where the rugged nature of the terrain and altitudinal effects impose significant limitations
to the real-time operation of raingauge networks. Radar rainfall estimation is, though, subject to errors caused
by various factors ranging from instrument issues (e.g., calibration, measurement noise) to the high complexity
and variability in the relationship of the measurement to precipitation parameters (Austin, 1987; Joss and
Lee, 1995; Andrieu et al., 1997; Borga et al., 2002). The different sources of errors which compound the
radar rainfall uncertainty affect in various ways the accuracy of rainfall–runoff simulations (Borga, 2002).
Meaningful hydrological applications of weather radar rainfall estimates require therefore the rigorous analysis
of the propagation of radar rainfall uncertainties through rainfall–runoff modelling.

Many studies have focused on the application of radar rainfall estimates in flood forecasting applications
(Schell et al., 1992; James et al., 1993; Georgakakos et al., 1996; Bell and Moore, 1998; Vieux and Bedient,
1998; Winchell et al., 1998; Sempere-Torres et al., 1999; Borga et al., 2000; Ogden et al., 2000). Common
to these studies is the use of rainfall–runoff models with a single optimal parameter set. These models were

* Correspondence to: Emmanouil N. Anagnostou, Dept. of Civil and Environmental Eng, The University of Connecticut, 261 Glenbrook
Road, U 2037, Storrs CT 06269, USA. E-mail: manos@engr.uconn.edu

Received 9 June 2003
Copyright  2004 John Wiley & Sons, Ltd. Accepted 8 January 2004



3278 F. HOSSAIN ET AL.

calibrated based on using a reference rainfall input (most often based on dense raingauge networks) and
comparisons carried out with runoff simulations obtained by applying radar-based precipitation inputs. This
allowed us to explore issues related to the impact of uncertainties due to (1) radar rainfall estimation errors
and (2) the spatiotemporal sampling of precipitation fields on runoff simulation.

However, current research has shown that the concept of the optimum parameter set may be questioned
for the case of hydrological modelling. Most such models are sufficiently complex that there may be many
different sets of parameter values within a given model structure that may be compatible with the data
available for calibration. Certainly, one of those parameter sets will be ‘optimum’ according to some measure
of goodness of fit, but that optimum may not survive application to a different data set or different measure
of goodness of fit. Parameter sets that give almost equally good fits may also be scattered throughout the
parameter space. All these observations are at the heart of the equifinality concept, introduced by Beven and
Binley (1992). In radar hydrology, the acceptance of the equifinality concept suggests that the results from
sensitivity analyses carried out based on an ‘optimum parameter set’ concept may not be adequate to describe
the influence of radar rainfall uncertainties on runoff simulation, since equally acceptable parameter sets
may exhibit different sensitivity to rain inputs with varied uncertainty. It is the statistical characterization of
runoff uncertainty associated with the input–parameter uncertainty interaction that is the key to understanding
potential improvements in radar algorithms and investigating scenarios of rainfall–runoff models.

This study therefore aims at building a framework for the assessment of uncertainty that is consistent with
the limitations of the model and data available and that allows a direct quantitative comparison between model
predictions obtained by using radar and raingauge rainfall inputs. To achieve this purpose, an explicit attempt to
account for the associated rainfall–runoff modelling uncertainties by use of the GLUE (Generalized Likelihood
Uncertainty Estimation; Beven and Binley, 1992) is made. This is a Bayesian Monte Carlo simulation-based
technique, developed as an extension of the Generalized Sensitivity Analysis (GSA) of Spear and Hornberger
(1980). The method was outlined in concept by Beven and Binley (1992) and other applications using different
types of likelihood measure have been demonstrated by a number of researchers (Romanowicz et al., 1994;
Freer et al., 1996; Franks and Beven, 1997; Beven and Freer, 2001; among others). The uncertainty assessment
is carried out here through application of radar-estimated precipitation to a lumped rainfall–runoff model for
the Posina basin, a medium-sized watershed located in a mountainous region in northern Italy, where major
error sources are represented by radar beam partial blocking and variability of reflectivity with altitude.

Results from this study are expected to provide insights on the use of radar rainfall estimates for hydrological
forecasting and, more specifically, to provide an objective framework to improve the problem definition for
questions such as: How confident is the prediction based on radar rainfall estimates? What are the principal
sources of the uncertainty in runoff prediction? How can these uncertainties be reduced?

The paper is organized as follows. The next section presents the study region and data set. The third section
describes the rainfall–runoff simulation study, and the fourth section illustrates the GLUE methodology and
its application in this context. The final two sections complete the paper with discussion and conclusions,
respectively.

STUDY AREA AND DATA

The region chosen for this study is located in northern Italy, close to Venice and Padua. Details about the
study area, including its terrain characteristics and rain climatology, can be found in Borga et al. (2000).
Radar data are from a C-band Doppler radar located on the Monte Grande hill, which is 60 km from the
Posina catchment �116 km2� and 476 m above sea level. The radar provides sweeps at 10 different elevation
angles and covers a radius of 120 km (see Table I for technical details of the radar). In this study we used
only data from the northwest quadrant (Figure 1, right panel) of the radar viewing area and up to a radius of
100 km. This radar sector is selected because it encompasses the most complex relief with peak elevations
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Table I. Monte Grande weather radar characteristics

Parameter Value

Location 45°2104600N, 11°4002500E
Wavelength 5Ð5 cm
Polarization linear horizontal
3 dB beam width 0Ð9°
Peak power 250 kW
Quantization 256 level
Elevations (degrees) 0Ð5, 1Ð0, 1Ð5, 2Ð5, 3Ð5, 4Ð5, 6Ð0, 7Ð5, 10Ð0, 15Ð0
Range 120 km
Update time 15 min
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Figure 1. Left panel: relief map of the Posina basin. Right panel: locations, relative to radar position, of the raingauge stations used for
mean-field radar bias estimation (Ł), error statistics computation during optimization of the radar rainfall algorithm (C), and independent

stations close to the Posina basin used in this study (°). The dotted semicircles represent 10 km radar ranges

reaching 2500 m. In the Posina, altitude ranges from 2230 to 390 m above sea level at the outlet (Figure 1,
left panel).

The investigation is performed for five storm events (see Table II for description of these events) that
represent a typical meteorological situation associated with flooding in southern alpine regions. These storm
events are characterized by cyclogenesis in the Lion Gulf or surrounding regions, which often establishes over
the western Mediterranean in autumn months (Bacchi et al., 1996). Cold fronts generated by this cyclonic
circulation bring humid warm air from the south and/or the southwest, developing pre-frontal convective
clouds and frontal stratiform clouds that impact the northern coastline.

Radar error sources and adjustment procedures

The major factors affecting radar rainfall estimation in the study area are non-uniform vertical profile
of reflectivity (VPR), orographic enhancement of precipitation, ground clutter, wavelength attenuation,
uncertainty in the reflectivity-to-rainrate (Z–R) conversion and radar calibration stability effects.
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Table II. Statistical summary of the selected storms

Event Beginning of
event

Duration (h) Cumulated areal
rainfall

(raingauge) (mm)

Max. gauge
rain rate

�mm h�1�

Peak discharge
�m3 s�1�

OCT92 2 Oct. 1992 120 440Ð3 18Ð0 192Ð50
NOV94 6 Nov. 1994 72 149Ð9 11Ð7 106Ð90
OCT96 14 Oct. 1996 96 299Ð8 12Ð9 156Ð50
NOV96 13 Nov. 1996 120 179Ð9 10Ð2 70Ð80
DEC97 18 Dec. 1997 84 126Ð1 9Ð3 65Ð90

The radar rainfall algorithm developed by Dinku et al. (2002) has been implemented here for adjustment of
major radar error sources. This is a multi-component radar rainfall estimation algorithm that includes optimum
parameter estimation and error correction schemes associated with radar operation over mountainous terrains.
Algorithm pre-processing steps include correction for terrain beam blocking, adjustment for rain attenuation,
and interpolation of reflectivity data from polar radar coordinates to a fixed three-dimensional Cartesian grid
(hereafter named Constant Altitude Plan Position Indicator, CAPPI). The error correction schemes also include
a simple but efficient approach to correct for the vertical variation of reflectivity at short–medium ranges and
a stochastic filtering approach for mean field radar rainfall bias (MFB) adjustment (associated with systematic
and drift errors in the radar calibration and biased Z–R relationship). MFB adjustment is based on a uniform
scaling factor considered representative of the whole region covered by the radar. It is defined as the ratio
of the ‘true’ to the radar estimated mean area rainfall. For VPR adjustment, a correction procedure based
on the following steps is devised. First, within a radius of 50 km of a certain Cartesian radar pixel location,
neighbouring pixels with rain data and associated blocking level below an upper threshold are identified.
Average rainfall is evaluated for the identified pixel values at a reference CAPPI level (e.g., 1 km) and for
other CAPPI levels (2 km, 3 km, etc.). The VPR correction factor of each upper CAPPI level (i.e., 2 km,
3 km, etc.) is defined as the ratio of their averages to the lower CAPPI level averages. Finally, the rainfall
values of the pixels at the 2 km and 3 km CAPPI levels are multiplied by the corresponding factors and
are used in place of values of lower CAPPI levels if these are blocked by terrain features. One advantage
of this correction scheme is that it is simple to implement. It also takes into account, to some extent, the
spatial variability of VPR since for each pixel the correction factor is computed from neighbouring locations.
Details about these correction procedures and assessment of their significance in radar rainfall estimation can
be found in Dinku et al. (2002). Ground clutter removal was part of the raw radar data quality control system;
hence, it was not part of the pre-processing steps described herein.

Thirty-nine raingauge stations within 80 km range from the radar (see Figure 1, right panel) are available.
Fifteen of those located near the radar are used for the on-line mean-field bias estimation, while 16 raingauges
located at ranges greater than 47 km had been used by Dinku et al. (2002) for calibration of their radar
rainfall algorithm devised herein. Finally, the five independent raingauges (see Figure 1, right panel) located
within and near the Posina catchment provide data for the reference basin-averaged rainfall estimates used
in this study. The standard deviation of this reference rainfall estimation error, derived from Kriging, was
found to be negligible (about 11%) with respect to the standard deviation of rainfall. This gave confidence
that the raingauge measurements of these rain events are adequate to characterize the radar rainfall error
structure (see Borga et al., 2000 for details of the Kriging technique used to derive basin-average rainfall).
For consistency with the hydrological analysis constituting the second stage of the present study, hourly
rainfall accumulations are considered for both adjustment and comparison with raingauge-derived estimates
reported below.

We have considered two radar rainfall estimation scenarios to apply the radar rainfall estimation algorithm.
In the first scenario the CAPPI ranged from 500 to 1500 m above the radar horizon level (476 m a.s.l.). This

Copyright  2004 John Wiley & Sons, Ltd. Hydrol. Process. 18, 3277–3291 (2004)



HYDROLOGICAL MODEL SENSITIVITY 3281

implies dominant effects of radar beam occlusion and less impact of the variability of reflectivity with height.
The second scenario was associated with a CAPPI ranged from 3000 to 4000 m above the radar horizon level.
In this case VPR effects are dominant. Estimates obtained for Scenario 2 may be deemed representative of
results that would have been obtained when lower scans were blocked or too contaminated by ground effects,
or for a more distant catchment. Hereafter the results of the two scenarios will be named ‘Scenario 1 or 2’ and
‘Adjusted or Unadjusted’ (or Non-adjusted), representing whether or not we used the adjustment procedures
incorporated into the radar rainfall estimation algorithm. Note that the unadjusted scenario is based on radar
observations corrected for radar beam occlusion and that the main difference between unadjusted and adjusted
scenarios is the adjustment for mean-field bias and VPR effects.

Figure 2 compares cumulative hyetographs obtained using raingauge and radar data for OCT92 flood event.
The figure highlights relatively minor radar estimation biases for Scenario 1 (both unadjusted and adjusted)
compared to the relatively large underestimation (more than 50%) that affects Scenario 2 unadjusted radar
estimates. For Scenario 2, adjustment is characterized by 14% overestimation. For a statistical evaluation of
the radar adjustment procedure, the following criteria are selected.
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Figure 2. Cumulative raingauge and radar hyetographs for basin-averaged rainfall for OCT92 flood event
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(1) The mean relative error (MRE):
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where Nt is the number of hours in the storm event, Rs
i is the raingauge mean–areal rain rate at time i, and

Rr
i is the corresponding radar mean–areal rain rate.
(2) The fractional standard error (FSE):
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The MRE and FSE values are representative of the systematic and random error components of the radar
rainfall estimates, respectively. The values of MRE and FSE are reported in Table III for each radar rainfall
estimation scenario and for each storm event, as well as for the ensemble (overall) storm events. Reasonable
performances are obtained by applying the adjustment procedure, particularly for Scenario 1. The overall
underestimation, which affects the unadjusted estimates (particularly for Scenario 2), is greatly reduced.
Underestimation is reduced by almost 90% for Scenario 1 and overcompensated for Scenario 2 (with more
than 20% overall overestimation). Adjustment allows reducing FSE by more than 30% for both scenarios.
Among the factors adversely affecting the bias correction for Scenario 2, less-than-effective VPR correction
is probably the most important. Indeed, the correction procedure is designed for optimal application at lower
elevations than those included in Scenario 2, and it is tested here at its limits.

THE RAINFALL–RUNOFF MODEL

The rainfall–runoff model TOPMODEL (Beven and Kirkby, 1979) was chosen to simulate the rainfall–runoff
processes of the Posina catchment. This model makes a number of simplifying assumptions about the runoff
generation processes that are thought to be reasonably valid in this wet, humid catchment. TOPMODEL is
a semi-distributed watershed model that can simulate the variable source area mechanism of storm runoff

Table III. MRE and FSE statistics for unadjusted and adjusted radar rainfall input scenarios

Scenario 1 Scenario 2

Adjusted Unadjusted Adjusted Unadjusted

FSE MRE FSE MRE FSE MRE FSE MRE

OCT92 0Ð467 �0Ð096 0Ð775 �0Ð337 0Ð621 0Ð143 1Ð074 �0Ð565
NOV94 0Ð590 �0Ð097 1Ð040 �0Ð482 1Ð008 0Ð315 1Ð610 �0Ð769
OCT96 0Ð480 �0Ð079 0Ð746 �0Ð437 0Ð767 0Ð255 0Ð979 �0Ð641
NOV96 0Ð560 �0Ð121 0Ð910 �0Ð396 0Ð752 0Ð017 1Ð214 �0Ð618
DEC97 0Ð797 0Ð293 0Ð741 �0Ð364 1Ð202 0Ð372 1Ð460 �0Ð779
Overall 0Ð539 �0Ð058 0Ð854 �0Ð386 0Ð797 0Ð193 1Ð210 �0Ð629
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generation and incorporates the effect of topography on flow paths. The model is premised on the following
two assumptions: (1) that the dynamics of the saturated zone can be approximated by successive steady state
representations and (2) that the hydraulic gradient of the saturated zone can be approximated by the local
surface topographic slope. Detailed background information on the model and applications can be found in
Beven et al. (1995). The model has been applied in the study region by a previous work of Borga et al.
(2000). As with many other TOPMODEL applications, the topographic index ln�a/ tan ˇ� is used as an index
of hydrological similarity, where a is the area draining through a point and tan ˇ is the local surface slope. The
use of this form of topographic index implies an effective transmissivity profile that declines exponentially
with increasing storage deficits. In this study, the derivation of the topographic index from a 20 m grid size
catchment digital terrain model utilized the multiple flow direction algorithm of Quinn et al. (1991, 1995). For
the case of unsaturated zone drainage, a simple gravity-controlled approach is adopted in the TOPMODEL
version used here, where a vertical drainage flux is calculated for each topographic index class using a time
delay based on local storage deficit. The watershed was discretized into 32 sub-basins. The generated runoff
is routed to the subcatchment outlet by using an overland flow delay function. Channel routing effects are
considered using an approach based on an average channel flow velocity for the channel network.

The model parameters are: T0 �ln�m2 h�1��, the mean catchment value of ln�To�, where To is the lateral
transmissivity when the soil is saturated to the surface; the exponential decay rate of transmissivity with depth,
SZM (m); SRMAX (m), the maximum storage capacity of the root zone; XK0 �m h�1�, the surface hydraulic
conductivity; TD �h m�1�, the time delay parameter used to simulate the vertical unsaturated drainage flux;
RV �m h�1�, the overland flow velocity parameter; CHV �m h�1�, the channel flow velocity parameter. To
initialize the saturated zone, the relationship between the saturated zone storage and the subsurface flow can
be used if an initial discharge is known and can be assumed to be the result of drainage from the saturated
zone only. This assumption is used here to derive the initial average subsurface storage deficit from the first
discharge of each event which is still on a recession curve. The model was run at an hourly time step using
basin-averaged rainfall input and considering homogeneous soils all over the catchment.

THE GLUE FRAMEWORK

The GLUE framework of Beven and Binley (1992) was used to assess the resulting uncertainty in the
predictions. The procedure has been described by Romanowicz et al. (1994, p. 299) as ‘in essence a Bayesian
approach to uncertainty estimation for nonlinear hydrological models that recognises explicitly the equivalence,
or near equivalence, of different parameter sets . . . in the representation of hydrological processes’. GLUE
is based on Monte Carlo simulation: a large number of model runs are made, each with random parameter
values selected from probability distributions for each parameter. The acceptability of each run is assessed
by comparing predicted to observed discharges through some chosen likelihood measure. Runs that achieve
a likelihood below a certain threshold may then be rejected as ‘non-behavioural’. The likelihoods of these
non-behavioural parameterizations are set to zero and are thereby removed from the subsequent analysis.
Following the rejection of non-behavioural runs, the likelihood weights of the retained runs are rescaled so
that their cumulative total is 1Ð0.

At each time step the predicted outputs from the retained runs are likelihood weighted and ranked to form a
cumulative distribution of the output variable from which chosen quantiles can be selected to represent model
uncertainty. In such a procedure the simulations contributing to a particular quantile interval may vary from
time step to time step, reflecting the non-linearities and varying time delays in model responses. In this study
discharge estimates of the 5th and 95th percentiles (Qj,0Ð05 and Qj,0Ð95, respectively, for the jth hour) were
adopted as reference uncertainty bounds.

While GLUE is based on a Bayesian conditioning approach, the likelihood measure is achieved through
a goodness of fit criterion as a substitute for a more traditional likelihood function. The likelihood value is
associated with a particular set of parameter values within a given model structure. The likelihood associated
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with a particular parameter value may therefore be expected to vary depending on the values of the other
parameters, and there may be no clear optimum parameter set. The likelihood measure employed in this study
is the classical index of efficiency, E (Nash and Sutcliffe, 1970):

E D
[

1 � �2
e

�2
o

]
�3�

where �2
e is the variance of errors and �2

o the variance of observations (i.e, discharge). This likelihood
measure is consistent with the requirements of the GLUE, as it increases monotonically as the similarity of
behaviour increases.

There are a number of possible ways to define the behavioural threshold used to refine the likelihood
distribution for a set of simulations. If it is possible to make some binary tests of model predictions against
observed behaviour, then this can be used to distinguish behavioural and non-behavioural simulations. It is
often impossible to make such a clear-cut decision. In the majority of cases it may be necessary to impose some
essentially arbitrary behavioural threshold. This is not necessarily a drawback of the GLUE methodology.
In setting a behavioural threshold, the modeller is able to make explicit his/her conditions for acceptance
of a model. Furthermore, changing the behavioural threshold should result in a narrower or wider range
of ‘acceptable’ behaviours, which would in turn change the estimated uncertainty about the model. This
subjective element is likely to be implicit in any evaluation of a proposed model; the Bayesian methodology
of GLUE helps to make this subjectivity explicit.

In previous studies, a behavioural rejection threshold has been chosen arbitrarily as a given value of the
likelihood function (Freer et al., 1996, for example). Alternatively, a fixed proportion of the simulations can
be retained according to their ranked likelihoods so that the best n solutions are considered behavioural (the
best 50% for Beven and Binley, 1992). The last approach has been used below.

To implement the GLUE methodology, each parameter of TOPMODEL was specified a range of possible
values. Table IV lists the four TOPMODEL parameters used for the GLUE and the ranges assigned to each.
Constant (calibrated) values were used for three less sensitive parameters. While the possibility of correlation
between parameters exists, we have no a priori reason to assume any correlation structure among parameters,
so a uniform sampling strategy was adopted.

Following the methodology outlined above, uncertainty associated with model parameterization was
assessed. A sequence of seven flood events, spanning the period of 1987–1995 and excluding the validation
sequence for which radar data are available, was selected as the conditioning data set. Rainfall input for this
conditioning data set was provided by raingauge data. Model predictions were carried out, and the model
likelihood measure was calculated using the efficiency index. From the specified parameter ranges (Table IV),
a large number of simulations were run that allowed us to select 20 000 parameter sets characterized by a
simulation efficiency greater than 0Ð3. The maximum likelihood value (E) achieved on the conditioning data
set was 0Ð81. Figure 3 shows the projections of the sample of points on the goodness of fit response surface
onto each individual GLUE parameter dimension (dotty plots). It is shown that for each parameter there are
good simulations across a wide range of parameters, as well as poor simulations.

Table IV. Parameter value ranges used for GLUE sampling

Minimum value Maximum value Sampling strategy

SZM (m) 0Ð001 0Ð25 Uniform
TD �h m�1� 0Ð001 15Ð0 Uniform
T0 �ln�m2 h�1�� 0Ð001 10Ð00 Uniform
RV �m h�1� 50Ð0 2000Ð0 Uniform
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Figure 3. Dotty plots of the Nash–Sutcliffe model efficiency measure for the four GLUE parameters. Each dot represents one run of the
model with parameter values chosen randomly by uniform sampling across the range of each parameter in Table IV

A number of fixed proportions of the simulations were retained according to their ranked likelihoods so
that the best n solutions were considered behavioural. These fixed proportions ranged from the best 10%
to the best 100% (i.e., all the 20 000 parameter sets with efficiency greater than 0Ð3), at a 10% increment.
Uncertainty bounds conditioned on the calibration flood sequence using the best 10% to the best 100% of
the realizations were then propagated to the (validation) flood sequence (see Table II) using rainfall estimates
from the raingauge network and from the two radar rainfall estimation scenarios, both adjusted and unadjusted.

COMPARING PREDICTIVE UNCERTAINTY FOR DIFFERENT RAINFALL INPUTS

The GLUE procedure provides a range of parameter likelihood-weighted predictions that may be compared
with discharge measurements. It may be found, as will be shown below, that the observations with which
model predictions are to be compared may still fall outside the calculated uncertainty limits. If it is accepted
that a sufficiently wide range of parameter values has been examined, and the deviation of the observations is
greater than would be expected from measurement error, then this would suggest that the model structure, or
the imposed boundary conditions (including the rainfall input), should be considered inadequate to describe the
system under study. Two contrasting issues should be considered at this stage: if either the uncertainty limits
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are drawn too narrowly or the whole simulation envelope is biased, then a comparison with observations
will suggest that the model structure is invalid; if, on the other hand, they are drawn too widely, then it
might be concluded that the model structure has little predictive capability. These observations outline the
basic structure for a framework aimed at a direct quantitative comparison of predictive uncertainty between
model responses obtained from competing rainfall estimates. In that framework, both the wideness of the
uncertainty limits and the percentage of observations included in the limits should be evaluated. Furthermore,
since any behavioural threshold is arbitrary in some sense, the comparisons should be carried out for a range
of behavioural thresholds.

Given that the same conditions are applied throughout GLUE concerning: (1) the sample of a priori
parameter set used; (2) the choice of likelihood measure; and (3) the discharge observations used in the
calculation of the likelihood measure and for the comparison with the uncertainty limits, the analysis of
results obtained by conditioning the model with a reference rainfall (derived from a dense raingauge network,
for instance) and propagating the uncertainty bounds by using competing rainfall inputs offers a convenient
way to quantify the impact of errors in rainfall input on runoff modelling uncertainty. This is carried out by
comparing the range of likelihood-weighted predictions, obtained by using alternative competing algorithmic
structures for radar rainfall estimation, with the observations. In accordance with a previous application of
GLUE by Borga (2001), two statistics are defined as follows for a given behavioural threshold:

ER D Nexceedances,radar

Nexceedances,gauge

UR D

NT∑
jD1

(
qsimradar

j,0Ð95 � qsimradar
j,0Ð05

)
NT∑
jD1

(
qsimgauge

j,0Ð95 � qsimgauge
j,0Ð05

)
�4�

where Nexceedance is the number of times the observed discharge falls outside the calculated uncertainty limits,
ER is the exceedance ratio signifying the ratio of exceedances for radar input to gauge input, and UR is the
uncertainty ratio signifying the ratio of the aggregate wideness in runoff simulation uncertainty for radar input
to gauge input. The NT is the total number of time steps for simulation of storm events, with j pertaining
to a given time step, and qsim is the simulated discharge with its superscript signifying the type of rainfall
input.

It is noted again that the two statistical measures presented herein need to be assessed jointly as individual
interpretations can be erroneous due to their inherent competing characteristics. Also, if the gauge-based
rainfall is assumed to be the reference value (i.e., closest representation of the true rainfall), then a closer look
at the denominator of the ER and UR in equation (4) will reveal that it actually signifies the impact of the
model’s parameter uncertainty on runoff prediction uncertainty. The numerator can then be considered to be
representative of the combined impact of model parameter uncertainty and rain input error on runoff simulation
uncertainty. Hence the two ratios are essentially a normalization of combined input–parameter uncertainty to
the corresponding model’s parameter uncertainty, with ER aimed at comparing the relative structural validity
and UR aimed at comparing the relative predictive capability. A ratio value nearing 1 would indicate the
runoff predictive uncertainty for the given radar input mimicking that from a dense raingauge network.

Figures 4 and 5 show the uncertainty bounds (with n equal to 100%, i.e., with use of all the 20 000
parameter sets with efficiency greater than 0Ð3) propagated for the OCT 1992 flood event by using different
rainfall inputs. Examination of the simulations obtained by using raingauge data (Figure 4) demonstrates
that large uncertainties can be associated with model predictions even when using the reference rainfall.
However, the uncertainty bounds enclose the observed time series relatively well, and only a few flow
observations can be found outside of the uncertainty envelopes, indicating deficiencies in the data and/or
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Figure 4. Propagated uncertainty bounds for OCT92 flood event with rainfall input from raingauge data

model structure. Comparison between the various uncertainty bounds for the radar scenarios shows that narrow
uncertainty bounds are associated with negatively biased (underestimated) unadjusted radar rainfall input.
Radar error adjustment results in a widening of the uncertainty bounds. This provides evidence that, contrary
to conventional wisdom, appropriate adjustment of the radar estimates may (rightly) increase predictive runoff
uncertainty, at least when adjustment is associated with the correction of a negative bias in raw radar estimates.
The reduction of the negative bias and hence the increase in magnitude of the radar rainfall estimation through
adjustment procedures magnifies further in the non-linear propagation as higher runoff values, resulting in
wider runoff simulation uncertainty bounds.

For the adjusted case of Scenario 1, we observe that simulation uncertainty is very similar to that for
gauges. This provides strong evidence that radar scans as close to the ground as possible and adjusted for
errors can characterize the rainfall–runoff transformation as accurately as a relatively dense gauge network,
even in a terrain characterized by rough orography. Note that, for this event, rainfall estimates from unadjusted
Scenario 2 are affected by more than 50% negative bias (underestimation), while adjustment results in 14%
overestimation (see Figure 2). Examination of the simulations obtained by using unadjusted Scenario 2 radar
estimates shows that the uncertainty bounds are considerably narrower than those obtained for the case of
Scenario 1. This is due to the global negative bias characterizing this scenario. For the same reason, all
discharge observations fall outside of the uncertainty envelope. Radar error adjustment allows us to reduce
the global bias and results in a widening of the runoff simulation uncertainty. This causes the bounds to
bracket the storm hydrograph realistically.

Figure 6 shows the exceedance ratios (ER) and uncertainty ratios (UR) evaluated for different behavioural
thresholds for the entire study flood sequence. Several features are worth noting in this figure. The patterns
of the uncertainty structure associated with the use of radar rainfall estimates are relatively similar for the
two different scenarios. The differences are summarized as follows: (1) larger values are found for ER in
Scenario 2 (adjusted and unadjusted) with respect to Scenario 1 and (2) the difference in UR between adjusted
and unadjusted scenarios is higher for Scenario 2. These effects are clearly due to the different rainfall input
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Figure 5. Propagated uncertainty bounds for OCT92 flood event with rainfall input from radar rainfall estimates

biases characterizing the two scenarios. Radar rainfall errors (particularly those associated with VPR effects)
and their adjustment exhibit a more pronounced effect for Scenario 2, where the relatively small values of
UR for unadjusted estimates and the relatively large values for adjusted estimates mirror the characteristics of
the radar rainfall bias (negative and positive, respectively) and of its propagation through the rainfall–runoff
transformation. It is noted also that beyond a 40% parameter uncertainty (best 40%), adjusted Scenario 1
radar rainfall yields very similar runoff simulation uncertainty bounds as gauges, even though there remains
a 30–50% increase in ER.

Examination of Figure 6 also shows that there is a tendency for UR (ER) to decrease (increase) with
increasing number of behavioural realizations retained in the analysis. The effect of varying the behavioural
threshold is to modify the uncertainty bounds; by setting a stricter threshold, the uncertainty bounds are
narrower. The slight decrease of UR with increasing number of behavioural realizations (i.e., with the
parameter predictive uncertainty) indicates that the uncertainty bounds associated with using radar estimates
(either adjusted and not) widen less than those associated with raingauge input. The increase of ER statistics
with increasing number of behavioural realizations indicates that relatively less flow observations are falling
within the predictive uncertainty bounds by using radar input than by using raingauge input. This suggests that
the uncertainty bounds associated with the radar input become relatively more biased than those associated
with gauge input, with increasing number of realizations retained as behavioural. In other words, the interaction
of biased radar input with less representative model parameters results in more biased runoff predictions. This

Copyright  2004 John Wiley & Sons, Ltd. Hydrol. Process. 18, 3277–3291 (2004)



HYDROLOGICAL MODEL SENSITIVITY 3289

0 20 40 60 80 100

Behavioral Threshold (%)

0

0.5

1

1.5

U
nc

er
ta

in
ty

 R
at

io
 (

U
R

)

1

2

3

4

E
xc

ee
da

nc
e 

R
at

io
 (

E
R

)

Scenario One

0 20 40 60 80 100

Behavioral Threshold (%)

Adjusted 
Unadjusted 

Scenario Two

Figure 6. Runoff prediction uncertainty assessment in terms of uncertainty ratio and exceedance ratio for various behavioural thresholds

finding is confirmed by the comparison of ER statistics among Scenarios 1 and 2, which shows a quicker
increase of ER for Scenario 2, characterized by more biased radar estimates.

The global picture emerging from this analysis demonstrates that runoff prediction uncertainty given radar
rainfall input cannot be simply partitioned into two additive terms: the term related to model parameter
uncertainty and the term related to the propagation of radar rainfall uncertainty. Rather, radar rainfall
uncertainty—particularly when the rainfall bias term is important—acts in a highly non-linear sense on
the model parameter uncertainty, by either magnifying or reducing it according to the nature of the rainfall
estimation bias. The above considerations should not imply that unbiased radar rainfall estimates lead to
unitary UR: random errors still play a role and indeed examination of the UR statistic for Scenario 1 shows
(between the best 0% to 40%) that its value is greater than 1 even when using radar estimates only slightly
biased.

CONCLUSIONS

The GLUE procedure has been used in this study as a means of hydrological model comparison using
different rainfall inputs, provided by raingauge networks and by radar estimates according to various processing
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scenarios. The proposed analysis framework allows evaluating both the wideness of the predictive uncertainty
limits and the percentage of observations included in the limits, with varying the behavioural threshold. This
helps to assess the impact of radar rainfall errors on the output of a hydrological model previously conditioned
using rainfall data from a reasonably dense raingauge network. The evaluation is reported in terms of both
structural validity and predictive capability of the resulting model output.

In the Introduction we posed three questions: (1) How confident are runoff predictions based on radar
rainfall? (2) What are the causes of errors in runoff? (3) How can the errors be reduced? The investigation
reported herein showed how it is possible to use the GLUE framework to provide an objective answer to
these questions. We observed that the runoff model defined by using unadjusted radar estimates is structurally
invalid due to poorly defined input data. The wideness of uncertainty bounds for runoff predictions obtained
by using the adjusted radar rainfall (especially for Scenario 1, which is associated with moderate vertical
reflectivity profile effect) is similar to those obtained based on basin averaged gauge rainfall. That is, use of
radar scans closest to the ground offers runoff prediction as confident as that obtained from a dense gauge
network. The principal sources of errors in radar rainfall estimation, such as mean field bias and VPR effects,
magnify in the non-linear rainfall–runoff transformation as runoff prediction uncertainty. For mitigation of
these error sources, combined adjustment procedures for MFB and VPR effect, such as those developed by
Dinku et al. (2002), are effective means of improving accuracy of runoff predictions.

There are also other features worth summarizing here. Runoff simulations appear sensitive to the impact of
errors related to variability of reflectivity with height, which dominate the radar error structure (particularly
for high radar scans). However, structural errors due to the combination of radar errors and model parameter
uncertainty result in 30–50% more discharge observations falling outside the uncertainty bounds with respect
to the use of raingauge data. For Scenario 2 (adjusted) these percentages increase to 70–100%, with slightly
larger uncertainty bounds.

Use of the type of analysis proposed here provides a clear view of the relative effects of input and
parameter uncertainty upon model output and indeed is a valuable tool in analysing and ranking the sources of
predictive uncertainty. It is hoped that, being explicit about the levels of uncertainty, limitations within the radar
processing algorithm and the hydrological model can be improved upon, or additional data can be acquired in
order to reduce the predictive uncertainty. Natural extensions of this work include: (i) the consideration of radar
error structures and adjustment algorithms different from those used in this analysis; (ii) the implementation
of the analysis framework for continuous hydrological simulation instead of event-based flood modelling
described here; (iii) examining the effects of different likelihood functions and parameter sampling ranges
within the GLUE methodology. Another interesting aspect worth studying is the impact of the quality of the
gauge estimates on the characterization of the radar rainfall error propagation in runoff. Different scenarios
of varying quality of gauge estimates could be studied by considering hypothetical combinations of gauge
networks (e.g., excluding the ones closest to the basin in the analysis). All these extensions will further
improve our understanding of runoff prediction uncertainty associated with the two main error sources: in
rainfall input and in hydrologic modelling.
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