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ABSTRACT
A computationally efficient early warning technique is developed for forecasting flash floods during

the pre-monsoon season that are associated with a complex topography and transboundary runoff in

northeastern Bangladesh. Locally conditioned topographic and hydrometeorological observations

are key forcings to the modeling system that simulate the hydrology and hydraulic processes. The

hydrologic model is calibrated and validated using satellite-based observations to estimate the

correct amount of transboundary and mountainous inflow into the flash flood-prone plains. Inflow is

then forecasted using precipitation forecast from a global numerical weather prediction (NWP)

system called the Global Forecasting System (GFS). The forecasted inflows serve as the upstream

boundary conditions for the hydrodynamic model to forecast the water stage and inundation

downstream in the floodplains. A real-time in-situ data-based error correction methodology is

applied to maintain the skill of the system. The simulation grid size and time-step of the

hydrodynamic model are also optimized for computational efficiency. Historical performance of the

framework revealed at least 60% accuracy at 5-day lead-time in delineating flood inundation when

compared against Sentinel-1 synthetic aperture radar (SAR) imagery. The study suggests that higher

resolution topographic information and dynamically downscaled meteorological observations can

lead to significant improvement in flash flood forecasting skills.

Key words | Bangladesh, flash flood, forecasting, numerical weather prediction, transboundary

runoff
HIGHLIGHTS

• A computationally efficient flashflood forecasting system was developed.

• The system is tailored for transboundary runoff based inundation in Bangladesh.

• The system uses weather forecast and reported acceptable skill up to 3 day lead time.

• The system is now operational by Bangladesh Water Development Board.
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INTRODUCTION
Flash floods are one of the most dangerous natural hazards

due to their sudden nature of occurrence. They are generally

caused by heavy or excessive rainfall over a very short
period of time, where runoff generation is accelerated due

to saturated or poorly infiltrating soil, or steep terrain. The

time difference between the rainfall event and flood peak
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is often less than 12 hours, which makes forecasting extre-

mely challenging (Lin 1999). Flash floods are the number-

one cause of death among all storm-related hazards in the

USA, with approximately 100 lives lost each year (Ashley

& Ashley ).

Over the past few decades, flash floods have drawn

attention in many parts of the world including the United

States, European Union, Australia, and Egypt (Hapuarach-

chi & Wang 2008; Abuzied & Mansour ). Flash floods

are of particular concern in the northeastern region of

Bangladesh (shown in Figure 1(a)), which experiences

flash floods nearly every year during the pre-monsoon

season (March–May). This area is home to extensive agricul-

ture and aquaculture activities that support the country’s

economy and food security. In the dry season, the region

contributes 16% of the total rice production of the whole

country (Quddus ). However, the pre-monsoon sudden

peak discharge as a flash flood from the adjacent upstream

areas often causes immense damage to the harvest-ready

crops. The March 2017 flash flood affected nearly one

million people and caused a potential loss of approximately

one million metric tons of crops, which accounts for 3.7% of

the country’s agriculture sector GDP. This event compro-

mised the overall food security of the country (ReliefWeb

Flood Situation Report ). The northeastern region

has been experiencing the same type of flash flood every

year with varying degrees of damages and consequences.

An operational flash flood forecasting and early warning
Figure 1 | (a) Northeastern region of Bangladesh. (b) Schematic diagram of river network alon
system is critical for ensuring the safety of the local popu-

lation and protecting the food security of Bangladesh.

One challenge in developing a skillful forecasting

framework in the northeastern region of Bangladesh is the

complex nature of the flash flood generation mechanism.

The region consists of interconnected stream networks,

perennial and seasonal channels, lowland regions, and

internal depressions locally known as Haors. In Figure 1(b),

a schematic diagram of the area is shown to illustrate the

hydraulic connectivity of channels and floodplains. The

flash flood region is located in the downstream portion

of the transboundary Meghna river basin. The upstream

region consists of the mountainous Meghalaya, Tripura,

and Barak river basins of India. In Figure 2, the topography

of the basin shows the rapid transition from hilly areas in the

northern upstream region to floodplains in the southern and

southwestern parts inside Bangladesh. Tributaries in the

north originate from Khasi and Jaintia Hills, which receive

an average of 12,000 mm of rainfall annually and are some

of the wettest places of the world (Parry ). In upstream

channels where precipitation is orographically enhanced

by mountainous terrain, hydrologic processes dominate

the flood generation mechanism. This shifts in the down-

stream floodplain, where hydrodynamic processes control

flood propagation. Thus, the forecasting of flash flood-indu-

cing flow depends on the ability of hydrological and

hydrodynamic models to represent the processes at the

small scales of interest as well the availability and accuracy
g with floodplain (shaded area).
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Figure 2 | Hydrological model domain along with calibration–validation stations (elevation is based on corrected and reconditioned SRTM DEM and shown as above mean sea level).
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of rainfall, soil moisture, and topographical data used to

drive the models (Yatheendradas et al. ; Simons et al.

). This also means that conventional techniques used

in river-based flood forecasting are not suitable for flash

floods in floodplains where two-dimensional hydrodynamic

processes dominate the hydrological or channel flow pro-

cesses (Sangati ). The characteristics of the rain

(intensity, duration, amount, and time-space distribution)

and the physical and hydrological characteristics of the

watershed (area, length, slopes, shape, type of soil and

land cover, and antecedent conditions) need to be accu-

rately captured for any framework to forecast flash floods.

Another critical ingredient for flash flood forecasting is

forecasted precipitation. Forecasted precipitation is a key

parameter in forecasting flows for a lead-time longer than

the time of concentration of a river basin (which is short

for mountainous basins). Recent advancements in satellite

earth observations and enhanced capabilities of computer

models now enable quantitative precipitation forecasts

(QPF) (Liguori et al. ; Liu et al. ). Forecasted precipi-

tation produced by numerical weather prediction (NWP)

models, with global scale coverage, and near real-time
availability, are already being applied in river flow forecast-

ing and monsoon flood forecasting (Verbunt et al. ;

Roberts et al. ; Liguori et al. ). Some recent studies

also dynamically downscaled the NWP forecasts by using

high-resolution weather research and forecasts (WRF)

model along with terrain and land-use features (Rao et al.

; Hsiao et al. ; Sikder & Hossain ). Although

WRF-based downscaling methods improve the accuracy of

the forecasts, computational resources, and limited internet

accessibility are a concern in developing countries like Bangla-

desh (Sikder & Hossain 2017). Thus, it is also crucial for flash

flood forecasting methods to be computationally efficient for

use in an operational setting without compromising accuracy.

Among the available methods, the most widely used

operational method for flash flood forecasting is flash

flood guidance (FFG) method (Georgakakos ). Esti-

mation of threshold runoff volume of various durations

and soil moisture accounting (Sweeney ) is required in

this method. It is usually lumped over the basin; spatial

and temporal distribution of threshold runoff within the

basin and influence of soil and land cover characteristics

are not considered. Other approaches have used multisensor
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data and neural networks (NN) for flash flood forecasting

(Kim & Barros ; Piotrowski et al. ; Chiang et al.

). Kim & Barros () used NWP forecasts, wind,

and pressure data along with rain gauge data in an artificial

neural network to produce streamflow forecasts with up to

24 h lead-time. Chiang et al. () developed a data-based

approach using recurrent neural network using gauge obser-

vations and satellite-derived PERSIANN-CCS (Precipitation

Estimation from Remotely Sensed Information using Artifi-

cial Neural Networks-Cloud Classification System)

precipitation (Hong et al. ). Chen & Yu () proposed

a probabilistic approach for flood stage forecasts based on

hourly water stage and rainfall data using support vector

regression and probability distribution of forecast error

based on fuzzy inference. In most methods published in

the literature, hydrological and topographical characteristics

of the catchments do not appear to be explicitly represented,

except for rainfall and discharge. Also, all of the statistical

and probability-based approaches (i.e., Sajikumar & Than-

daveswara ; Wang et al. ; Kratzert et al. )

require a long time series for training the model which is

not available in case of ungauged and transboundary

basins, like northeastern Bangladesh.

The most recent advancement in computing has made

modeling approaches to flash flood forecasting more feas-

ible (Liang & Smith ). Jasper et al. () first used

numerical weather prediction models to produce meteorolo-

gical observations and then used them as forcing data in a

distributed hydrological model to forecast flash floods in

an alpine watershed. England et al. () applied a phys-

ically based distributed two dimensional, runoff, erosion,

and export (TREX) model to simulate (hourly) extreme

floods in semi-arid regions in the western United States.

There are also atmosphere–hydrological coupled models,

such as the National Center for Atmospheric Research

(NCAR) developed WRF-Hydro modeling system (Gochis

et al. 2015). For flash floods, WRF-Hydro can be applied

to simulate high-resolution hydrometeorological processes

such as surface overland flow, saturated subsurface flow,

channel routing, and baseflow processes. The lack of rep-

resentation of interconnection between stream networks is

however a common limitation in all hydrological models,

which makes WRF-Hydro unsuitable for northeastern Ban-

gladesh. It is necessary to include hydrodynamic/hydraulic
models in conjunction with hydrologic models to properly

represent the hydraulic processes in the river channels and

floodplains.

Besides the discharge and river flow forecasts, it is also

necessary to produce an accurate mapping of the spatial

extent of inundation forecasts to trigger location-specific

warnings, damage assessment as well as to plan relief and

rehabilitation. A very limited number of studies used the

hydrodynamic modeling approach, and those that did

were limited to one-dimensional (1D) flow simulation

(Fread 1993; Ghoneim & Foody ) to produce station-

based forecasts. To the best of our knowledge, there are no

such published studies where two-dimensional hydraulic pro-

cesses have been represented along with hydrological models

in an operational framework for flash flood/flood forecasting.

Possible reasons for this might be due to the reasons of i)

complexity in modeling development, calibration, and vali-

dation of multiple models that depend extensively on

meteorological, hydrological, and topographic data and ii)

computation time of simulation of a complex framework con-

sisting of meteorological–hydrological–hydraulic processes.

In this study, the objective is to explore the optimal com-

bination of scale, time step, and complexity in topographic

and hydrometeorological observations for developing a

flash flood forecasting system. The core component of the

framework is based on making use of globally available

weather forecast data in real-time from NWP models.

These precipitation forecasts can drive the hydrologic–

hydrodynamic framework without any computationally

expensive downscaling. As a first step, the approach here

is to investigate how publicly available forecasts on precipi-

tation from the global NWP model like GFS perform and

whether skill remains acceptable without any regional

NWP-based downscaling using WRF. The specific research

questions that this study answers are: (1) What is the opti-

mal combination of scale, time step, and complexity for

topographic and hydrometeorological data to produce skill-

ful flash flood forecasts? and (2) What is the baseline

accuracy of a flash flood forecasting system that is achiev-

able without dynamic downscaling of NWP weather

forecasts? In the paper, datasets and detailed methodology

are described in the section Data and methods, followed

by Results and findings. Major findings, conclusions, and

recommendations are presented in the final section.
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DATA AND METHODS

Datasets

Hydrometeorological data

We used Climate Hazards Group InfraRed Precipitation

with Station data (CHIRPS, link: http://legacy.chg.ucsb.

edu/data/chirps/index.html) (Funk et al. ) as the refer-

ence precipitation product during the model calibration–

validation phase. The temporal accumulation is of daily

scale, and the spatial resolution of the dataset is 0.05� by

0.05�. As a nowcast source of precipitation for the

operational framework, we explored two near-real-time

precipitation products, namely, GSMaP-NRT (link: https://

sharaku.eorc.jaxa.jp/GSMaP_NOW/index.htm) (Okamoto

et al. ; Kubota et al. ; Aonashi et al. ; Ushio

et al. ) and Global Precipitation Measurement (GPM)

Integrated Multi-satellitE Retrievals for GPM (IMERG,

link: https://pmm.nasa.gov/data-access/downloads/gpm)

Early Run Version 05B. The spatial resolution of GSMaP

and IMERG precipitation is 0.1� by 0.1� and temporal resol-

ution is half hour (IMERG) and 1 hour (GSMaP). Both of

the products are available with a latency of 6 hours.

Solar radiation, average wind speed, maximum and

minimum temperature, relative humidity datasets are also

collected from various sources. Gridded monthly solar

radiation data were collected from NASA Prediction of

Worldwide Energy Resources (link: https://power.larc.

nasa.gov/data-access-viewer/). Average wind speed, maxi-

mum and minimum temperature, and relative humidity

data were retrieved from the National Climatic Data

Center of NOAA (https://www7.ncdc.noaa.gov/CDO/

cdoselect.cmd?datasetabbv=GSOD). In-situ observed WL

were provided by Bangladesh Water Development Board

(BWDB) (www.bwdb.gov.bd). Rated discharge was gener-

ated using the rating curve provided by the same institution.

Numerical weather prediction (NWP) outputs

NWP products are the key parameter used in this study. The

Global Forecasting System (GFS) developed by the National

Oceanic and Atmospheric Administration (NOAA) was

used as the source of forecast precipitation from a global
NWP model. Historical dataset of GFS forecast precipi-

tation was downloaded from https://www.ncdc.noaa.gov/

data-access/model-data/model-datasets/global-forcast-system-

gfs. In the nowcast system we developed, the datasets are

downloaded from https://nomads.ncep.noaa.gov/cgi-bin/

filter_gfs_0p25.pl utilizing the online spatial and parameter-

based subsetting facility. The GFS weather forecast products

were updated every 6 hours up to 16 days lead-time at a

spatial resolution of 0.25� by 0.25�. The temporal accumu-

lation of precipitation products used in this study was 3 hours.

DEM, soil, and land cover data

The Shuttle Radar Topography Mission (SRTM) developed

void filled Version 3.0 SRTM Global 1 arc second

product was used as the DEM, downloaded from https://earth-

explorer.usgs.gov/. Land cover data for the hydrologic and

hydrodynamic models were derived from Climate Change

Initiative-Land Cover Maps of 2015 by using MERIS of Envi-

sat along with SPOT-Vegetation, AVHRR, and PROBA-

Vegetation mission datasets which are available at http://

maps.elie.ucl.ac.be/CCI/viewer. Soil data and information

related to soil properties were retrieved from http://www.fao.

org/soils-portal/soil-survey/soil-maps-and-databases/en/.

Sentinel-1 synthetic aperture radar (SAR) datasets

Sentinel-1 synthetic aperture radar (SAR) imagery products

were used to compare the framework-generated flood inun-

dation maps. SAR is an all-weather satellite with the

advantage of operating at wavelengths not impeded by

cloud cover and with day–night image acquisition. The

images are at 10 m spatial resolution with an average tem-

poral resolution of 10 days. All of the Sentinel images

were processed using Google Earth Engine (GEE) (Gorelick

et al. ). A backscatter coefficient of �14 db (Ahmad et al.

) was used to differentiate between water and non-water

features. Finally, the extracted maps were used to assess the

accuracy of the generated forecasts.

Methodology

The key steps of our flash flood forecasting framework devel-

opment are DEM correction and recondition, base

http://legacy.chg.ucsb.edu/data/chirps/index.html
http://legacy.chg.ucsb.edu/data/chirps/index.html
http://legacy.chg.ucsb.edu/data/chirps/index.html
https://sharaku.eorc.jaxa.jp/GSMaP_NOW/index.htm
https://sharaku.eorc.jaxa.jp/GSMaP_NOW/index.htm
https://sharaku.eorc.jaxa.jp/GSMaP_NOW/index.htm
https://pmm.nasa.gov/data-access/downloads/gpm
https://pmm.nasa.gov/data-access/downloads/gpm
https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/
https://www7.ncdc.noaa.gov/CDO/cdoselect.cmd?datasetabbv=GSOD
https://www7.ncdc.noaa.gov/CDO/cdoselect.cmd?datasetabbv=GSOD
https://www7.ncdc.noaa.gov/CDO/cdoselect.cmd?datasetabbv=GSOD
http://www.bwdb.gov.bd
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
https://nomads.ncep.noaa.gov/cgi-bin/filter_gfs_0p25.pl
https://nomads.ncep.noaa.gov/cgi-bin/filter_gfs_0p25.pl
https://nomads.ncep.noaa.gov/cgi-bin/filter_gfs_0p25.pl
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
http://maps.elie.ucl.ac.be/CCI/viewer
http://maps.elie.ucl.ac.be/CCI/viewer
http://maps.elie.ucl.ac.be/CCI/viewer
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/en/
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hydrological and hydrodynamic model calibration–vali-

dation, and operationalization of the system. Each of these

steps is discussed in the following sub-sections.

DEM correction and reconditioning

Generally, rivers in a high terrain region can easily be deli-

neated using any hydrological analysis tool (e.g.,

Automatic Watershed Delineation of SWAT, ArcHydro

tool of ArcGIS). However, in the floodplain, it is quite diffi-

cult to distinguish between the floodplain and the river

channels using automated tools. For accurate represen-

tation, the river network in the floodplain was manually

derived first using Google Earth. The automatic watershed

delineation tool of the ArcSWAT model was also used to

delineate the river network in the basin. The delineated net-

work and manually digitized networks were then merged to

create a more accurate river network map. Using this river

network, the SRTM DEM was reconditioned and the water-

sheds were delineated for further processing. The DEM was

reconditioned using a sharp drop of 10 m (burning) and a

smooth drop of 5 m along the channels. This reconditioned

DEM was finally used as the topography input into the

hydrological model. During the development of the base

hydrodynamic model, sensitivity analysis was performed

using different amounts of systematic errors in SRTM

DEM tested (i.e., 2.0 m, 2.5 m, 3.0 m, 3.5 m, and 4.0 m).

Finally, it was found that an assumption of 3.5 m of error

in SRTM DEM produced the best estimation of flood inun-

dation when compared with independent and in-situ

observations.

Base hydrological model development and calibration

The Soil and Water Assessment Tool (SWAT) was used here

to develop the hydrological model. SWAT is a river basin-

scale hydrological model used to simulate the quantity of

surface and groundwater. The hydrologic cycle simulated

by SWAT is based on the water balance equation. It is a

semi-distributed physically based model that divides the

basin into a number of hydrologic response units (HRU).

An HRU is a unit of area with uniform land use, soil type,

elevation, and slope. We used the SWAT model at daily

time step to simulate streamflow at the floodplain boundary
locations. The model was developed using the reconditioned

DEM, land use, and soil data. For the SWAT model, the fol-

lowing parameters were computed: monthly climatology of

precipitation; average number of days of precipitation; stan-

dard deviation of precipitation; skew coefficient of daily

precipitation; probability of wet day following a dry day;

probability of wet day following a wet day; maximum 0.5 h

rainfall; maximum and minimum air temperature; average

wind speed; daily dew point temperature; and daily solar

radiation. Most of these parameters (monthly climatology

of precipitation; average number of days of precipitation;

standard deviation of precipitation; skew coefficient of

daily precipitation; probability of wet day following a dry

day; probability of wet day following a wet day; maximum

0.5 h rainfall) were calculated using CHIRPS precipitation

between 1980 and 2017 or climatology datasets from the

National Climatic Data Center (NCDC). Except for precipi-

tation, climatology of all other datasets was used during

simulation of the SWAT model. During the calibration

phase, CHIRPS precipitation dataset was used in this

model. The model was calibrated using the observed data

from 2004 to 2012. The optimized parameters were used

to validate the model from 2013 to 2017. In Figure 2, the

model domain is shown along with basin boundary and

modified stream network. Inflow calibration locations of

the hydrological model are also shown in the same figure.

Hydrodynamic model development and optimization

Using the Climate Change Initiative (CCI) developed land

cover data, Manning’s n values were defined for overland

flow in the floodplain. Hydraulic Engineering Center-devel-

oped HEC-RAS version 5.0.5 was used to develop the

hydrodynamic model. The main advantage of this model is

improved stability due to the use of an implicit finite

volume approach, which is more robust than the finite

element or finite difference method (the earlier version of

HEC-RAS). It allows a larger simulation time step compared

to explicit methods allowing a higher value of Courant–Frie-

drichs–Lewy (CFL) condition. Diffusion wave or full

momentum 2D equations are used in this model. The simu-

lation grid cells have stage–storage relationships derived

from terrain or DEM dataset, allowing larger computational

cells without loss of terrain details. The hydraulic geometry
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was created as a 2D flow area of the floodplain. Manning’s n

was assigned according to the landcover type following the

suggestions from the HEC-RAS River Analysis System 2D

Modeling User’s Manual. The hydrological model-generated

calibrated inflow into the floodplains was defined as the

upstream boundary condition. The downstream boundary

condition of the model was the observed water level

during the calibration–validation of the framework. Average

precipitation over the floodplain was also included as a

boundary condition into the model. The domain of the

hydrodynamic model along with unsteady boundary

locations are shown in Figure 3.
Bias correction of simulated results

To increase the accuracy of the modeling framework, an

error correction strategy was used as follows. In-situ

measurements available on the day of making a forecast

were utilized to improve the accuracy of forecasts. The
Figure 3 | Hydrodynamic model domain along with unsteady boundary locations.
error in simulated (nowcast) result was calculated by com-

paring with observed water heights for that day (time t¼ 0

or nowcast). This systematic error amount was subtracted

from the forecast water heights. The error correction is

explained in Equations (1) and (2). Finally, an average of

the bias of all of the observed stations was subtracted from

the model-generated inundation depth to generate actual

forecast inundation.

error ¼ WLsimulated[x]� WLobserved[x] ð1Þ

WLforecast[i] ¼ WLsimulated[i] –error ð2Þ

where, x ¼ forecast date, i ¼ forecast lead-time:
Operational framework development

Using the optimized selection of model configurations and

the error correction strategy, the framework was made
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functional for real-time operations. In the operational set-

ting, latest GPM-IMERG nowcast and GFS forecast

precipitation data were downloaded at every model time

step. GFS forecast precipitation was resampled to 0.1� by

0.1� to match the resolution of GPM-IMERG precipitation.

The SWAT hydrological model was simulated and the

inflow at different locations calculated. These inflows were

then used in the HEC-RAS model as boundary flow con-

dition. For the forecast period, different downstream

boundary conditions were tested (e.g., model simulated dis-

charge, rating curve, normal depth) and it was found that the

hydrodynamic model performed best when hydrological

model simulated discharge was used as the downstream

boundary condition.

The HEC-RAS model was then simulated for every fore-

cast time step using a restart option to conserve

computational time. The computed water heights and inun-

dation maps were then corrected using the error correction

technique mentioned in the section ‘Bias correction of simu-

lated results’ and Equations (1) and (2). Finally, all the

simulated maps and time series forecasts were pushed to

the web-based user-interface at http://depts.washington.

edu/saswe/flashflood. On this web-interface, users can

view the real-time forecast precipitation, discharge, water

heights, and inundation for up to 5-day lead-time. In

Figure 4, the methodology for the operational system is sum-

marized as a flowchart.
Figure 4 | Operational flowchart and the frontend of the framework.
RESULTS AND DISCUSSION

In this section, all the findings during calibration–validation

and operationalization are discussed. The stations used

during performance assessment of hydrological and hydro-

dynamic models including calibration and validation are

shown in Figure 5.
Hydrological model calibration

The SWAT model was calibrated manually using rated dis-

charge at six inflow boundary stations. These were the

locations within the basin and on the boundary of the flood-

plain which contributes almost all of the inflows into the

floodplain (shown in Figure 2). Calibrated parameters

were selected from Neitsch et al. () and their optimized

values are reported in Table 1. These parameters are: (i)

three surface water components (curve number and plant

uptake and soil evaporation factor); (ii) two soil water fac-

tors (available soil water capacity and soil saturated

hydraulic conductivity); and (iii) four groundwater par-

ameters (groundwater delay, groundwater revap constant

and re-evaporation threshold). Among these parameters,

curve numbers were optimized by a multiplication factor

of 1.231 from the original values and the others were

replaced with the mentioned values.

http://depts.washington.edu/saswe/flashflood
http://depts.washington.edu/saswe/flashflood
http://depts.washington.edu/saswe/flashflood


Figure 5 | Floodplain river stations for performance assessment.

Table 1 | Calibrated parameters of SWAT hydrological model of Meghna Basin

Parameter Description Type Range Optimized value

CN2 Curve number for moisture condition Surface runoff 35–98 Variable

EPCO Plant uptake compensation factor Surface runoff 0.75–1 1

ESCO Soil evaporation compensation factor Surface runoff 0.75–1 0.95

SOL_AWC Available soil water capacity Soil water 0.0–1.0 0.2625

SOL_K Soil saturated hydraulic conductivity Soil water 0–2,000 8.45

ALPHA_BF Baseflow recession constant (days) Groundwater 0.01–1 0.5

GW_Delay Groundwater delay Groundwater 1–500 25

GW_Revap Groundwater ‘revap’ constant Groundwater 0.01–0.2 0.2

RevapMN Re-evaporation threshold Groundwater 0.01–500 375
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Calibration–validation summary and statistics of the

base hydrologic model are presented in Table 2. As an

example, Amalshid station’s calibration and validation com-

parison and scatterplots are shown in Figure 6. It was

observed that for all stations, the model matches well with

observations, except for a few unusual peaks. The unusual

peaks and deviation from observations occurred mainly

during the monsoonal flood season rather than the pre-
monsoon flash flood season. The independent validation

period yielded similar or improved results as the calibration

period because of less numbers of extreme peaks in the

flows. Naukaugaon station (shown in Figure 2) showed a

very unrealistic mismatch with the simulated results. We

believe this is an issue related to the rating curve used,

which represents low to moderate flow, but is inappropriate

for high flow. Using this calibrated model, the



Table 2 | Calibration and validation results of base hydrological model

Station

Calibration (2004–2012) Validation (2013–2018)

Correlation
coefficient

Root mean square error
(m3/s)

Nash–Sutcliffe
efficiency

Correlation
coefficient

Root mean square error
(m3/s)

Nash–Sutcliffe
efficiency

Amalshid 0.84 758.83 0.78 0.81 795.9 0.75

Laurergarh 0.76 466.36 0.65 0.78 489.87 0.63

Manu-RB 0.68 111.1 0.56 0.71 102.32 0.54

Sarighat 0.82 182.5 0.74 0.78 205.43 0.71

Nakuagaon 0.59 105.25 0.58 0.58 77.58 0.59

Durgapur 0.81 81.24 0.65 0.84 75.19 0.64

Figure 6 | Hydrological model calibration (2004–2012) and validation (2013–2017) plot of Amalshid station. (a) Calibration period time series comparison, (b) calibration period scatter plot,

(c) validation period time series comparison, and (d) validation period scatter plot.
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hydrodynamic model was simulated and validated in differ-

ent locations within the floodplain.

Hydrodynamic model calibration and validation

summary

Effect of DEM correction and reconditioning

Using the output of the calibrated hydrological model, the

hydrodynamic model (HEC-RAS) was simulated over the
corrected and reconditioned DEM for the floodplain

region inside Bangladesh. Calibration of the hydrodynamic

model was completed manually at different locations by

optimizing Manning’s n values. Optimized Manning’s n

values are shown in Table 3. In Figure 7, the comparison

plot of simulated and observed water levels of Sunamganj

and Sylhet stations are shown. Overall, the results of the

hydrodynamic model are slightly more accurate in the cali-

bration period compared to the validation period except at

Sarighat station. We also observed that the simulated



Table 3 | Optimized Manning’s n for different land cover types

Land cover type Calibrated Manning’s n

Mixed broadleaf 0.16

Bare 0.025

Vegetation 0.035

Semi-deciduous 0.16

Broadleaf 0.16

Needleleaf 0.16

Water 0.04

Mosaic forest 0.16

Mosaic grassland 0.035

Shrubland 0.1

Croplands 0.035

Grassland 0.035

Urban 0.15

Cropland 0.035

Table 4 | Calibration and validation summary of the HEC-RAS model

Station

Calibration (2015–2017) Validation (2018)

Correlation
coefficient

Root mean
square
error (m)

Correlation
coefficient

Root mean
square
error (m)

Amalshid 0.68 2.82 0.61 3.29

Laurergarh 0.80 1.89 0.67 2.60

Manu-RB 0.54 3.23 0.71 0.84

Sarighat 0.80 1.93 0.72 1.47

Sheola 0.78 2.15 0.73 2.29

Sherpur 0.86 1.24 0.84 1.31

Sunamganj 0.91 1.12 0.79 1.85

Sylhet 0.83 1.88 0.72 2.59

Table 5 | Comparison of accuracy of different precipitation products-based simulated

water heights

IMERG Early Run CHIRPS GSMaP NRT

Metrics R2 RMSE (m) R2 RMSE (m) R2 RMSE (m)

Sunamganj 0.91 1.12 0.92 1.07 0.92 1.26

Sylhet 0.83 1.88 0.88 1.73 0.86 2.15

Sheola 0.78 2.31 0.79 2.27 0.83 2.06

Sherpur 0.86 1.24 0.88 1.17 0.92 1.15
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water level hydrographs at the stations lying within the

floodplains (e.g., Sunamganj, Sheola, Sylhet, Sherpur) per-

formed better than the stations located at the edge of the

hydrodynamic model boundary (Amalshid, Manu-RB)

(Table 4). Flows at the upstream boundary locations of the

floodplains were more hydrologically dominated, which

might explain the reason for lower hydrodynamic prediction

accuracy downstream.

Using the calibrated and validated modeling framework,

GPM IMERG and GSMaP NRT precipitation were used to

simulate water heights at four different locations, as

reported in Table 5. We found that GSMaP-simulated
Figure 7 | Comparison of observed and HEC-RAS model calibrated water level at different sta
water heights underestimated the measured WL in all

stations. We selected GPM IMERG precipitation as the

nowcast precipitation product. For further improvements

of the results of the base modeling framework simulation,

we proposed an error correction method described in
tions: (a) Sunamganj and (b) Sylhet.
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Equations (1) and (2) and then simulated the framework in

forecast mode. In this case, GFS forecast precipitation along

with nowcast GPM-IMERG precipitation was used to simu-

late SWAT and HEC-RAS models and generated forecasted

inundation maps.
Selection of grid resolution and simulation time step

The HEC-RAS model was optimized using different spatio-

temporal combinations. Various simulation time steps (5

minutes, 10 minutes, 15 minutes, and 30 minutes) were

used along with different spatial grid resolutions (250 m,

500 m, and 1,000 m) to perform the unsteady simulation of

the model for the pre-monsoon season of 2017. The com-

parisons of simulation time for different combinations are

shown in Figure 8. From Figure 8, we observed the unnotice-

able sensitivity of the framework to the simulation time step.

A likely reason is that final results are accumulated over the

hourly and daily scale, which minimizes the error associated

with simulation time step at the minute scale. On the con-

trary, the simulation grid size greatly influenced the

computational time of the model. It took less than 5 minutes

to simulate the model at 1,000 m grid resolution (for any

time step), whereas computation time was more than 1

hour for 250 m resolution. Root mean square error

(RMSE) and correlation coefficient comparison of different

simulation grid sizes are also shown in Figures 9 and 10,

respectively. In the case of the finest spatial grid size (e.g.,

250 m), the hydrodynamic model was found to be unstable,

and there was a large variation in the simulated water stage
Figure 8 | Comparison of simulation time of HEC-RAS model for the different combinations of
in some stations. Sensitivity of simulated results was also

dependent on the location of the grid cells. Some of the

stations are located on river banks that lie on the boundary

between two adjacent cells, which can have highly varying

modeled water stage (e.g., Nakuagaon, Amalshid station

for 250 m spatial resolution). On the other hand, the

1,000 m grid resolution yielded very unrealistic results at

most of the stations. The river channels in the floodplain

area are not large enough to be covered by a single coarser

simulation grid cell. Sudden elevation drops from neighbor-

ing grids at 1,000 m resolution gives rise to uncertainty.

Based on the required simulation time and obtained accu-

racy for different grid sizes, the 250 m simulation grid size

was chosen as the optimal grid resolution. Using optimized

simulation time step and spatial grid resolution based on

year 2017 simulation, historical simulation of the framework

was also performed for the pre-monsoon period of years

2016 and 2018.
Historical performance of the framework

In both years of validation (2016 and 2018) of the HEC-RAS

model, all stations yielded better results compared to the

year 2017. In Figure 11(a) and 11(b), simulated forecasts

for different lead-times with the observed data are shown.

The RMSE and correlation coefficient for the period of

March–May are shown in Figure 11(c) and 11(d).

Another plot is shown in Figure 12 for the average of

model performance vs lead-time to illustrate the framework’s

predictive skill. Here, the average RMSE and correlation
time step and simulation grid resolution.



Figure 10 | Correlation coefficient comparison of the stations for different spatial resolution and lead-time for the period March 2017–May 2017: y-axis labels indicate grid resolution and

forecasting lead-time (i.e., 1,000 m_L1 means grid resolution is 1,000 m and lead-time is 1 day).

Figure 9 | RMSE (m) comparison of the stations for different spatial resolution and lead-time for the period March 2017–May 2017: y-axis labels indicate grid resolution and forecasting

lead-time (i.e., 1,000 m_L1 means grid resolution is 1,000 m and lead-time is 1 day).
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coefficient of the stations are taken for different lead-time and

plotted against the lead-time. From the figure, it can be seen

that average RMSE of the stations is less than 0.5 m for 3-day

lead-time with a correlation coefficient of more than 0.75.
Spatial accuracy of forecast inundation

The proposed framework was designed to produce dis-

charge/water level forecast as well as inundation forecasts.



Figure 11 | (a) and (b) Time series comparison for different forecasting lead-time of Markuli station for the pre-monsoon season of 2016 and 2018. (c) RMSE (m) comparison of the stations

for the year of 2016 and (d) correlation coefficient comparison of the stations for the year of 2016.

Figure 12 | Average performance of the framework vs lead-time graph.
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Sentinel-1 (SAR)-based imagery product was used to assess

the model-generated forecasts. The assessment was per-

formed in three modes: (1) historical analysis of the

framework for the years 2016–2018, (2) single extreme epi-

sode-based analysis for March 2017 flood, and (3)

performance in an operational setting. In the following sec-

tions, these modes of assessment are described.
Historical performance

Model-generated inundation forecasts of pre-monsoon sea-

sons of 2016, 2017, and 2018 were compared with

Sentinel-1 SAR imagery-derived inundation. Google Earth

Engine (GEE) was used to extract inundation from Senti-

nel-1 gridded SAR data. A total of 69 Sentinel-1 images

during the model simulation were considered. From the

analysis, we found that the probability of detection (POD)

of non-water and POD of water to be more than 60% for

up to 5-day lead-time. Here, POD was expressed as a percen-

tage so that the model correctly identified water and non-

water features compared to the selected Sentinel imageries.

In Figure 13, the POD comparison of water and non-water

features for different lead-times is shown. In Figure 14, the

spatial POD map of water and non-water for 1-day lead-

time and 5-day lead-time is shown. Some issues were

observed during the water detection and non-water feature

detection by the model. For example, in some locations

identified as non-water by Sentinel-1 SAR data, the model

erroneously identified them as inundated. A possible



Figure 13 | Probability of detection of water and non-water features during the period March–May of 2016, 2017, and 2018.

Figure 14 | POD map of water and non-water for different lead-times: (a) water for 1-day lead-time, (b) non-water for 1-day lead-time, (c) water for 5-day lead-time, and (d) non-water for

5-day lead-time.
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reason for these errors is due to the age of the DEM used.

SRTM was created more than 18 years ago and is not up

to date with recent human developments and modifications

of the floodplain in the region.

Event-based performance

The proposed framework was also tested for a single event

when a major flash flood occurred in the region. For the
event of March 2017 flood, five Sentinel-1 images were con-

sidered separately to illustrate the performance during a

single extreme event. Two images from before the flood

event (21 March 2017 and 26 March 2017), one image

during the flood event (31 March 2017), and two images

from after the flood event (2 April 2017 and 7 April 2017)

were considered.

We observed that model-simulated inundation overesti-

mated the Sentinel-1-based water area. During the dry
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period, the model overestimated the SAR-based inundation.

It is possible that Sentinel-1, which employs a C-band radar,

may not be the best choice for inundation mapping in the

Haor area where flooded vegetation is widespread. Also,

the difference between the actual acquisition time of the

imagery and the simulated inundation maps could be

another potential reason. In Figure 15, POD of water and

non-water comparison is shown for different imagery dates

and lead-times.

Performance in operational setting

Upon making the framework operational, there was one

flood peak observed on 4 March 2019 that was assessed

via the user interface at http://depts.washington.edu/

saswe/flashflood. To quantify the accuracy of the system in

an operational setting, the inundation forecast was com-

pared with Sentinel-1 SAR-derived inundation. The SAR

imagery acquisition date was 4 March 2019 11:47 a.m.

UTC. For the purpose of comparison, simulated forecast

inundation of 4 March 2019 12:00 p.m. UTC was used.

The overall accuracy showed 60% probability of detection

compared with reference even after 4-day lead-time. In

Figure 16, the derived SAR imagery-based water inundation

is shown along with the model-simulated inundation for

comparison. For locations close to Khaliajuri and Markuli

stations, SAR imagery indicated inundation which was accu-

rately detected by the forecasting system. Recent structural
Figure 15 | Probability of detection (POD) comparison of Sentinel-1 imagery and model-simula
measures were taken to improve flood management through

submersible embankments in that region, which are not

reflected in the SRTM DEM. This limitation in the DEM

propagates to the modeling framework at those locations.

The performance of the framework was also examined

against available fine resolution satellite imagery. Two

planet imageries (15 May 2019 and 26 August 2019) with

10 m spatial resolution were downloaded and classified

using the maximum likelihood method. They were com-

pared with the framework-generated forecast inundation

and the results are shown in Figure 17. In the left panel of

Figure 17, a comparison map of the model-simulated inun-

dation forecast of 3 days lead-time and planet imagery of

15 May 2019 is shown. From the left panel, it can be seen

that the modeling framework was able to identify most of

the water and non-water features. It is true that in some

regions the framework failed to identify actual features.

This happened because of the recent (post-2017) man-

made topographical alterations after the SRTM DEM acqui-

sition time in 2000. Framework-forecasted inundation at

different lead-times was compared with the two planet ima-

geries and the results are presented in the right panel of the

figure. From the classification accuracy metrics (i.e., overall

accuracy, omission error of water, and commission error of

water) comparison, it can be seen that overall the accuracy

of the framework was more than 70% for up to 5-day lead-

time. Overall, the framework was able to identify water

and non-water features with more than 70% overall
ted inundation: (a) POD of non-water and (b) POD of water.

http://depts.washington.edu/saswe/flashflood
http://depts.washington.edu/saswe/flashflood
http://depts.washington.edu/saswe/flashflood


Figure 16 | Spatial comparison of inundation forecasts with SAR imagery-derived inundation. (a) SAR imagery derived. (b) 12-hour lead-time comparison (both non-water¼model and

SAR-detected non-water, model water¼model-simulated water but SAR-detected non-water, SAR water¼ SAR-derived water but model simulated non-water, both water¼
model and SAR agree on water). (c) 60-hour lead-time and (d) 108-hour lead-time forecasts.

Figure 17 | Accuracy assessment of the forecasted inundation with planet imageries. (Left) Comparison of model simulated inundation of 3-day lead-time with planet imagery of 15 May

2020 (both non-water¼model and planet-detected non-water, model water¼model-simulated water but planet-detected non-water, planet water¼ planet-derived water but

model-simulated non-water, both water¼model and planet agree on water). (Right) Omission error, commission error of water, and overall accuracy of the model-forecasted

inundation compared with planet imageries.
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accuracy, having less than 25% omission error and less than

30% commission error of water features.

The modeling framework was implemented in 2019 pre-

monsoon season for experimental prototyping and then

made fully operational in the BWDB stakeholder environ-

ment during the pre-monsoon season of 2020. The

accuracy of the framework was analyzed and reported in

Figure 18. It can be seen that the framework performance

significantly improved during the year of 2020. This hap-

pened due to implementation of the Weather Research

and Forecast (WRF) downscaling, which downscaled the

GFS forecast precipitation to a higher spatial resolution.

The live test of the framework demonstrated an accuracy

of average RMSE of less than 0.5 m and correlation coeffi-

cient of more than 0.80 for up to 3-day lead-time. Based

on feedback shared by BWDB (co-authors to this paper),

such accuracy resulted in real-world decision-making and

uptake of our forecasts for societal dissemination.
CONCLUSION

In this study, a flash flood early warning framework for north-

eastern Bangladesh was developed using both hydrologic and

hydrodynamic components of the flash flood generation

mechanism. First, the most appropriate combination of topo-

graphic and hydrometeorological observations was selected
Figure 18 | Comparison of average root mean square error (RMSE) and correlation coefficient
for the base modeling framework. Global numerical weather

prediction model forecasts were directly forced into the fra-

mework without any spatial downscaling to reduce the

computation time. Finally, we analyzed the historical per-

formance to illustrate the applicability of the framework in

an operational environment. Based on the performance of

the forecasts in the reference stations, we found that the fra-

mework was able to produce a skillful flash flood early

warning for up to 5-day lead-time.

In addition to the computation time and forecast

accuracy considerations, some other key features of the fra-

mework considered during development were: (i) economic

constraints and (ii) scalability of the framework. The

framework was built using open-source models and publicly

available datasets, which is essential for economically

constrained countries. In this approach, ground-based moni-

toring was not required; thus the method can be easily

applied in ungauged or transboundary basins with inaccess-

ible areas. The concept can be implemented with minimized

computational resources and limited internet bandwidth,

resulting in greater applicability in developing regions.

Finally, all of the datasets used in this study are of global

coverage with near-real-time availability. This implies that

the same concept can be implemented anywhere in the

world with similar topographic and hydrometeorological

conditions. Even in regions where other more expensive

methods are feasible, the system introduced here can be
(CC) of stations for the years 2019 and 2020.
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used to quickly trigger decisions when resources are limited

and time is of the essence.

This study represents a critical step towards more accu-

rate and more accessible flash flood forecasting systems.

Potential future improvements to the framework are as

follows:

• Improvement of quality of NWP forecasts. This will lead

to better results from hydrological and hydrodynamic

modeling. WRF downscaling can be tested to illustrate

the relative improvements from the existing methods.

• Explore different correction methods of QPF (i.e., clima-

tology-based QPF correction by Sikder & Hossain ).

This can also be implemented to improve quality without

compromising the computation time.

• Develop a more representative and recent topographi-

cally surveyed DEM. A more recent elevation dataset

that better captures up to date human developments

and modifications of the floodplain could significantly

improve the performance of the hydrodynamic model

and lead to more accurate inundation forecasts.

• Ensemble forecasts in place of QPF can also be tested in

this framework to produce forecast probability range

instead of single time series.
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