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1 Case Study

2 Developing a Baseline Characterization of
3 River Bathymetry and Time-Varying Height for
4 Chindwin River in Myanmar Using SRTM and Landsat1 Data
5 Indira Bose1; Susantha Jayasinghe2; Chinaporn Meechaiya3;
6 Shahryar K. Ahmad4; Nishan Biswas5; and Faisal Hossain6

7 Abstract: In this study, a method was developed for the baseline characterization of river bathymetry and time-varying heights using glob-
8 ally available datasets from the Shuttle Radar Topography Mission (SRTM) elevation data and Landsat visible imagery. Using independent
9 data on river water elevations from satellite altimetry, the SRTM-Landsat approach was verified as to how well it can work for baseline

10 characterization. The technique was demonstrated for Chindwin River locations in Myanmar that were also independently sampled by
11 Sentinel 3A and Jason 3 altimeters. The Modified Normalized Difference Water Index (MNDWI) was used for estimating the water areas
12 and widths using Landsat 8 from 2016 to 2019. A comparison of SRTM-Landsat with Sentinel 3A/Jason 3–based elevation changes resulted
13 in a correlation coefficient up to 0.89 and 0.82 using area-elevation and width-elevation curves, respectively. The presence of river islands
14 during the dry season resulted in a weaker correlation between our proposed SRTM-Landsat technique and altimeter water elevations. This
15 case study over the Chindwin River in Myanmar demonstrated that the use of the SRTM-Landsat combined technique could yield an accept-
16 able baseline for characterization of river bathymetry and time-varying heights at ungauged locations around the world. DOI: 10.1061/
17 (ASCE)HE.1943-5584.0002126. © 2021 American Society of Civil Engineers.

18 Author keywords: River; Water elevations; Bathymetry satellite; Altimeter; Landsat; Shuttle Radar Topography Mission (SRTM) and
19 Chindwin River.

20 Introduction

21 Rivers34 are dynamic water bodies as they change their morphology
22 with time due to diverse natural and anthropogenic factors. The
23 variations in a river’s height, width, and course have considerable
24 influence on natural resources and human assets. Radical changes,
25 under severe conditions, can cause serious disasters such as floods
26 and droughts. Most importantly, the characterization of river bathym-
27 etry and river surface elevation is critical to calibration and even the
28 validation of hydrodynamic models for predicting or forecasting in-
29 undation and understanding flood risk. Therefore, it is vital to under-
30 stand the physical attributes of rivers and their dynamics over time
31 (Kumar et al. 2015; Gao et al. 2016; Karpatne et al. 2016; Huang
32 et al. 2017).

33One essential quantity of a river’s state is the elevation of the
34water surface above a datum. Water surface elevation can be deter-
35mined either by staff gauges (manual observation) or through au-
36tomated sensors, such as pressure transducers, optical sensors,
37radio detection, and ranging sensors (Sauer and Turnipseed 2010).
38However, conventional ground-based monitoring stations are very
39limited, and institutional barriers further limit data sharing (Jiang
40et al. 2020). Lack of in situ river data constrains our ability to ob-
41serve and predict hydrological events like flooding or drought and
42sediment transport phenomena, especially in mountain areas (Jiang
43et al. 2020). The temporal and spatial coverage provided by remote
44sensing techniques makes space-borne data attractive for river ap-
45plications in ungauged regions (Neal et al. 2018; Andreadis et al.
462013; Schumann et al. 2014). The increased availability of remote
47sensing data has now enabled the development of new approaches
48for characterizing a river’s bathymetry and water surface elevations
49(Bates et al. 2013; Paiva et al. 2015).
50Over the last 25 years, microwave satellite remote sensing has
51provided an alternative source of water surface elevation observa-
52tions to monitor water level and storage variations at a regional
53scale (Jiang et al. 2020; Arsen et al. 2015; Boergens et al. 2017).
54Microwave remote sensing has the advantage of being all-weather
55with day and night coverage that overcomes the continuing issues
56of cloud cover in optical satellite images. The Shuttle Radar Topog-
57raphy Mission (SRTM) that flew in February 2000 used radar inter-
58ferometry to provide a robust source of dry land topographic data at
59a global scale to estimate river bathymetry above the water level
60during the SRTM overpass. However, the large variation in average
61terrain height precision found in the SRTM literature reveals ver-
62tical precision that is dependent on location, terrain characteristics,
63and surface feature properties (Schumann et al. 2008; Yamazaki
64et al. 2017). Several radar nadir altimetry missions, such as Jason-2
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65 in 2008, CryoSat-2 in 2010, SARAL in 2013, Jason-3 in 2016,
66 Sentinel-3A in 2016, and Sentinel-3B in 2018, have been launched
67 and successfully applied for water surface elevation determination
68 (Biancamaria et al. 2018). These radar altimeters determine the dis-
69 tance from the satellite to a target surface by measuring the round-
70 trip travel time for a radar pulse from satellite to surface (Aviso
71 2020).
72 Since their launch, several studies have used microwave remote
73 sensing missions for water surface elevation estimation. Schumann
74 et al. (2008) compared remotely-sensed water stages derived from
75 light detection and ranging (LiDAR), topographic contours, and
76 SRTM (Schumann et al. 2008). Maswood and Hossain (2016) used
77 SRTM topographic data for deriving river network and flow direc-
78 tion and modeled the ungauged basins using satellite remote sens-
79 ing for the Ganges–Brahmaputra–Meghna basin. Moramarco et al.
80 (2019) used the entropy theory to simulate river bathymetry from
81 remote sensing data from radar altimeters and microwave radiom-
82 eters. Legleiter and Harrison (2019) used remote sensing more di-
83 rectly to map river depth. They reported that bathymetric LiDAR
84 was highly accurate and precise in shallow water. However, areas
85 with a depth of more than 2 m resulted in large gaps in coverage of
86 estimating river depth from remote sensing. Kasvi et al. (2019) re-
87 cently compared various remote sensing techniques for estimating
88 river bathymetry. They reported that more research was needed to
89 develop remote sensing approaches for measuring shallow water
90 bathymetry. Many studies used Jason-2, Envisat, Jason-3, and
91 Sentinel 3A and 3B for hydrodynamic and hydrologic models
92 (Biancamaria et al. 2018; Getirana and Peters-Lidard 2013; Liu
93 et al. 2015; Kittel et al. 2018, 2021). Yan et al. (2015) summarized
94 the integration of low-cost satellite data with flood modeling, fo-
95 cusing particularly on the use of freely available data sets, such as
96 digital elevation models (DEMs), radar altimeter measurements,
97 and synthetic aperture radar (SAR) imagery. These in-depth studies
98 conclude that the monitoring of the water area and water surface
99 elevation are quite consistent and reliable using remote sensing data

100 (Schumann et al. 2012; Birkinshaw et al. 2010; Bercher and
101 Kosuth 2012).
102 Despite the wider availability of altimeter data today, the SRTM
103 product is still widely used for monitoring bathymetry and water
104 surface elevation due to the ease of availability and global coverage
105 (5 Bonnema et al. 2016;6 Bonnema and Hossain 2017). Radar altim-
106 eters do not provide such coverage and are limited in their sampling
107 of the world’s rivers. However, the 20-year-old SRTM data have
108 limitations as SRTM-derived bathymetry may not be representative
109 of recent conditions, particularly for very dynamic water bodies/
110 rivers. More importantly, information on intra and interannual var-
111 iations in the water level is needed for efficient river management,
112 which cannot be estimated with the static topographic data from
113 SRTM. Finally, a large portion of bathymetry under the water level
114 that was not observed by SRTM during its overpass needs to be
115 estimated for river hydraulic applications. To address these limita-
116 tions, we propose an alternative approach to generate a baseline for
117 river bathymetry and time-varying river elevations for potential
118 global application by combining SRTM topographic with Landsat
119 visible data. This case study is driven by the need to address the
120 practical limitations faced on the ground for estimating river
121 bathymetry and height for the calibration of hydrodynamic models
122 at ungauged regions.
123 The overarching question of this study was as follows:
124 • What is the skill of using SRTM and visible Landsat satellite
125 imagery for estimating river bathymetry and time-varying water
126 surface elevations when compared with independently mea-
127 sured river elevation from satellite altimetry?

128To answer this question, our choice for independent water ele-
129vations was Sentinel 3A and Jason 3 altimeter mission data. Our
130proposed technique, based on the global coverage of SRTM and
131Landsat missions, can be potentially used as a baseline method
132for most world’s rivers that are missed by altimeters where there
133is no prior information. The proposed technique can also be vital
134for baseline characterizations needed in river product development
135for the planned Surface Water and Ocean Topography (SWOT) sat-
136ellite mission. SWOT is scheduled for launch in 2022, and river
137elevation is going to be a key and flagship product (Biancamaria
138et al. 2016).

139Study Area

140The verification of the proposed SRTM-Landsat combined method
141was tested over 10 virtual stations of the Chindwin River where the
142Sentinel 3A and Jason 3 tracks intersect 7ed (Fig. 1). Chindwin
143River, which is considered a lifeline for Myanmar, is a major tribu-
144tary of the Ayeyarwady River. It is one of the five major rivers in
145Myanmar, measuring approximately 850 km in length (Shrestha
146et al. 2020). Chindwin River is prone to flooding, and therefore,
147any technique to estimate time-varying river levels can improve
148the calibration and validation of hydrodynamic river models re-
149quired for predicting flood risk.

150Data

151Four satellite remote sensing products were used with different
152spatial, temporal, and spectral characteristics. These include the fol-
153lowing: (1) Landsat 8 Tier 1 Surface Reflectance with 30 m spatial
154resolution, (2) SRTM with 30 m spatial resolution, (3) Sentinel 3A
155level 2 synthetic aperture radar altimeter (SRAL) Ku-band (300 m
156after SAR processing) and C-band with a spatial resolution of ap-
157proximately 300 m, and (4) Jason 3 (water surface elevation re-
158trieved from the Dynamic River Width based Altimeter Height
159Visualizer website of the 8SASWE research group (University of
160Washington) from Biswas et al. (2019). The datum of SRTM,
161Sentinel 3A, and Jason 3 were converted to the Earth Gravitational
162Model (EGM) 2008 geoid (Pavlis et al. 2012). Sentinel 3A and
163Jason 3 data were retrieved for a 4-year period spanning 2016 to
1642019. The JavaScript API of the Google Earth Engine (GEE) plat-
165form was used for the processing of SRTM and Landsat products,
166which are available in the GEE data 9catalog. The Sentinel 3A data-
167set was downloaded from the Copernicus open access hub, SciHub,
168and the water surface elevation values were processed as described
169in the methodology subsection “Water Heights Derived from
170Sentinel 3A and Jason 3 Altimeters.”

171Methodology

172Our proposed method for the Chindwin River in Myanmar can be
173broadly described as follows. As shown in Fig. 2, first, the area-
174elevation and width-elevation relationships using SRTM topo-
175graphic data were developed for multiple reaches of the Chindwin
176River. Using the best-fit regression equations and Landsat-8 de-
177rived water areas and widths, the water elevations that were not
178observed by SRTM were estimated for the entire bathymetry. Next,
179time-varying water elevations were derived from 2016 to 2019 uti-
180lizing the regression equations derived from the aforementioned
181area-elevation and width-elevation relationships (Fig. 2).
182Our proposed methodology begins first with defining a river
183reach that spans 1 km upstream and 1 km downstream of each

© ASCE 2 J. Hydrol. Eng.
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184 virtual station identified in Fig. 1. Next, SRTM data were processed
185 using the GEE platform and derived area-elevation and width-
186 elevation curves for each river reach. The relationship between each
187 virtual station’s area/width and elevation was identified using a
188 regression model to determine the best-fit equations. Cloud-free
189 Landsat 8 images were selected from 2016 to 2019, as well as the
190 determined areas and widths associated with each of the 2 km river
191 reaches, upstream and downstream, for assessing the levels through-
192 out the year that were not captured by SRTM (Fig. 3). Using the best-
193 fit regression equations derived from the SRTM-Landsat combined
194 technique, water surface elevations corresponding to the concurrent
195 Landsat areas and widths were determined. The period from 2016 to
196 2019 was selected because of the concurrent availability of Sentinel
197 3A and Jason 3 altimetric data. We extracted Sentinel 3A and Jason 3
198 altimeter elevations (over designated virtual stations of Fig. 1) closest
199 to the dates of acquisition from Landsat 8 and compared the change
200 of water surface elevations over the selected time period. The cor-
201 relation coefficients between SRTM-Landsat based and Sentinel 3A/
202 Jason 3-based water elevation changes were evaluated to verify the
203 accuracy of our proposed technique.

204 SRTM-Based Area-Elevation and Width-Elevation
205 Curves

206 First, a polygon was digitized surrounding each 2 km reach over
207 10 stations, as illustrated in Fig. 4, and a histogram was generated
208 using SRTM elevations. The pixels (elevations) with considerably
209 higher frequencies (for example, the frequency of pixels with water
210 was about 2,000, whereas the frequency of pixels with the land was
211 less than 200 in the case of Virtual station 1) were classified as the
212 water areas and multiplied by 30 × 30 m (area of one SRTM pixel)
213 for calculating the associated areas. In the case of the width,

214considering one pixel of the SRTM (30 m) along each river reach
215(Fig. 4), we digitized the polygon across the river and selected the
216water pixels following the same method as the area calculation.
217Next, the area-elevation/width-elevation curves were generated
218over those pixels in GEE. We opted for regression equations for
219each curve and found the best-fit regression equations to define the
220relationships between the area-elevation and width-elevation (Figs. 5
221and 6).

222Landsat-8 Based Water Area/Width Extraction

223For assessing the elevations not captured by SRTM (Fig. 3), the
224best-fit regression equations were used for extrapolating area-
225elevation and width-elevation curves. The water area and width
226each averaged over a 2-km reach out of the 10 virtual river stations
227that were derived using the Modified Normalized Difference
228Water Index (MNDWI; Han-Qiu 2005). The MNDWI is defined
229as follows

MNDWI ¼ ðgreen − SWIR1Þ=ðgreenþ SWIR1Þ
230where green = green band; and SWIR1 = shortwave infrared
231band 1 for the Landsat 8 surface reflectance product. The pixels
232of MNDWI images with values less than zero were masked to
233derive the pixels associated with the water areas. The satellite ra-
234dar altimeter ground track is a few kilometers wide. The elevation
235of the river surface estimated from the SRTM-Landsat technique
236was therefore averaged over a 2 km reach for this reason to derive
237a single value representative of the 2 km reach. This was then
238compared with the altimeter-based river elevations.
239After an evaluation of the areas and reach-averaged width of all
24010 stations, the corresponding elevations were calculated using
241the regression equations shown in Figs. 5 and 6, followed by

F1:1 Fig. 1. (Color) Study area showing (a) Chindwin River in Myanmar and virtual stations of Sentinel 3A (red dots) and Jason 3 (black dots) tracks; and
F1:2 (b) latitude and longitude of each station. (Map © Esri.)

© ASCE 3 J. Hydrol. Eng.
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242 extrapolating the area-elevation and width-elevation curves.
243 Finally, these SRTM-Landsat based area-elevation and width-
244 elevation relationships were used to derive the time-varying river
245 elevations at Landsat overpass times from 2016 to 2019.

246 Water Heights Derived from Sentinel 3A and Jason 3
247 Altimeters

248 The time-varying elevations calculated using the SRTM-Landsat
249 combined technique were verified using Sentinel 3A and Jason 3
250 altimeter data over the designated stations shown in Fig. 1. Jason 3

251water surface elevation data were retrieved from the dynamic river
252width–based Altimeter Height Visualizer website of the SASWE
253research group (UW) from the web portal referenced by Biswas
254et al. (2019) and noted in the Data Availability statement. In this
255visualizer, Biswas et al. (2019) applied river extent information
256(river width and course) from visible (Landsat) and the synthetic
257aperture radar (SAR) platform (Sentinel-1) to extract elevations
258of water in South and South East Asia. The extent-based approach
259was applied to filter out nonwater radar returns using two methods:
260(1) the river mask (RM)–based K-means (KM) clustering (hence,
261RMþ KM); and (2) K-means clustering embedded with the RM

F2:1 Fig. 2. (Color) Schematic showing combination of Landsat derived river area and SRTM derived area-elevation curve to generate time-varying river
F2:2 water elevations. The same methodology has been followed for the estimation of water elevations combining Landsat-derived river width and the
F2:3 SRTM derived width–elevation curve. (Landsat-8 base image courtesy of the US Geological Survey.)

© ASCE 4 J. Hydrol. Eng.
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262 (hence, KMRM). The incorporation of the river extent information
263 was observed to be beneficial for highly varying seasonal widths.
264 After river elevation extraction, data closest to the overpass
265 dates of the Landsat 8 imagery acquisition were considered. The
266 independent set of time-varying water elevations from altimeters at
267 the 10 virtual stations was plotted. The change of water elevation
268 on each date from the previous date (as anomalies) was evaluated to
269 observe the changing pattern for both our proposed SRTM-Landsat
270 based water elevation time series and the independent altimeter-
271 derived time series. Finally, the coefficients of correlation were
272 evaluated between two sets of water elevation anomalies to verify
273 the accuracy of our proposed SRTM-Landsat combined technique
274 for time-varying water elevation extraction.

275 Results and Discussions

276 Regression Equations from SRTM-Based Area-
277 Elevation and Width-Elevation Curves

278 Regression models were used to establish the relationship between
279 the area/width and elevation obtained from the SRTM. The best-fit

280regression equations, along with the area-elevation and width-
281elevation curves, are represented in Figs. 5 and 6, respectively. In
282Figs. 5 and 6, the blue dots represent the values extracted from the
283SRTM. The orange dots represent the values derived using Landsat
284and the regression equations of the SRTM-based curves for deriv-
285ing the lower portion of the bathymetry not observed by the SRTM
286during its overpass in February 2000. The variabilities of the SRTM-
287Landsat combined area-elevation and width-elevation curves for
288different reaches are almost similar; the values of water elevation
289increase with increasing areas and widths depending on the char-
290acteristics of bathymetry. The lower portions of the bathymetry for
291both area-elevation and width-elevation curves, derived using
292Landsat 8 images and regression relationships, are mostly linear in
293nature for the Chindwin River.

294Comparison of SRTM-Landsat-Based Water Surface
295Elevations with Altimeter River Heights

296The areas and widths extracted using the MNDWI (described in the
297section “Landsat-8 Based Water Area/Width Extraction”) technique
298were first used to extrapolate the portion of area-elevation and width-
299elevation curves not observed by SRTM (Fig. 3). Next, the time

F3:1 Fig. 3. (Color) Schematic showing water levels observable by SRTM and the unobserved river bathymetry.

F4:1 Fig. 4. (Color) Digitizing river area and width for SRTM area–elevation and width–elevation curve generation. (Landsat-8 base image courtesy of the
F4:2 US Geological Survey.)

© ASCE 5 J. Hydrol. Eng.
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F5:1 Fig. 5. (Color) SRTM-Landsat derived combined area–elevation curves and regression equations. In this study, the plots (a–j) are for virtual stations num-
F5:2 bered from 1 to 10 of the Chindwin River, as shown in Fig. 1. The blue dots represent the values extracted from SRTM only, and the orange dots represent the
F5:3 values derived using Landsat and the regression equations of the SRTM-based curves. Regression equations are also given at the bottom of each plot.

© ASCE 6 J. Hydrol. Eng.
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F6:1 Fig. 6. (Color) SRTM-Landsat derived width–elevation curves and regression equations. In this study, the plots (a–j) represent virtual stations
F6:2 numbered from 1 to 10 of the Chindwin River, as shown in Fig. 1. The blue dots represent the values extracted from SRTM only, and the orange
F6:3 dots represent the values derived using Landsat and the regression equations of the SRTM-based curves. Regression equations are also given at the
F6:4 bottom of each plot.

© ASCE 7 J. Hydrol. Eng.
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F7:1 Fig. 7. (Color) Time series of change in water elevations from 2016 to 2019 for 2 km reach centering each virtual station as designated in Fig. 1.
F7:2 In this study, plots (a–j) correspond to stations 1 to 10, respectively, as shown in Fig. 1. The blue curves represent the change in elevations derived
F7:3 from SRTM-Landsat based area–elevation relationships, and the red curves represent the change in elevations from Sentinel 3A and JASON 3. The
F7:4 correlation coefficients are also given in each plot.

© ASCE 8 J. Hydrol. Eng.
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F8:1 Fig. 8. (Color) Time series of change in water elevations from 2016 to 2019 for each virtual station as designated in Fig. 1. In this study, plots (a–j)
F8:2 correspond to virtual stations 1 to 10, respectively, as shown in Fig. 1. The blue curves represent the change in elevations derived from SRTM-Landsat
F8:3 based width–elevation relationships, and the red curves represent the change in elevations from Sentinel 3A and Jason 3. The correlation coefficients
F8:4 are also given in each plot.

© ASCE 9 J. Hydrol. Eng.
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300 series of elevations were generated using the SRTM-Landsat based
301 area-elevation and width-elevation relationships, followed by verifi-
302 cation using Sentinel 3A and Jason 3 derived water heights. As men-
303 tioned in the section “Water Heights Derived from Sentinel 3A and
304 Jason 3 Altimeters,” our proposed method was assessed by compar-
305 ing the time series of water surface anomalies from 2016 to 2019,
306 which are represented in Figs. 7 and 8. In those figures, the blue
307 curves represent the change in elevations derived from SRTM-
308 Landsat based relationships, whereas the red curves represent the
309 change in elevations independently derived from Sentinel 3A and
310 JASON 3.
311 Our results suggest that there is a strong correlation at most of
312 the virtual stations between the water elevation changes derived us-
313 ing our proposed method and the changes derived independently
314 from the altimeter river heights. The correlation coefficients be-
315 tween the water elevation change derived using the SRTM-Landsat
316 area-elevation relationships and the change derived from altimeter
317 heights vary from 0.10 to 0.89. Similarly, the correlation coeffi-
318 cients between the water elevation change derived using SRTM-
319 Landsat width-elevation relationships and the change derived from
320 altimeter heights vary from 0.20 to 0.82. Obviously, there is a wide
321 range in how much of the variability the SRTM-Landsat technique
322 can capture for river elevation changes, ranging from 20% to 80%.
323 This wide range is not unexpected if one reviews recent literature.
324 Studies reported by Legleiter and Harrison (2019) and Kasvi et al.
325 (2019) are unanimous in challenges faced in estimating bathymetry
326 for deeper rivers using the direct approach of penetration or at shal-
327 low rivers using water classification techniques (such as in this
328 study). In fact, Kasvi et al. (2019) noted that more research is
329 needed for shallow water bathymetry, which is consistent with our
330 findings in this study when low correlations are reported for our
331 SRTM-Landsat technique. There is a difference between the values
332 of the two sets of elevation changes as suggested by the time-series
333 plots in Figs. 7 and 8. This difference is speculated to be the reason
334 for uncertainties involved in each satellite product, as well as the
335 geophysical sources of errors, such as the presence of islands or
336 shallow water (discussed subsequently and shown in Fig. 10).
337 Barring the cases when the SRTM-Landsat method is not effective,
338 such as narrow rivers with islands or sand bars, we do notice that
339 the method captured the changes in the water elevation pattern well
340 with respect to the altimeter heights. As shown in Fig. 7(j), the
341 coefficient of correlation is 0.89, which means SRTM-Landsat
342 combined elevation changes (extracted from the area-elevation re-
343 lationship) can capture more than 80% of the elevation variability

344exhibited by the Sentinel 3A–derived water heights. For instance,
345from November 2016 to January 2017, the SRTM-Landsat based
346water surface elevation decreased very similarly to what was ex-
347tracted from Sentinel 3A. Although there is a difference between
348the value of the water elevation, the SRTM-Landsat area-elevation
349approach is able to capture the same decrease in the water surface
350elevation. Similarly, if we notice Fig. 8(e), the coefficient of cor-
351relation is 0.82, which means the SRTM-Landsat combined eleva-
352tion changes are strongly correlated to the Sentinel 3A–derived
353water heights. For instance, from May 2017 to November 2017,
354the water surface elevation increased according to the Sentinel 3A
355water heights. The SRTM-Landsat width-elevation relationship
356also captured that increase in the water surface elevation.
357In general, the correlations between the change of water eleva-
358tions derived from altimeters and our proposed SRTM-Landsat ap-
359proach are found to be stronger in the case of river reaches with
360relatively smaller areas and widths where there is unlikely to be
361river islands. The correlation between the water surface anomalies
362derived using the SRTM-Landsat area-elevation relationships and
363altimeter heights are weak (0.1 and 0.46, respectively) in the case of
364Stations 2 and 6 [Figs. 7(b and f)] compared to the other eight sta-
365tions. The maximum water area from 2016 to 2019 for these two
366stations is approximately 2.2 km2, which is greater than the areas
367of the other eight stations. Similarly, the correlation between water
368surface anomalies derived using SRTM-Landsat width-elevation
369relationships and altimeter heights are weak (0.20 and 0.49, respec-
370tively) in the case of Stations 2 and 6 [Figs. 8(b and f)] compared to
371the other eight stations. The maximum width from 2016 to 2019 for
372these two stations is approximately 1,100 m, which is greater than
373the widths of Stations 4, 5, 9, and 10 but smaller than Stations 1, 3,
3747, and 8. These relationships are represented in Fig. 9, which
375clearly defines that with the increasing area of each station, the cor-
376relation between the two datasets decreases. There are three clear
377thresholds observed in Fig. 9(a). When the water area is less than
3781.2 km2, the correlation is very strong, with values 0.80 to 0.89.
379Between water area areas of ∼1.2 to ∼1.8 km2, there exists a mod-
380erate correlation ranging from 0.52 to 0.67, while stations with
381areas greater than ∼1.8 km2 show weak correlations.
382Fig. 9(b) represents that for the stations with widths less than
383500 m, the correlations between the water elevation changes from
384SRTM-Landsat, and the altimeters are strong, with values ranging
385from 0.71 to 0.82 (Stations 4, 5, and 10). The stations with widths
386greater than 500 m show moderate correlation, among which
387Stations 6 and 2 are with a minimum correlation, as mentioned

F9:1 Fig. 9. (Color) Relationships between (a) correlation coefficient and maximum area; and (b) correlation coefficient and maximum width for each
F9:2 station during 2016 to 2019. The numbers above each dot refer to the station number mentioned in Fig. 1.

© ASCE 10 J. Hydrol. Eng.
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388 previously. After forensically analyzing the Landsat-8 imagery, the
389 stations with a larger width where the river is braided with river
390 deltas yield poor correlations (Fig. 10). This finding is consistent
391 with recent studies reported by Kasvi et al. (2019), in which shal-
392 low water bathymetry in wide rivers appears to be challenging for
393 remote sensing techniques. These river deltas get exposed during
394 the dry season but are submerged in the monsoon season. Hence,
395 we can speculate that it is not only the larger water areas and widths
396 but also the presence of deltas during the dry season that under-
397 mines our proposed SRTM-Landsat combined technique. For in-
398 stance, if we consider Station 2 as shown in Fig. 9(b), the width
399 of this section (∼1,100 m) is smaller than Station 7 (∼1,300 m),
400 but as there is a river delta in Station 2 (Fig. 10), the correlation
401 value is lower than Station 7.

402 Conclusions

403 This study explored the capability of an SRTM-Landsat remote
404 sensing technique for estimating time-varying water elevation for
405 the Chindwin River in Myanmar. In this study, the area-elevation
406 and width-elevation curves were derived from SRTM and devel-
407 oped the best-fit regression equations using a regression model over
408 10 virtual stations of the Chindwin River in Myanmar. These sta-
409 tions were also sampled by Sentinel 3A and Jason 3 satellite radar
410 altimeter tracks. A comparison of our proposed SRTM-Landsat
411 based elevation change with Sentinel 3A/Jason 3-based elevation
412 changes resulted in a correlation coefficient up to 0.89. The river
413 reaches with smaller areas and widths are likely to be more reliable
414 for our proposed SRTM-Landsat method. Stations with weaker

415correlations often corresponded to the braided portion of the river
416reach, where the river deltas get exposed during the dry season and
417are inundated during the monsoon season. As a first-cut that is
418simple and globally applicable due to the use of widely available
419datasets (SRTM and Landsat), our proposed technique over the
420Chindwin River showed acceptable promise in characterizing river
421bathymetry and time-varying river heights.
422Our study is not without limitations. One area of further study is
423the role of spatial resolution of topography from satellite remote
424sensing to understand the impact on estimating river bathymetry.
425In this study, the highest resolution DEM that is globally and freely
426available has been used from the SRTMmission at 30 m. For rivers
427in Southeast Asia, such as the Chindwin River, land elevation and
428riverine regions tend to have flat topography, making SRTM DEM
429sometimes ineffective. For example, SRTM DEM is known to have
430nonnegligible uncertainty that has been consequently addressed in
431recent DEM products by Yamazaki et al. (2017). A higher resolu-
432tion DEM, such as one from a LIDAR survey, can be expected to
433yield a more accurate estimate of river elevations. However, LIDAR
434data on topography is not globally or publicly available. The goal of
435this study was to develop a technique that could serve as a first-cut
436based on publicly available datasets global in scope. During the
437initial stages of any hydrodynamic model effort at ungauged river
438basins, our proposed SRTM-Landsat technique can bridge the first
439gap between data requirements in hydrologic/hydrodynamic sim-
440ulations and in situ data availability for river heights. Consequently,
441with a further survey or use of additional data and complex meth-
442ods, such work can enhance flood risk management efforts, such as
443for the Chindwin basin that is prone to flooding. We do not propose
444our method as the final word on river bathymetry and river height

F10:1 Fig. 10. (Color) Landsat-8 imagery of 2 km reaches showing dry season river deltas within (a) Station 2; (b) Station 3; (c) Station 6; and (d) Station 8,
F10:2 as mentioned in Fig. 1. [(a–d) Landsat-8 images courtesy of the US Geological Survey; (e) Map © Esri.]
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445 estimation at ungauged locations but rather as the initial baseline
446 that can be rapidly derived cost-effectively when an expensive and
447 quality-controlled survey or remote sensing data are unavailable
448 promptly to the river modeling community.

449 Data Availability Statement

450 All data, models, and code generated or used during the study ap-
451 pear in the published article. The Dynamic River Width based
452 Altimeter Height Visualizer website of the SASWE research group
453 (UW) can be accessed at http://depts.washington.edu/saswe/jason3.
454 Landsat-8 data was courtesy of the USGS (https://www.usgs.gov
455 /core-science-systems/nli/landsat). STRM and Jason-3 data was
456 courtesy of NASA/JPL-Caltech (https://www2.jpl.nasa.gov/srtm/ and
457 https://www.jpl.nasa.gov/missions/jason-3, respectively). Sentinel-
458 3A data was courtesy of NOAA (https://coastwatch.noaa.gov/cw
459 /satellite-data-products/ocean-color/near-real-time/olci-sentinel3
460 -global.html).
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