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9 Abstract The correlation dimension (CD) of a time

10 series provides information on the number of dominant

11 variables present in the evolution of the underlying

12 system dynamics. In this study, we explore, using

13 logistic regression (LR), possible physical connections

14 between the CD and the mathematical modeling of

15 risk of arsenic contamination in groundwater. Our

16 database comprises a large-scale arsenic survey con-

17 ducted in Bangladesh. Following the recommendation

18 by Hossain and Sivakumar (Stoch Environ Res Risk

19 Assess 20(1–2):66–76, 2006a), who reported CD values

20 ranging from 8 to 11 for this database, 11 variables are

21 considered herein as indicators of the aquifer’s geo-

22 chemical regime with potential influence on the arsenic

23 concentration in groundwater. A total of 2,048 possible

24 combinations of influencing variables are considered as

25 candidate LR risk models to delineate the impact of

26 the number of variables on the prediction accuracy of

27 the model. We find that the uncertainty associated with

28 prediction of wells as safe and unsafe by LR risk model

29 declines systematically as the total number of influ-

30 encing variables increases from 7 to 11. The sensitivity

31of the mean predictive performance also increases

32noticeably for this range. The consistent reduction in

33predictive uncertainty coupled with the increased sen-

34sitivity of the mean predictive behavior within the

35universal sample space exemplify the ability of CD to

36function as a proxy for the number of dominant influ-

37encing variables. Such a rapid proxy, based on non-

38linear dynamic concepts, appears to have considerable

39merit for application in current management strategies

40on arsenic contamination in developing countries,

41where both time and resources are very limited.

42Keywords Nonlinear deterministic dynamics and

43chaos �Correlation dimension �Arsenic contamination �
44Logistic regression � Groundwater � Bangladesh

451 Introduction

46Since the large-scale discovery of arsenic contamina-

47tion in the alluvial Ganges aquifers of Bangladesh,

48numerous studies have been conducted to better

49understand the spatial variability of the contamination

50scenario (e.g., Biswas et al. 1998; Burgess et al. 2000;

51McArthur et al. 2001, 2004; Harvey et al. 2002; Muk-

52herjee and Bhattacharya 2002; van Geen et al. 2003;

53Yu et al. 2003; Ahmed et al. 2004; Hossain et al. 2006a,

54b). Most of these studies have addressed the ‘spatial’

55pattern of arsenic using geo-statistical tools and the

56classical notion of linear stochastic dynamics. For

57example, in the first country-wide study toward spatial

58(horizontal) characterization of the arsenic calamity,

59conducted by the British Geological Survey (BGS) in

60collaboration with the Department of Public Health

61and Engineering (DPHE) of Bangladesh (hereafter
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62 called ‘BGS-DPHE’), an application of kriging (Jour-

63 nel and Huijbregts 1978) was reported to provide the

64 ‘best’ estimate of the whole nation’s arsenic field at the

65 regional scale with limited sampling information. The

66 BGS-DPHE investigation involved the assumption

67 that the arsenic concentration could be treated as a

68 ‘regionalized’ linear stochastic random variable in

69 space.

70 It must be noted, however, that arsenic in ground-

71 water is not a purely random occurrence and that

72 (hidden) order and determinism may also exist, just as

73 they do in any other natural or man-made phenome-

74 non. Arguing that there existed profound geological

75 and geochemical factors, with possible order, control-

76 ling arsenic contamination dynamics (for details, see

77 Hossain and Sivakumar 2006a; McArthur et al. 2004;

78 Zheng et al. 2004), Hossain and Sivakumar (2006b)

79 suggested that it was no longer defensible for the

80 scientific community to continue to use purely geo-

81 statistical (linear stochastic) approaches as stand-alone

82 techniques for its spatial interpolation. Our under-

83 standing of the role played by these physical factors in

84 arsenic contamination of groundwater continues to be

85 enhanced from recent studies by, for example, Zheng

86 et al. (2004), Akai et al. (2004) and Ahmed et al.

87 (2004). Traditional geostatistical tools are a ‘pattern-

88 filling’ scheme based on the spatial correlation exhib-

89 ited by two points in space separated by a lag h. This

90 approach simplifies the spatial patterns manifested by

91 the complex interactions between geology and time-

92 sensitive fluid flow dynamics (Christakos and Li 1998).

93 Concerns on the use of purely stochastic approaches

94 and potential for alternative ones have been echoed by

95 a few other studies as well (e.g., Faybishenko 2002;

96 Sivakumar 2004a; Sivakumar et al. 2005).

97 On the premise that the current ensemble of pro-

98 posed ‘theories’ in scientific literature explaining

99 arsenic mobility (e.g., Burgess et al. 2000; McArthur

100 et al. 2001; Harvey et al. 2002; van Geen et al. 2003)

101 can, in principle, be mathematically represented as the

102 cumulative effect of a finite number of dominant pro-

103 cesses comprising three or more partial differential

104 equations, Hossain and Sivakumar (2006a) verified the

105 existence of nonlinear deterministic and chaotic

106 dynamic behavior in the spatial pattern of arsenic

107 contamination in shallow wells (depth < 150 m) in

108 Bangladesh. Employing the Grassberger–Procaccia

109 correlation dimension (CD) algorithm (Grassberger

110 and Procaccia 1983), their analysis revealed CD values

111 (i.e., saturation of correlation exponents and a mani-

112 festation of ‘determinism’) ranging anywhere from 8 to

113 11 depending on the region and geology (see, for

114 example, Fig. 1). Their findings suggested that the

115arsenic contamination dynamics in space, from a cha-

116otic dynamic perspective, was a medium- to high-

117dimensional problem. While it is encouraging to note

118that the nonlinear CD analysis can reflect the influence

119of regional geology (and other factors) on arsenic

120contamination dynamics, the usefulness of the CD and

121other nonlinear deterministic dynamic techniques to

122understand the physics of the actual arsenic contami-

123nation phenomenon is far from clear, as explained

124next.

125It is well known that the CD of (an attractor of) a

126time series generally provides information on the

127number of variables present in the evolution of the

128underlying system dynamics (e.g., Grassberger and

129Procaccia 1983; Hao 1984; Fraedrich 1986; Sivakumar

1302004b; Hossain and Sivakumar 2006a). However, cur-

131rent environmental literature is largely insufficient in

132the context of providing links between the CD and the

133actual physical mechanisms that take place in catch-

134ments/aquifers. While some studies have indeed con-

135ducted research in this direction, such have essentially

136been limited to the verification of the reliability of the

137CD estimate, and especially performed using nonlinear

138predictions of the respective time series. For example,

139Sivakumar et al. (2002c) investigated the reliability of

140the CD estimate of the monthly flow data observed at

141the Coaracy Nunes/Araguari River watershed in

142northern Brazil (see also Sivakumar et al. 2001a), using

143nonlinear local- (chaos theory-based) and global-

144(artificial neural networks-based) approximation tech-

145niques. The study, in fact, focused on the reliability of

146the CD in the context of short time series, since the

147data size requirement has been the primary subject of

148criticism on the reports of low-dimensional chaos in

149environmental time series (e.g., Ghilardi and Rosso

1501990; Schertzer et al. 2002; see also Sivakumar 2000,

1512005; Sivakumar et al. 2002a, for details). Similarly,

152nonlinear predictions of time series have served as the
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Fig. 1 Relationship between Correlation Exponent and Embed-
ding Dimension for the whole Bangladesh based on BGS-DPHE
(2001) arsenic data from shallow wells (after Hossain and
Sivakaumar 2006a)
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153 basis, implicitly or explicitly, for verification of the CD

154 estimate in other studies as well, albeit in different

155 forms (e.g., Porporato and Ridolfi 1997; Lambrakis

156 et al. 2000; Sivakumar et al. 2001b, 2002b).

157 With the encouraging results of their preliminary

158 analysis (Hossain and Sivakumar 2006a) regarding the

159 nonlinear deterministic nature of arsenic contamina-

160 tion, Hossain and Sivakumar (2006b) subsequently

161 discussed the potential role the nonlinear deterministic

162 dynamic and related concepts can play in improving

163 our understanding of arsenic contamination patterns in

164 space. They especially highlighted their potential util-

165 ity in providing improved cost-effectiveness of envi-

166 ronmental management in rural and resource-limited

167 settings of developing countries, such as Bangladesh,

168 Vietnam and India. In a related development, Serre

169 et al. (2003) have reported that the spatial interpola-

170 tion of arsenic contamination, if approached from the

171 conventional paradigm of geostatistical mapping, can

172 be challenging in Bangladesh as most of the variability

173 in arsenic concentration occurs within short distances

174 (2–5 km). Certainly acknowledging the fact that the

175 traditional linear stochastic approaches had generally

176 yielded fairly good and reliable results, Hossain and

177 Sivakumar (2006b) also called for a much-needed

178 change in the current state-of-the-art for spatial inter-

179 polation of arsenic contamination, stating that: ‘While

180 there is no structural, or even philosophical, flaw in

181 using the conventional geo-statistical approach, there is

182 indeed ample room to argue that the geo-statistical

183 treatment of arsenic contamination in space as a

184 regionalized random (or stochastic) variable may con-

185 stitute only an incomplete analysis of its spatial vari-

186 ability (even if system-dependent). Incompleteness can

187 potentially arise from the fact that geo-statistics often

188 fails to recognize the random looking but deterministic

189 behavior that may be present due to self-similar (scale-

190 invariant) factors in the continuum of the sub-surface.’

191 In essence, Hossain and Sivakumar (2006b) argued

192 for the need to couple/integrate the linear and nonlinear

193 concepts/tools, whenever and wherever deemed neces-

194 sary or appropriate [see also Sivakumar (2004b) for an

195 example of possible integration of different concepts/

196 methods for environmental modeling]. This, however, is

197 easier said than done, since there is still some convincing

198 needed, going by the criticisms, on the utility of the

199 relatively new nonlinear deterministic dynamic con-

200 cepts for arsenic contamination and other environmen-

201 tal problems in the first place. Roughly speaking, the

202 nonlinear analyses and results need to be verified using

203 the conventional linear techniques, so as to first bring

204 reconciliation between linear and nonlinear concepts

205 and then to bridge the gap between them. With partic-

206ular reference to the study by Hossain and Sivakumar

207(2006a), this should obviously start with the verification

208of the CD values obtained for the arsenic concentration

209data using any of the available linear tools.

210In this spirit, we herein explore possible physical

211connections between the CD and the mathematical

212modeling of risk of arsenic contamination in ground-

213water by applying (the linear) logistic regression (LR)

214risk assessment technique. Using 11 potentially influ-

215encing variables that largely define the geochemical

216regime of aquifers and, hence, the variability of arsenic

217concentration, we attempt to provide a possible

218insightful evidence that the CD can be a proxy for the

219number of dominant influencing variables required in

220an LR risk model to optimally predict risk of arsenic

221contamination at non-sampled wells. To the best of our

222knowledge, such an insight, although preliminary,

223constitutes an important finding, with potential impli-

224cations on the reduction of uncertainty of risk maps

225produced from conventional (linear stochastic) para-

226digms. Even though we pursue this task primarily from

227a data-based perspective, a larger goal of our mission is

228to encourage greater interactions with the research

229community traditionally engaged in a more mechanis-

230tic understanding of arsenic contamination. We believe

231that such interactions can play a vital role in the inte-

232gration of non-linear deterministic dynamic concepts in

233future groundwater management protocols (discussed

234in detail later in the paper). In the sections that follow,

235we provide a systematic overview of our exploratory

236research to understand the value of CD in modeling

237risk of arsenic contamination.

2382 Study region, data, and CD analysis

239We choose to study arsenic contamination over the

240entire region of Bangladesh, as had been first surveyed

241by the BGS-DPHE (2001) study comprising 3,534

242wells. This is conducted in the manner similar to

243Hossain and Sivakumar (2006a) for estimating the CD

244values. The dataset is available (at the time of writing

245this manuscript) at http://www.bgs.ac.uk/arsenic/ban-

246gladesh/datadownload.htm. Wells deeper than 150 m

247(and consistently below the safe limits) are excluded

248from the analysis, thus resulting in a set of 3,085

249shallow wells. While it is possible that such an exclu-

250sion of data based on depth may incur an added bias to

251our analyses on the application of CD, we believe, to

252the best of our knowledge, that the impact would be

253insignificant to alter the overall conclusions of our

254study, particularly when our goal is to demonstrate a

255proof-of-concept application of CD in deterministic
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256 modeling. For details on the study region and data, the

257 reader is referred to the works of Hossain et al. (2006b)

258 and Hossain and Sivakumar (2006a).

259 The CD method employed by Hossain and Sivaku-

260 mar (2006a) used the correlation integral or function

261 (Grassberger and Procaccia 1983) for distinguishing

262 between chaotic and stochastic behaviors (more spe-

263 cifically, between low- and high-dimensional systems).

264 Although, traditional applications of the phase-space

265 reconstruction and the Grassberger–Procaccia algo-

266 rithms have been limited to data series in the contin-

267 uum of time (e.g., Takens 1981; Theiler 1987;

268 Rodriguez-Iturbe et al. 1989; Porporato and Ridolfi

269 1997; Sivakumar et al. 2001b, 2002c, 2005), Hossain and

270 Sivakumar (2006a) argued that there was no compelling

271 logic that disqualified its application to a data series in

272 space. Their CD analysis revealed positive evidence

273 regarding medium-to-high dimensional chaotic

274 dynamics in arsenic contamination in space, with a

275 country-wide dimension value ranging between 8 and

276 11. This subsequently led Hossain and Sivakumar

277 (2006a, b) to comment subjectively that the minimum

278 number of variables and hence the number of dominant

279 processes required to model the spatial variability of

280 arsenic contamination should also range from 8 to 11.

281 It is appropriate to mention, at this point, that

282 questions may be raised regarding the suitability of this

283 data set for CD analysis. Such questions may be related

284 to, among others, the data size (insufficient length) and

285 data quality (presence of noise), as these could

286 potentially influence the CD estimation (e.g., Neren-

287 berg and Essex 1990; Schreiber and Kantz 1996). These

288 issues, and also others, have been and continue to be

289 extensively discussed and debated in the literature,

290 including in the environmental sciences [e.g., Ghilardi

291 and Rosso 1990; Tsonis et al. 1994; Sivakumar et al.

292 1999, 2001b, 2002a, c; Sivakumar 2000, 2005; Schertzer

293 et al. 2002; see also Sivakumar (2004a) for a review].

294 Due to space limitations, and also to avoid unnecessary

295 deviation from the main focus of our study, we choose

296 not to discuss such issues, and consequently direct the

297 reader to the above studies and the numerous refer-

298 ences therein. We, however, would like to briefly

299 highlight a few points herein, in regards to the

300 reliability of the CD estimates for this data set reported

301 by Hossain and Sivakumar (2006a).

302 1. We are convinced that the data size, with 3,085

303 points, is more than sufficient to obtain reliable CD

304 estimates of arsenic contamination in space. In this

305 regard, we are particularly comforted by past

306 studies that have reported reliable CD estimates

307 for much smaller data sizes, albeit in the contin-

308uum of time (e.g., Sivakumar 2000, 2005; Sivaku-

309mar et al. 2002a, c).

3102. While we do admit that the arsenic concentration

311data are likely contaminated with noise (e.g.,

312measurement errors), we do not believe that it

313significantly influences our CD estimates [see, for

314example, Sivakumar et al. (1999)]. Even if it were

315to influence, the result would be only an overesti-

316mation of CD, not underestimation. Therefore, the

317interpretations and conclusions by Hossain and

318Sivakumar (2006a) regarding medium-to-high

319dimensional chaotic pattern would not only stand

320the test but also be more solidified.

3213. Another factor possibly leading to underestimation

322of CD is the presence of a large number of zeros

323(or any one particular value) in the data set (e.g.,

324Tsonis et al. 1994). Since there are no zeros (or

325repetition of a particular value) in the arsenic data

326set, this problem is also completely eliminated.

3273 Logistic regression

328The method of LR has been extensively used in epide-

329miological studies, and more recently, has become

330a common technique in environmental research

331on modeling risk of groundwater contamination

332(Twarakavi and Kaluarachchi 2006). Common regres-

333sion techniques, such as the classical linear regression,

334relate the response variables to the influencing variables.

335LR relates the probability of a response variable to be

336greater than a threshold value (i.e., a risk) to a set of

337influencing variables (Afifi and Clark 1984; Helsel and

338Hirsch 1992). In an LR risk model, regression is linear

339between the natural logarithm of the odds ratio for the

340probability of response to be less than the threshold

341value and influencing variables. Equation 1 mathemat-

342ically summarizes the LR model used in this study:

ln[p/(1� p)] = logit(p) = a + bx ð1Þ

344344where p is the probability of response to be greater

345than the safety threshold, a is a constant, b is a vector

346of slope coefficients, and x is a vector of influencing

347variables. For more details on the use of LR for

348modeling risk of arsenic contamination, the reader is

349referred to Twarakavi and Kaluarachchi (2006).

3504 The potential influencing variables

351Table 1 shows the influencing variables considered

352herein for defining the geochemical regime of aquifers.
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353 These variables were sampled by BGS-DPHE (2001)

354 in Bangladesh. The minimum and maximum values of

355 these variables (Table 1) indicate the range of vari-

356 ability across Bangladesh. The variables chosen are: (1)

357 depth of wells (m), (2) P (Phosphorus) (mg/L), (3) Fe

358 (Iron) (mg/L), (4) Ba (Barium) (mg/L), (5) Mg (Mag-

359 nesium) (mg/L), (6) Ca (Calcium) (mg/L), (7) SO4

360 (Sulfate) (mg/L), (8) Mean annual precipitation (mm/

361 day), (9) Si (Silicon) (mg/L), (10) Na (Sodium) (mg/L),

362 and (11) Mn (Manganese) (mg/L). Although our

363 choice of variables is primarily dictated by literature

364 reports on the causes of arsenic mobility (e.g., Welch

365 et al. 2000; Harvey et al. 2002; van Geen et al. 2003;

366 McArthur et al. 2004; Zheng et al. 2004) and the

367 availability of reliable data, we must also point out to

368 the reader that the selection herein is governed purely

369 from a data-based and qualitative paradigm. As indi-

370 cated earlier, the larger goal of our study is to

371 encourage greater interactions between the research

372 communities on mechanistic modeling of arsenic con-

373 tamination and non-linear dynamic analysis. We admit

374 that such a data-based selection without a deeper

375 physical regard for the pertinent mechanics and geo-

376 chemistry of contamination (as appropriate for

377 Bangladesh) may have potential limitations. However,

378 we also believe that such potential limitations alone

379 should not hamper our ability to investigate the use-

380 fulness of the CD value, and particularly so when our

381 intention is to primarily conduct a preliminary explo-

382 ration. We believe that if there is a weakness in our

383 choice of potential influencing variables, as may be

384 revealed in our results, it only lends greater credibility

385 to our mission in inviting the research community on

386 arsenic contamination to interact more closely with the

387 non-linear deterministic dynamic research community.

388 As a preliminary step, we first conduct the Spear-

389 man’s Rank Correlation Coefficient test for these

390selected variables to identify their non-linear depen-

391dence with arsenic concentration. Because all possible

392combinations of influencing variables are considered

393during LR modeling of contamination risk (discussed

394next), results from the Spearman’s test are not used in

395the ranking of the variables according to the order of

396influence. The precipitation data are obtained from the

397Bangladesh Meteorological Department (BMD) and

398Bangladesh Water Development Board (BWDB). The

399data are derived from a network of 100 recording

400rainfall gauges that registered less than 5% missing

401data for the year 2000. The choice of precipitation as

402an influencing variable is governed by reports that

403groundwater pumping for irrigation and recharge could

404be one of the causes of arsenic mobility in the shallow

405geologic stratum (see Harvey et al. 2002). Because

406recharge data are not readily available for our study,

407we choose mean rainfall as a proxy indicator of

408recharge of aquifers. For consistency, we select pre-

409cipitation data pertaining to the year 2000 when the

410BGS-DPHE (2001) survey was completed. The mean

411annual rainfall value for each well is computed by the

412method of Thiessen Polygons using the ArcGISTM

413software (Ormsby et al. 2004).

4145 Method of assessment

415The dataset is divided randomly into two equal halves,

416with one half being employed for LR risk model cali-

417bration and the other half for validation. This random

418selection procedure is repeated 25 times within a

419Monte Carlo (MC) framework to assess the mean

420performance of the LR model. Using one-half of each

421randomly selected dataset, calibration of the LR model

422coefficients, a and b, is performed using ordinary least

423squares technique for a safety threshold of 50 ppb

424(Bangladesh limit). In the calibration phase, the ‘p’

425values in Eq. 1 are assigned 0–1 binary values

426depending on the measured concentration of arsenic

427(p = 1 for exceeding the safety threshold; p = 0 for

428being below the threshold). During the validation

429phase, the LR model is assessed in terms of its ability

430to successfully predict contamination in 0–1 binary

431terms according to the safety threshold at non-sampled

432wells (i.e., over the other half of the dataset not used in

433calibration of the LR risk models). For this, we employ

434the notion of contamination risk associated with a pre-

435assigned probability (i.e., in this case, p = 0.9). For

436example, if the well is predicted by the LR risk model

437as unsafe with p = 0.85 for a given safety threshold,

438then that well would be flagged uncontaminated

439according to the high risk criterion of p = 0.9. The

Table 1 The selected influencing variables for Logistic Regres-
sion Modeling

Variable Mean Minimum Maximum

Well depth (m) 60.550 0.600 362.000
Ba (ppb) 87.340 2.000 1360.000
Ca (mg/L) 51.590 0.100 366.000
Fe (mg/L) 3.353 0.005 61.000
Mg (mg/L) 20.750 0.040 305.000
Mn (mg/L) 0.555 0.001 9.980
Na (mg/L) 88.936 0.700 2700.000
P (mg/L) 0.765 0.100 18.900
Si (mg/L) 20.519 0.030 45.200
SO4 (mg/L) 5.917 0.200 753.000
Annual precipitation (cm) 86.001 25.350 596.140
As (ppb)1 55.205 0.500 1660.000

1 Arsenic (As) is the dependent variable in the LR risk model
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440 predictive power of the LR risk model for a given

441 number of influencing variables is quantified by the

442 probability of successful detection of a well’s status as

443 contaminated or uncontaminated at untested well

444 locations. It should be noted that the pre-assignment of

445 a probability value to denote risk category as high(low)

446 is purely subjective and will linearly scale up(down) the

447 predictive behavior of LR model without altering the

448 response pattern to the number of influencing vari-

449 ables. Hence, such a subjective assignment is consid-

450 ered acceptable within the overall scheme of our study

451 as the objective is to delineate the impact of the

452 number of potentially influencing variables and not on

453 the LR risk model performance per se.

454 The specific question we explore, using LR, in our

455 study is: ‘Is CD a reliable proxy for the number of

456 dominant variables required to predict risk of arsenic

457 contamination in groundwater?’ We consider all pos-

458 sible combinations of influencing variables from the

459 total set of 11 as candidate LR models. This results in

460 2,048 LR risk models being evaluated. Each evaluation

461 is repeated 25 times within the MC framework and the

462 mean and range of LR model prediction assessed. For

463 a given number of influencing variables, the mean

464 signified the most probable LR model performance

465 while the range is an indicator of predictive uncertainty

466 to expect. It is important to note that the predictive

467 uncertainty (or range) has important implications for

468 model complexity and parameter optimization. The

469 wider the uncertainty, the more challenging naturally

470 would be the optimization to converge to the best LR

471 model configuration. We discuss this in more detail in

472 the next section.

473 6 Results and discussion

474 Figure 2 shows the variation of probability of success-

475 ful detection of wells, or the fraction of validation set

476 wells correctly detected (as contaminated/uncontami-

477 nated at the 50 ppb limit) as a function of the total

478 number of influencing variables (Table 1) in the LR

479 model. Basically, the terms ‘contaminated/uncontami-

480 nated’ or ‘unsafe/safe’ refer to the wells with arsenic

481 concentration exceeding/less than 50 ppb. The mean

482 predictive ability (shown in red circles, Fig. 2) of the

483 LR risk model, while remaining insensitive to number

484 of influencing variables in the ranges of 1–7 variables,

485 is found to noticeably increase in sensitivity when the

486 number of variables is greater than 7. A systematic

487 reduction in the predictive uncertainty is also observed

488 as the number of variables is increased from 7 to 11

489 (see Fig. 3). The probability of successful detection is

490shown for the mean of the 25 MC simulations on the y-

491axis of Fig. 2. Finally, we observe the best performance

492of the LR model when the number of influencing

493variables is 11. (Note that the lines all converge here to

494a point when the number of variables is 11 because the

495total number of possible LR model combinations is

496one. This observation should not be construed as an

497indication of no uncertainty for an LR model with 11

498variables, but rather as an indication of the last point of

499complex modeling within a set of 11 variables where

500only one possible model can be constructed). As

501evident from Figs. 2, 3, an a priori inclusion of CD

502value in assigning the minimum LR model complexity

503appears to guarantee global optimization of the model

504configuration with a considerably higher degree of

Fig. 2 Variation of fraction of wells correctly classified by LR
model as safe/unsafe (i.e., probability of successful detection)
with the number of influencing variables. The larger black circles
with dashed line in the middle indicate mean values. The upper
and lower dashed lines in black indicate the range of 25 Monte
Carlo realizations for a given number of variables
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Fig. 3 Predictive uncertainty in terms of probability of success-
ful detection (i.e., the range between upper and lower limits in
Fig. 2) as a function of the number of influencing variables.
(Note: the value when the number of influencing variables is 11
should be ignored.)
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505 success. This empirical observation indicates consis-

506 tency with the CD concept, according to which the

507 inclusion of any additional variable deemed influential

508 on the dynamics should yield either an improvement or

509 simply no change (unless otherwise significantly influ-

510 enced by noise) [see also, for example, Sivakumar et al.

511 (2001b, 2002c)]. Overall, this preliminary finding seems

512 to offer credence to the hypothesis that an acceptable

513 number of variables to model the risk of arsenic con-

514 tamination should range from 7 or 8 to 11 [The LR

515 results also seem to strengthen our earlier point that

516 the CD estimates reported by Hossain and Sivakumar

517 (2006a) may only be an overestimation due to the

518 presence of noise, if any, and not an underestimation].

519 Currently, there are a number of maps available that

520 characterize the probability of arsenic contamination

521 in non-sampled regions based on kriging [see BGS-

522 DPHE (2001) and McArthur et al. (2001), for exam-

523 ple]. Preliminary findings of our study imply that an

524 injection of the chaotic dynamic approach of LR

525 modeling with variables equaling the CD could expe-

526 dite refinement of the map toward reduction of

527 uncertainty in risk of contamination at non-sampled

528 locations than what would have otherwise been possi-

529 ble by the kriging method alone. Although CD does

530 not offer any physical insight on the variables that need

531 to be chosen or the nature of their integration in risk

532 assessment models, prior knowledge as a proxy for an

533 acceptable number of variables required can be a

534 valuable information that can potentially save consid-

535 erable time during a rapid assessment of arsenic con-

536 tamination for remediation management.

537 7 Conclusion

538 While applications of nonlinear dynamic concepts,

539 such as the CD method, are gaining momentum in

540 environmental sciences, their usefulness to understand

541 the actual physical mechanisms occurring in our

542 catchments and aquifers remains unclear. With the

543 encouraging results reported recently by Hossain and

544 Sivakumar (2006a) regarding the possible nonlinear

545 deterministic nature of arsenic contamination phe-

546 nomenon in Bangladesh (with CD values ranging from

547 8 to 11), we herein have explored the possible physical

548 connection between the CD and the mathematical

549 modeling of risk of arsenic contamination in ground-

550 water. We considered the LR model, with an aim to

551 link the nonlinear CD technique with a linear analysis

552 technique. Using 11 potential influencing variables that

553 largely dictate the variability of arsenic concentration,

554we observed that the CD may function as an accept-

555able proxy for the number of variables required in the

556LR model to accurately predict arsenic contamination

557at non-sampled wells. Given this preliminary finding,

558we believe it is time we considered more comprehen-

559sive investigations to assess the true merit of non-linear

560deterministic paradigms in conjunction with the more

561conventional linear stochastic methods, such as kriging,

562for reducing uncertainty of risk mapping for ground-

563water contamination in resource poor countries.

564This study is not without its share of limitations. The

565two primary limitations that should be highlighted

566herein, so that findings from this study are not quoted

567out of context, are: (1) selection of potential influenc-

568ing variables from a purely data-based paradigm; and

569(2) maximum number of influencing variables being

570only 11 and barely exceeding the range of CD values.

571An earlier section (on ‘The potential influencing vari-

572ables’) in this paper has already discussed in detail the

573first limitation with a qualified disclaimer. On the sec-

574ond limitation, we unconditionally recognize that the

575value of CD could have been more convincingly

576demonstrated had more than 11 potential influencing

577variables been analyzed. However, inclusion of a

578higher number of variables is easier said than done,

579since there is paucity of quality-controlled data in a

580rural setting like Bangladesh. For example, an influ-

581encing variable such as soil cover is expected to influ-

582ence recharge and to ultimately affect the water table

583fluctuations, which may consequently be responsible

584for the mechanism that mobilizes arsenic (Twarakavi

585and Kaluarachchi 2006). However, such data are hard

586to obtain for the case of Bangladesh on a large scale.

587We believe that inclusion of a larger set of geochemical

588data is an important area of future study where we, as

589members of the non-linear deterministic community,

590should depend on effective feedback from the com-

591munity engaged in mechanistic understanding of ar-

592senic contamination in order to secure a more

593complete and appropriate dataset for CD integration.

594It must be noted, therefore, that more detailed studies

595are needed to verify the true limitations and strengths

596of the CD approach to designing LR models for rapid

597assessment of risk of arsenic contamination. Investi-

598gations in this direction are already underway, details

599of which will be reported elsewhere.
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