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PAbstract

This study aims at evaluating the uncertainty in the prediction of soil moisture (1D, vertical column) from an offline land surface

model (LSM) forced by hydro-meteorological and radiation data. We focus on two types of uncertainty: an input error due to satel-

lite rainfall retrieval uncertainty, and, LSM soil-parametric error. The study is facilitated by in situ and remotely sensed data-driven

(precipitation, radiation, soil moisture) simulation experiments comprising a LSM and stochastic models for error characterization.

The parametric uncertainty is represented by the generalized likelihood uncertainty estimation (GLUE) technique, which models the

parameter non-uniqueness against direct observations. Half-hourly infra-red (IR) sensor retrievals were used as satellite rainfall esti-

mates. The IR rain retrieval uncertainty is characterized on the basis of a satellite rainfall error model (SREM). The combined

uncertainty (i.e., SREM + GLUE) is compared with the partial assessment of uncertainty. It is found that precipitation (IR) error

alone may explain moderate to low proportion of the soil moisture simulation uncertainty, depending on the level of model accu-

racy—50–60% for high model accuracy, and 20–30% for low model accuracy. Comparisons on the basis of two different sites also

yielded an increase (50–100%) in soil moisture prediction uncertainty for the more vegetated site. This study exemplified the need for

detailed investigations of the rainfall retrieval-modeling parameter error interaction within a comprehensive space-time stochastic

framework for achieving optimal integration of satellite rain retrievals in land data assimilation systems.

� 2005 Published by Elsevier Ltd.

Keywords: Uncertainty; Land surface model; Satellite rain retrievals; Parameter uncertainty; Soil moisture
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Soil moisture, defined as the water content in the
upper layer of soil, is the hydrologic variable that con-

trols the interactions (and feedbacks) between land sur-

face and atmospheric processes. Over the last decade, a

sizeable body of literature has accumulated on accurate

characterization of spatio-temporal variability of soil

moisture [35,1,32,28,23,16] (Hornberger et al., 2001);
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among others. Recent trends indicate that soil moisture

estimates are increasingly derived from land data assim-

ilation systems (LDAS) that comprise a physically based
land surface model (LSM) forced by hydro-meteorolog-

ical data and schemes for integrating remotely sensed

observations (see for example [39,33,28]). Of particular

importance therefore is the characterization of uncer-

tainty in the prediction of soil moisture by LSMs. This

facilitates the statistical (ensemble) pre-storm initialisa-

tion of distributed hydrologic models used in the predic-

tion of floods, and the development of ensemble land
surface boundary conditions for regional atmospheric

mailto:manos@engr.uconn.edu
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models issuing short to medium-range quantitative pre-

cipitation forecasts.

Knowledge of uncertainty is also a key to advance the

efficiency of land data assimilation techniques [39,29].

One example of such a technique that requires charac-

terization of model prediction (or forecast) error is the
Kalman filtering approach used in LDAS, currently in

operation over North America [33,27] and globally

[34]. Accurate knowledge of soil moisture prediction er-

ror is essential for optimal performance of assimilation

systems. In this study we seek to address the character-

ization of two types of uncertainty in soil moisture pre-

diction on the basis of LSM: (1) errors in the rainfall

estimation from satellite sensor observations; and, (2)
the LSM parametric error (manifesting as non-unique-

ness in soil hydraulic parameters). Parameter non-

uniqueness is a phenomenon where no single parameter

set uniquely defines the model state, but rather it is the

ensemble that defines the universal set of equi-probable

states. The non-uniqueness property is attributed to the

simultaneous effect of various uncertainty sources such

as, model formulation error, error due to initial/bound-
ary conditions, input error etc. In this study we define

parametric uncertainty as an attribute primarily identifi-

able with (but not limited to) LSM model formulation

error. Hereafter, no distinction is made between the

terms parametric uncertainty and modelling error (or

model formulation error).

On one hand, understanding the error in rainfall mea-

surement has implications for the global precipitation
measurement (GPM), which is a mission to be launched

by the international community by 2010 [36,6]. GPM is

expected to provide rainfall measurements from space at

scales finer than what is globally available today. Hence,

satellite rainfall estimates would gradually become the

dominant component of the atmospheric forcing data

for LDAS. On the other hand, because current LDAS

formulations have provisions for using multiple state-
of-the-art LSMs in the assimilation technique [33],

understanding the role played by model formulation

error is as significant as error in satellite rainfall

measurements.

A simultaneous assessment of uncertainty would

allow comparisons with partial assessments (i.e., satellite

rainfall or modeling error alone), which can potentially

identify the implications of each error source (and hence
a strategy for reducing the prediction uncertainty). In

hydrologic remote sensing, the interactions between

both sources of uncertainty imply that partial assess-

ment may not be adequate to describe the full range of

variability in soil moisture prediction. Studying the

statistical characterization of soil moisture prediction

error associated with both uncertainty sources is the

key to advance the use of satellite rainfall remote sensing
in LDAS. A similar paradigm of scientific inquiry for

catchment-scale hydrology has proved useful in enhanc-
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ing the usage of radar rainfall estimation in flood

simulations of complex terrain basins [20]. Recently, col-

lective research effort has emerged on this aspect called

the Distributed Model Intercomparison Project (DMIP)

[37]. DMIP provides an insightful treatment of the rela-

tive roles of uncertainties in input and model parameters
for hydrologic models [37,10,9]. These studies investi-

gated the uncertainty in stream flow prediction from a

distributed rainfall-runoff model using ground radar

estimates as rain input. However, the approach em-

ployed in those studies for error modeling of rainfall

estimates omit satellite rainfall, which require a more

complex error modeling strategy than pure random

sampling [19]. Unlike radar rainfall estimation, where
after careful quality control and error adjustments the

residual error is left with primarily a random deviation

component, the satellite rain retrieval uncertainty is

associated with correlated rain, no-rain detection and

false alarm error characteristics as well as systematic

and random rain rate error components that have longer

spatio-temporal correlation lengths (Hossain and Anag-

nostou, 2005). Furthermore, in terms of significance in
large-scale water resources management, satellite data-

land surface modeling system has a distinct role in

hydrology given the global availability of satellite rain-

fall observations.

Thus, although work has been done of radar rainfall

error propagation in stream flow simulation, much less

is known about the hydrologic applications of satellite

data. The important question about satellite rainfall
data therefore concerns its error propagation through

LSM in simulating soil moisture fields. A major diffi-

culty of such investigation is caused by the complex er-

ror structure of satellite rainfall retrievals [19] and the

non-linearity in error propagation. In that respect, our

study seeks to address the relative impacts and interac-

tions of uncertainty in satellite rainfall retrieval and

LSM simulations (i.e., model parameter non-unique-
ness). The numerical investigations presented in this

paper are limited to single column (1D, vertical) simula-

tions ignoring spatial error characteristics. The model

parameter uncertainty is represented by the generalized

likelihood uncertainty estimation (GLUE [4]) technique.

Uncertainty in satellite rain retrieval is modeled on the

basis of a satellite rainfall error model (SREM) devel-

oped by Hossain and Anagnostou [19]. The combined
assessment of uncertainty—due to rainfall and modeling

(SREM + GLUE)—is compared with partial assess-

ments that accounted for either the modeling (GLUE

only) or rain retrieval uncertainty (SREM only).

Although it is recognized that there may be other impor-

tant uncertainty criteria that are not examined here

(such as, the detailed role of vegetation/climate and

the effect of scale), we hope that this paper will provide
a defendable proof-of-concept to trigger further studies

involving a wide range of model structures, resolutions
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and objectives towards optimal integration of remotely

sensed data in assimilation systems.

The paper is organized as follows. In Section 2 we de-

scribe the study region and data. In Section 3 we de-

scribe the LSM used in this study. In Section 4, we

present the stochastic models used to characterize the
uncertainty in the two error sources (satellite rainfall

and LSM). In Section 5 we describe the simulation

framework and present the results. In Section 6, we pres-

ent the major conclusions and suggested extensions of

this study.
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2. Study region and data

Two regions were chosen for the study: (1) Cham-

paign in Illinois; and, (2) Perkins in Oklahoma (hereafter

the two regions will be abbreviated as ‘‘CHAMPAIGN’’

and ‘‘PERKINS’’, respectively). CHAMPAIGN is a

farmland located 40.01�North and 88.37�West. The site

characteristics are typical of those found throughout

Midwestern US with most of the land in agricultural pro-
duction. The soil is silt loam with a bulk density of

1.5 gm/cm3. The study period is 1 year (1998) when soy-

beans were planted on the farm. Atmospheric and radia-

tion forcing data from a flux measuring system installed

in the farm were recorded every 30 min for that year. The

major atmospheric data comprised rainfall, temperature,

humidity, surface pressure and wind. The radiation forc-

ing data pertained to downward solar (short-wave) and
downward long-wave radiation flux measurements. Soil

moisture measurements at only the 5 cm depth are con-

sidered here, because at deeper depths the measurements

are considered suspect (personal communication with

Kenneth Mitchell of NOAA). This data is public domain

and available as part of standardized testing protocols

for simulation codes of the NOAH-LSM (discussed

next). For more information on the study region and
data measurement protocols the reader is referred to

the User�s Guide (ftp://ftp.emc.ncep.noaa.gov/mmb/

gcp/ldas/noahlsm/ver_2.5).

PERKINS is located at 35.99�North and 97.05�West

in Payne County, Oklahoma. It has perennial ground

cover, intermittent farmland with broad-leaf deciduous

trees. All requisite hydro-meteorological data except

the downward long-wave radiation for NOAH-LSM
operation are available at half-hourly intervals from

the Oklahoma Mesonet network. The Oklahoma Mes-

onet [15,8] is a dense network of 114 automated measure-

ment stations across Oklahoma (for more details on

Mesonet see http://www.mesonet.ou.edu). The average

composition of soil in a 75 cm column at PERKINS is

about 45% sand, 35% silt and 20% clay and is classified

as sandy-clay loam. Apart from vegetation, the most un-
ique feature distinguishing PERKINS from CHAM-

PAIGN is that consistent soil moisture measurements
D
P
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F

are available at deeper depths: 5 cm, 25 cm and 60 cm

from surface, thus allowing the soil vertical column to

be modeled in the root zone. The year under study for

PERKINS is 2001. Long-wave radiation was calculated

from in situ measurements of air temperature (Tair, �C)
and relative humidity (RLH, %) using methods outlined
in Bras [7] as follows. First, the saturation vapor pressure

was calculated from air temperature [7]. Using knowl-

edge of relative humidity, the ambient vapor pressure

was then computed. The long-wave emissivity was de-

rived from Idso [25]. Finally, we used the Stefan–Boltz-

mann law to estimate the long-wave radiation (W/m2).

It is appropriate to mention that there is a potential lim-

itation in the manner in which long-wave radiation is
computed for PERKINS. It may be associated with er-

rors during overcast conditions where cloud cover frac-

tion would need to be factored in. We believe that such

a potential limitation alone should not hamper our over-

all investigation, and particularly so when our intention

is to primarily understand the role of uncertainties in sa-

tellite precipitation and model parameters. The weak-

nesses of this approach, if any, may be revealed in our
results, and as a result, future studies may also employ

more appropriate data sources for long-wave radiation

(such as the atmospheric radiation measurement—

ARM/CART network).
T3. The land surface model

3.1. Model description

The LSM used in this study is the NOAH-LSM (also

known as The Community NOAH-LSM—[11,31]). We

chose NOAH-LSM as it is a popular operational model

with a long heritage and more importantly, it is one of

the four LDAS LSMs currently being evaluated over

the United States [33]. NOAH-LSM is a stand-alone,
uncoupled (offline), column (1-D) version used to exe-

cute single-site land surface simulations at 30 min inter-

vals. NOAH-LSM is based on a typical one-dimensional

soil-vegetation-atmosphere transfer (SVAT) approach

that solves the coupled energy and water budgets at

the land surface and within the unsaturated zone. In this

traditional 1-D uncoupled mode, near surface atmo-

spheric and radiation data are required as input forcing.
NOAH-LSM simulates soil moisture (both liquid and

frozen), soil temperature, snow pack, depth, snow pack

water equivalent, canopy water content and the energy

and water flux terms in terms of the surface energy bal-

ance and surface water balance. A four-layer soil config-

uration (comprising a total depth of 2 m) is adopted in

the NOAH-LSM for capturing daily, weekly and sea-

sonal evolution of soil moisture and mitigating possible
truncation error in discretization [38]. The lower 1-m

acts as gravity drainage at the bottom, and the upper

http://www.mesonet.ou.edu


C

264

265

266

267

268

269
270

271

272

273

274

275

276

277
278

279

280

281

282

283
284

285

286

287

288

289

290

291
292

293

294

295

296

297

298

299

300

301

302

303

304

305
306

307

308

309

310

311

312

313
314

315

316

317

318

319

320

321
322

323

324

325

326

327

328

329
330

331

332

333

334

335

336

337
338

339

340

341

342

343

344

345
346

347

348

349

350
351

353353

354

355

356

357

358

359
360

361

362

363

364

365

366

367
368

369

370

371

4 F. Hossain, E.N. Anagnostou / Advances in Water Resources xxx (2005) xxx–xxx

ADWR 841 No. of Pages 15, DTD = 5.0.1

24 May 2005 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E

1-m of soil serves as root zone depth. A resistance ap-

proach is used to account for both aerodynamic and

vegetation controls on energy fluxes. For more details

on the physical description of the model, one may refer

to Sridhar et al. [38], Margulis et al. [28] and Chen et al.

[11]. In line with the minimum requirements for spin-up
[14], a repeat run of NOAH-LSM was made with the

year-long available data for each site to achieve equilib-

rium initial conditions. Since rainfall would have insig-

nificant interaction with the frozen soil column during

snow covered times (and transform mostly as surface

runoff—an assumption we make), we truncated our

effective study period for CHAMPAIGN and PER-

KINS to the 1 May–30 October, 1998 and 2001 periods,
respectively.

3.2. Model fine-tuning

Our preliminary investigation with NOAH-LSM

found it necessary to adjust NOAH-LSM vegetation

parameter of �fraction of green vegetation to make the

model more representative of the point-scale soil mois-
ture flux simulations at the two study regions. This pro-

cedure is essentially based on mild nudging (within

physically acceptable limits) to force soil moisture simu-

lations to mimic observations as closely as possible (see

[21] for details). After the nudging procedure, the PER-

KINS fraction of green vegetation values were 15–20%

higher than those for CHAMPAIGN, numerically man-

ifesting the difference in vegetation between the two
sites. Fig. 1a and b show the effect of fine-tuning during

the study period for CHAMPAIGN and PERKINS,

respectively. It is seen that NOAH-LSM is able to sim-

ulate the soil moisture variability at the 5 cm depth (for

CHAMPAIGN) and at 5, 25 and 60 cm depths for PER-

KINS. The overall correlation of model predicted to

measured soil moisture was calculated to be 0.8 (0.9)

for PERKINS (CHAMPAIGN).

3.3. Model parameter uncertainty

NOAH-LSM parameter (model) uncertainty was ac-

counted for the following five soil hydraulic parameters

that we considered most sensitive to soil moisture simu-

lation: (1) maximum volumetric soil moisture content

(porosity) (SMCMAX, m3/m3); (2) saturated matric po-
tential (PSISAT, m) (3) saturated hydraulic conductivity

K (SATDK, m s�1); (4) parameter �B� of soil-water

retention model of Clapp and Hornberger [12] (BB);

and (5) soil moisture wilting point at which ET ceases

(SMCWLT, m3/m3). The range (upper/lower) and opti-

mal values for those parameters are shown in Table 1.

These values were selected based on empirical studies

by Clapp and Hornberger [12] and Cosby et al. [13],
in situ land surface information, and considering the

sampling requirements of GLUE [4]. We assume that
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the parameter uncertainty domain represented by the

5-D hyperspace characterizes adequately the parameter

non-uniqueness, which is responsible for the modeling

uncertainty in soil moisture simulation.

We have chosen GLUE as the framework to charac-

terize the model parameter uncertainty in the NOAH-
LSM formulation for the simulation of soil moisture.

It is based on Monte Carlo (MC) simulation: a large

number of model runs are performed, each with random

parameter values each sampled from uniform probabil-

ity distribution (e.g., Table 1). The acceptability of each

run is assessed through comparison of the predicted ver-

sus observed hydrologic variables on the basis of a se-

lected likelihood measure. Simulations with likelihood
values below a certain threshold are rejected as non-

behavioural. The likelihoods of these non-behavioural

parameters are set to zero and are thereby removed from

subsequent analysis. Following the rejection of non-

behavioral runs, the likelihood weights of the retained

(i.e., behavioral) runs are rescaled so that their cumula-

tive total is one [17]. In this study the GLUE method

was applied to uncertainty estimation of soil moisture
simulation by NOAH-LSM at the 5 cm depth (for

CHAMPAIGN) and at 5 cm, 25 cm and 60 cm depth

(for PERKINS). Thus at each time step (at 30 min inter-

vals), the predicted soil moisture from the behavioral

runs are likelihood weighted and ranked to form a

cumulative distribution of soil moisture simulation from

which quantiles can be used to represent modelling

uncertainty. While GLUE is based on a Bayesian condi-
tioning approach, the likelihood measure is achieved

through a goodness of fit criterion as a substitute for a

more traditional likelihood function. We have consid-

ered the classical index of efficiency, ENS [30] as the mea-

sure of likelihood,

ENS ¼ 1� r2
e

r2
obs

� �
ð1Þ

where re is the variance of errors and robs the variance

of soil moisture observations, computed over the entire

study period. A point to note is that for PERKINS, the

index of efficiency was computed as a depth-weighted

average (weighted by the thickness of each soil layer).

This yielded an aggregate measure of model accuracy
that could be used to select parameters representative

of the vertical soil column of the root zone.

To implement the GLUE methodology, each param-

eter of NOAH-LSM was specified the range of possible

values shown in Table 1. Constant (calibrated) values

for all other NOAH-LSM parameters were used. Model

predictions of soil moisture were carried out, and the

model likelihood measure was calculated using the effi-
ciency index of Eq. (1). From the specified parameter

ranges, MC simulations were conducted that allowed

the selection of a large number of behavioral parameter

sets characterized by a simulation efficiency index value
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Fig. 1. (a) NOAH-LSM simulation of soil moisture (with adjustment for vegetation parameters) at 5 cm depth for CHAMPAIGN. Rainfall is shown

on the opposite x-axis. (b) NOAH-LSM simulation of soil moisture (with adjustment for vegetation parameters) for PERKINS. Uppermost panel—

observed rainfall from Mesonet; From bottom panel and up—soil moisture simulation at 60 cm, 25 cm and 5 cm depth, respectively.

Table 1

Uncertainty ranges and optimal values for soil hydraulic parameters of NOAH-LSM

Parameter Minimum value Maximum value Optimal value Sampling strategy

CHAMPAIGN PERKINS

SMCMAX (m3/m3) 0.05 0.50 0.41 0.47 Uniform

PSISAT (m) 0.01 0.65 0.140 0.36 Uniform

SATDK (m/s) 1.00 · 10�6 1.77 · 10�4 3.39 · 10�6 7.00 · 10�5 Log (uniform)

BB 2.00 15.00 14.4 7.70 Uniform

SMCWLT (m3/m3) 0.01 0.20 0.100 0.119 Uniform
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greater than an assigned minimum threshold value. For

further details on GLUE implementation the reader is

referred to Beven and Binley [4], Freer et al. [17] and

Beven and Freer [5].

The GLUE method has a drawback that limits its

application for computationally demanding models. It
requires analysis of multiple simulation scenarios based

on uniform random sampling of the model parameter

hyperspace. This requirement can be prohibitive for

models that are slow-running [3,4]. Hossain et al. [21]

and Hossain and Anagnostou (2004b) provide an exten-

sive review about this limitation, and propose an effi-

cient sampling technique as an addendum to GLUE.

In this technique, the uncertainty in soil moisture simu-
lation (model output) is approximated through a Her-

mite polynomial chaos expansion of normal random

variables that represent the model�s parameter (model

input) uncertainty. The unknown coefficients of the

polynomial are calculated using limited number of model

simulation runs. The calibrated polynomial is then used

as a fast-running proxy to the slower-running LSM to

predict the degree of representativeness of a randomly
sampled model parameter set. The herein study has

employed this efficient sampling scheme formulated by

Hossain et al. [21] to substantially reduce the computa-

tional burden of the analyses. It should be noted that the

Hermite polynomial scheme is used only to accelerate

parameter sampling by avoiding unnecessary model

runs due to non-behavioral parameter sets, and that

selected parameter set�s degree of representativeness is
always verified on the basis of actual model runs.
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E4. Satellite rainfall error model

The one-dimensional (1-D) satellite rainfall error

model (hereafter referred to as SREM-1D) developed

by Hossain and Anagnostou [19] was used to character-
ize the satellite rainfall retrieval error. The approach is

to stochastically simulate spatially independent (1-D),

temporally correlated, realizations of satellite rainfall

retrievals by corrupting a more accurate measurement

of rainfall process. The more accurate source was de-

rived from half-hourly rain gauge measurements (here-

after labeled as �reference rainfall�). The three most

pertinent aspects of the SREM-1D uncertainty frame-
work, are: (1) conversion of reference rainfall rates to

reference instantaneous rainfall rates; (2) modeling of

the sensor�s probability of detection for rain and no-rain

events; and, (3) modeling of retrieval error based on a

multiplicative error model with temporal correlation.

For details on the algorithmic structure of SREM-1D

the reader is referred to Hossain and Anagnostou [19].

The rain retrieval considered in this study is from
satellite IR, as at global scale, these observations offer

the finest temporal sampling characteristics (1/2-hourly)
P
R

O
O

F

necessary to resolve the dynamic variability of soil

moisture in the root zone. We considered here hourly

averaged IR rainfall fields produced by NASA�s Multi-

satellite Precipitation Analysis (MPA) algorithm [24]

as representative of the current level of IR rainfall esti-

mation characteristics. This community release product
is known as 3B41RT. Hossain and Anagnostou [19] had

calibrated SREM-1D parameters for 3B41RT over the

US on the basis of coincident rain profile estimates from

TRMM Precipitation Radar [26]. Fig. 2a shows the

cumulative hyetographs of actual IR (3B41RT) rainfall

products and the corresponding Mesonet rainfall data

over PERKINS for the year 2002 (1 January–30 Octo-

ber) when MPA became operational on a best effort
basis. The 3B41RT rainfall is compared against the

quantile envelop associated with 5–95% percentiles, pre-

dicted by SREM-1D using as input the Mesonet rain

rates (Fig. 2a). The 3B41RT rainfall hyetographs, which

is considered an observed realization, is enveloped by

the SREM-1D quantiles. In Fig. 2b, we show a similar

quantile envelop of SREM-1D simulations for CHAM-

PAIGN. There are currently no 3B41RT products
available for the retrospective period of 1998 over

CHAMPAIGN.
T
E5. Simulation framework and results

Our study is essentially a sensitivity investigation

addressing the �relative� impact and non-linear interac-
tion of uncertainties in modeling and satellite rainfall

estimation. The words �relative� and �satellite� are

stressed herein because this study does not focus on

the model structure or rainfall estimation deficiencies

per se. Rather the purpose of this study is to quantify

the response of a given model structure (i.e., one that

is used in the scientific community) to remotely sensed

rainfall measurements by a space-borne passive sensor
relative to the scenario of non-existence of uncertainty

in rainfall (e.g., gauge measurements) and model param-

eters. We therefore argue that 1-year simulation period

(with 6 months for comparison of sensitivities) is ade-

quate to study these relative impacts. Furthermore, this

study also does not address the spatial or lateral vari-

ability of soil moisture and the surface groundwater

interaction. It is also highlighted that this study exam-
ines in a stand-alone fashion the sensitivity of soil mois-

ture prediction (1D), given the near impossibility of

completely defining the interdependency between all

possible combinations of hydrologic and energy vari-

ables. We assume that the reference rainfall (from sur-

face measurements) and the optimal parameters for

NOAH-LSM yield accurate predictions of soil moisture

with low uncertainty (see Fig. 1a and b). If it is further
assumed that SREM-1D and GLUE sample adequately

the error structure in satellite rainfall and NOAH-LSM
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U
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parameters, respectively, then, based on these two

assumptions we can construct the following logical

inferences: (1) Propagation of multiple realizations of

SREM-1D rainfall processes via NOAH-LSM at opti-

mal parameters will reflect the partial uncertainty in soil

moisture prediction due to satellite rainfall estimation

error (uppermost panel—Fig. 3a); (2) Propagation of
reference rainfall to NOAH-LSM via multiple GLUE

model parameter realizations will reflect the partial

uncertainty in soil moisture prediction due to modeling
uncertainty (middle panel—Fig. 3b); and (3) Combining

SREM-1D and GLUE on NOAH-LSM will reflect the

total uncertainty in soil moisture prediction due to both

sources of uncertainty (lowermost panel—Fig. 3c).

5.1. Relative impact of uncertainties

As a demonstration of the relative impacts and inter-

actions of uncertainties, multiple (500) realizations were

conducted from SREM-1D and using GLUE. For
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GLUE, the 500 best behavioral parameter sets were
sampled from ranges shown in Table 1 with an ENS

greater than 0.4 (using gauge rainfall as input). For
U
N

C
O

R
R

E

Fig. 4. Comparisons of soil moisture prediction unc
T
E
D

P
R

O
O

F

the combined uncertainty assessment, the full-blown

MC uncertainty assessment comprising 250,000 (500

SREM-1D rainfall realizations times 500 GLUE param-

eter sets) NOAH-LSM runs was executed to identify the

full range of predictive variability. In this study, the

wideness of prediction quantiles in soil moisture simula-
tion is considered a reliable measure of prediction uncer-

tainty. This wideness, defined as uncertainty ratio (UR),

is the time integrated uncertainty in soil moisture vol-

ume bounded by the quantile width (between upper

and lower percentiles) normalized by the time-integrated

observed soil moisture volume. The UR at n% quantile

width (ranging from 10% to 90%), URn, is defined as

follows:

URn ¼
PNT

j¼1ðSM
sim
j;50þn=2 � SMsim

j;50�n=2ÞPNT

j¼1SM
obs
j

ð2Þ

where, j is the time-step index of simulation, NT the total

number of time-steps in the simulation period. Super-

scripts sim and obs refer to simulated and observed soil

moisture, respectively. UR represents the bulk variabil-

ity in prediction expressed relatively to the magnitude

of the observed variable.

In Figs. 4 and 5a–c we show each of the three infer-

ences for CHAMPAIGN and PERKINS, respectively.
The uncertainty limits of simulation are shown at the

90% quantile width. It appears that there is no signifi-

cant dependency of uncertainty as a function of depth

in the case of PERKINS (Fig. 5). It should be noted that

the partial uncertainty due to modelling and the

combined (total) uncertainty are conditioned upon the

subjective threshold used to select the behavioral param-
ertainty (partial and total) for CHAMPAIGN.
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eter sets (which was fixed at ENS > 0.4). The partial

uncertainties due to rainfall estimation and modelling

are considerably higher in PERKINS (compare the

uppermost and middle panels of Figs. 4 and 5). Due

to the numerical nature of our investigation, we can only

speculate that the vegetation and hydraulic properties

may be one of the many potential catalysts for the in-
creased error interaction. We support our speculation

numerically with a stand-alone sensitivity study de-

scribed next.

The increasing sensitivity to precipitation error as

parameter values transformed from CHAMPAIGN to

PERKINS vegetation/soil type environment is shown

in Fig. 6a. The simulation experiment that resulted to
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this figure used meso-forcing meteorological data of

CHAMPAIGN, while the soil-hydraulic parameters
were varied from the optimal values of CHAMPAIGN

to the optimal value of PERKINS (shown in Table 1).

In the figure, the varied parameter values are shown re-

scaled between 0 and 1, where the lower and upper ends

represent the environment for CHAMPAIGN and

PERKINS, respectively (here, we use the term �regime

scale�). The vertical axis of this figure shows the relative

increase (in %) of the UR evaluated in terms of the 90th
quantile width (UR90, Eq. (2)). Similarly, Fig. 6b shows

the relative level of error propagation from rainfall in-

put to soil moisture as function of quantile width assum-

ing optimal model performance (run at optimal

parameter sets shown in Table 1). The URn where n is

varied from 10% to 90% is used here to characterize

the level of uncertainty in precipitation and the pre-

dicted soil moisture. What is evident is that soil moisture
uncertainty is significantly dampened in the rainfall–soil

moisture transformation process in a highly non-linear

fashion with porosity controlling the upper bound of

variability. It is shown that the satellite IR hourly rain

input uncertainty increases exponentially with quantile

width to over than twice the magnitude of the estimated

rainfall (which is commonly expected for IR retrievals at

high resolution). The corresponding IR rain estimation
error propagation to soil moisture prediction is, though,

associated with a significant non-linear dampening: i.e.,

the UR converges to values well below 0.4 (i.e., >85%

error reduction). This dampening is notably more signif-

icant for CHAMPAIGN (90%) than PERKINS (85%)
T
E
D

where the error propagation is enhanced due to the veg-

etated environment.

5.2. The impact of model uncertainty

Next we study the relative significance of the two

uncertainty sources (precipitation versus modeling),

which warrants a more detailed characterization of the

role of the behavioral threshold for parameter sets used

in GLUE. Since this threshold is essentially subjective, it
is important to recognize that its value may increase or

decrease (from ENS = 0.4) to represent various levels of

parametric uncertainty (or model accuracy) at the oper-

ational scenario. Consequently, we grouped the behav-

ioral parameter sets (all having ENS > 0.4) into three

model performance categories—(1) HIGH (high model-

ing accuracy: ENS P 0.75); (2) MEDIUM (moderate

modeling accuracy: 0.5 6 ENS < 0.75), and (3) LOW
(low modeling accuracy: 0.4 < ENS < 0.5). In each cate-

gory group, the norm distance of its parameter sets

(h j) from the optimal parameter set (shown in Table 1)

was determined as follows:

Dishj ¼
X5

i¼1

ðhopt
i � hj

iÞ
2 ð3Þ

where, i is the parameter set index. Fig. 7a shows the dis-

persion of behavioral parameter sets from the optimal

set versus model performance, while Fig. 7b shows the

corresponding cumulative density functions of Dish for

each model performance category. From each of the
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Uthree categories, we sampled a set of 100 parameter sets

to evaluate modeling uncertainty. The procedure was as

follows. To start with, 100 uniformly distributed, U[0,1],

random numbers were generated. Each random number

represented a cumulative density value for Dish. Project-

ing this value through the CDF function shown in Fig.

7b we evaluated the corresponding Dish value (quantile).
The selected Dish values were then used to get the repre-
sentative parameter sets, h, of the group. On the basis of

the 100 selected GLUE parameters we performed par-

tial-modeling uncertainty evaluation. Combining the

100 GLUE parameters with 500 SREM-1D random

ensembles (total: 50,000 LSM realizations) we evaluated

the combined precipitation-modeling uncertainty. In

Fig. 8 we show the UR values at the 5 cm depth for each
site as a function of model performance category (high,
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medium, low) and quantile width. The partial uncer-
tainty due to precipitation (at optimal model perfor-

mance) is also shown in the form of long-dashed line

in each plot for comparison of the dependencies. The

following are the most notable observations from this

figure: (1) UR values at 90% quantile width (total and

modeling-partial uncertainty) for PERKINS are in the
range of 50–100% higher than those for CHAMPAIGN;
(2) The interaction of modeling uncertainty with precip-

itation uncertainty increases as a function of modeling

uncertainty—furthermore, this interaction is greater

for PERKINS; (3) The partial uncertainty in soil mois-

ture prediction arising due to precipitation uncertainty

only (considering optimal model performance) signifi-
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cantly under-represents the overall uncertainty—this

underestimation reduces as the model performance lev-

els improves (from LOW to HIGH).

The global picture emerging from this analysis is that

proper characterization of error propagation in hydro-

logic prediction in soil moisture would require the study
of non-linear error interaction between modeling error

and error in forcing variables (precipitation, and other

meteorological radiation parameters). While this may

be a recognized issue in current literature, our consider-

ation of satellites as the primary rainfall source and its

comprehensive error modeling represents, what we be-

lieve, a new agenda in anticipation of future hydrologic

missions (GPM and HYDROS). As shown above, the
precipitation uncertainty associated with satellite IR ret-

rievals would explain about half of the total uncertainty

in soil moisture prediction for a high model accuracy

scenario, while less than 30% in the case of low modeling

accuracy. This indicates that via an understanding of the

retrieval-modeling error interaction in hydrologic pre-

diction, we should attempt investigating the optimality

criteria for integrating satellite rain retrievals in land
data assimilation systems.
U 685

686

687

688

689

690

691
692
6. Conclusions

This study focused on the sensitivity of soil moisture

prediction accuracy to the interaction of two types of er-

ror sources considered relevant for emerging assimila-
tion systems: the precipitation input from satellites and
T
E
Dland surface model parametric uncertainties. The mois-

ture prediction was limited to 1-D vertical simulation

neglecting horizontal advection and spatial heterogene-

ity, which should therefore be considered as an inherent

limitation of our study. The modeling uncertainty was

represented by GLUE technique that characterized the
non-uniqueness of model parameters yielding similar

model performance assessment. A satellite rainfall error

model (SREM-1D) was devised to characterize uncer-

tainty in satellite rain retrieval. Satellite rainfall esti-

mates pertained to hourly averaged satellite infra-red

(IR) estimates. The combined assessment of uncer-

tainty—namely, rainfall input and modeling (SREM-

1D + GLUE)—was compared with the partial assess-
ment that accounted for modeling (GLUE) or IR rain

retrieval uncertainty (SREM-1D). Comparisons were

also made on two distinct sites: (1) a site with sparse

farmland vegetation (in Champaign, Illinois); and (2) a

site with denser vegetation (in Perkins, Oklahoma). Soil

moisture prediction uncertainty was found to be about

50–100% larger for the more vegetated site. Current IR

rain retrievals are shown to contribute between 20%
and 60% of the total uncertainty in soil moisture predic-

tion. The lower (upper) limit corresponds to high (low)

modeling accuracies. The study indicates that a rigorous

assessment of satellite rain retrievals in terms of hydro-

logic predictions requires an understanding of the role

played by modeling uncertainty in error interaction.

While the above findings represent a useful first step,

it is not until a number of similar studies from a range of
research objectives are undertaken to achieve a firm
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understanding of the optimality criteria for integration

of remotely sensed data in LSMs. Towards that end,

we highlight the following as natural extensions to ad-

dress limitations of our current work. To improve the

hydrologic application of satellite rain estimation, merg-

ing of IR rainfall fields with the less-frequent, but more
definitive, passive microwave (PM) rainfall estimates

should be explored. A recent study on the basis of an

experimental error assessment framework by Anagnos-

tou [2] has shown that optimal merging of IR and PM

rainfall fields reduces hydrological prediction error sta-

tistics (both marginal and conditional). Other studies re-

lated to runoff prediction have shown that PM-IR

merging can reduce uncertainty of certain runoff param-
eters (e.g., runoff volume for water balance studies) [19].

This error propagation framework needs to be aug-

mented incorporating other LSM schemes, such as those

currently used in LDAS. Another aspect worth address-

ing as a future extension is the spatial structure of error

(2-D simulations). More useful analyses for uncertainty

and data assimilation techniques can be expected when

the spatial structure of satellite retrieval error and soil
moisture simulation are considered involving some

down-scaling approaches to address scale mismatch be-

tween rainfall observations and model predictions. To

address long memory effects of soil moisture longer time

series need to be studied that is commensurate with cur-

rent computational resources. We are currently working

on expanding SREM-1D to simulate the spatial vari-

ability of satellite rainfall fields� estimation error (Hoss-
ain and Anagnostou, 2005) and we hope to report

findings on the hydrologic implications in the near

future.
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