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Assessment of a Probabilistic Scheme for Flood Prediction
Faisal Hossain, M.ASCE,1 and Emmanouil N. Anagnostou, M.ASCE2

Abstract: This study presents the development of a probabilistic discharge prediction scheme based on an uncertainty framew
generalized likelihood uncertainty estimation~GLUE!. By being explicit about a hydrologic model’s parameter uncertainty, historica
is used adaptively on a storm-to-storm basis to derive ensembles of representative parameter sets, along with the correspondin
weights of discharge prediction quantiles. The quantile with highest likelihood weight represents the most probable discharge h
with upper/lower uncertainty limits represented by the various upper/lower likelihood weight quantiles. On the basis of new
Bayesian theorem is used to update for the posterior representative parameter sets and likelihood weights of prediction qu
probabilistic scheme is evaluated using 15 flood-inducing storms over a medium-sized watershed in northern Italy. The sch
charge predictions on the basis of its highest likelihood quantile are evaluated comparatively to the conventional single
parameter set prediction. It is observed that the two methods have comparable accuracy in terms of the overall hydrograph pre
the probabilistic scheme is subject to 50% less variability in time to peak error. The probabilistic scheme has an added value im
decision making and risk assessment, which is its ability to provide consistent assessment of uncertainty in such major flood
as peak runoff and time-to-peak. The procedure is simple in design, model-independent, and can be easily implemented in r
computationally efficient rainfall-runoff models.

DOI: 10.1061/~ASCE!1084-0699~2005!10:2~141!

CE Database subject headings: Floods; Predictions; Uncertainty analysis; Probabilistic methods; Decision making.
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Introduction

The need to address hydrologic prediction of flood events
probabilistic framework has been argued for a long time. Su
framework should have two main aspects:~1! characterization o
the sources of uncertainty and,~2! verification of the predictiv
probability distribution functions on the basis of observed d
Although much research has been conducted in the last 20
to address these two aspects~Kitanidis and Bras 1980; Day 198
Georgakakos 1987, among others!, most operational system
worldwide produce largely deterministic hydrologic flood pre
tions. Murphy and Carter~1980! have shown that probabilist
prediction schemes can enable the evaluation of predictive u
tainty and thus support a more rational decision making. In
of this realization, the U.S. National Weather Service~NWS! first
implemented an ensemble streamflow prediction system~ESP!
that is based on the framework of Day~1985!. Most recently, a
small-scale prototype end-to-end probabilistic prediction sy
was implemented by NWS~Schaake et al. 2001! and is based o
two distinct approaches. The first is the Bayesian forecasting
tem ~BFS! of Krzysztofowicz ~1999!, and the second is an e
hancement of the earlier ESP model. These two approache

1Dept. of Civil and Environmental Engineering, Tennessee Tec
logical Univ. Cookeville, TN 38505-0001. E-mail: fhossain@tntech.
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probably the only probabilistic systems developed and im
mented in an operational discharge prediction system~Seo et al
2000!.

Both BFS and ESP approaches to probabilistic predictio
discharge have limitations of their own. The BFS appro
amounts to solving quasianalytically~with via the total probabi
ity law! for the conditional probability distribution of the futu
river stage, given initial and boundary conditions. The key to
solution is to decompose the conditional probability distribu
into two components—one because of hydrologic model u
tainty and the other because of uncertainty in input. These
components are integrated in the final stage of river-stage p
tion. The basic idea behind the BFS scheme is to blend prio
posterior information using Bayes’ theorem. Schaake e
~2001!, however, notes that at present, it is not entirely clear
procedure is best for such blending of information on an ada
basis. Apart from being analytically very complex, the BFS
quires a very long climatic record of streamflow data to deter
the mean and variance of the prior distribution of river discha
~Krzysztofowicz 1999!. This also imposes an additional limi
tion, since many model applications need to be made for w
sheds without surface hydrologic data. Earlier Bayesian ana
of various forecast data also have suggested that certain v
of a BFS system can be unsuitable for river-stage predictio
flood events~Kelly and Krzysztofowicz 1994! but may be suit
able for seasonal snowmelt runoff volumes~Krzysztofowicz and
Reese 1991!. The ESP system, on the other hand, amoun
generating a number of ensembles of traces of future precipi
on the basis of an uncertainty framework and running them
merically through a hydrologic model. From the resulting m
tiple hydrographs, several probabilistic statements can be
about the future river discharge~Schaake and Larson 1998!. Al-
though the ESP scheme is simpler in design, it suffers from

main limitations:~1! quantitative estimation of precipitation fore-
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cast uncertainty is often not available for most watersheds
~2! the method typically underestimates the uncertainty in r
stage prediction because it does not account for all sourc
uncertainty~Krzysztofowicz 1999!.

This study was prompted by the need to address some
limitations of present probabilistic schemes. It is approac
through developing and assessing an alternative probab
scheme with the following desirable features as design objec
• It should have moderate computational efficiency.
• It should be independent of a hydrologic model.
• It should be conceptually simple to understand and imple

without needing a long climatic record of streamflow and
cipitation data.
The scheme builds upon an established framework for u

tainty assessment of hydrologic models called generalized l
hood uncertainty estimation~GLUE; Beven and Binley 1992!.
GLUE is a Bayesian approach to uncertainty estimation for
linear hydrological models that recognizes explicitly the equ
lence, or near-equivalence, of different parameter sets in the
el’s representation of hydrological processes. GLUE was ch
because of its widespread use and ease in implementation,
been demonstrated in a number of studies dealing with hydro
prediction uncertainty~Romanowicz et al. 1994; Freer et al. 19
Fisher and Beven 1996; Franks and Beven 1997; Franks
1998; Beven and Freer 2001; Hossain et al. 2004a, among ot!.

The paper is organized as follows. In the next section
present a description of data, the watershed, and the hydro
model used in the study. This section is followed by a brief
scription of the GLUE method, a description of the GLUE-ba
probabilistic discharge prediction scheme, and a description o
assessment framework used for evaluating the probabilistic
deterministic model predictions. Next, we discuss the results
the last section summarizes our major conclusions and disc
extensions of this work.

Study Area, Hydrologic Model, and Data

The watershed chosen for this study~named Posina! is located in
northern Italy, close to Venice~Fig. 1, right panel!. Posina has a

Fig. 1. Geographic location of Posina watershed~right panel! and wa
~in solid circles!
142 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / MARCH/APRI
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area of 116 km2 and altitudes ranging from 2,230 to 390 m at
outlet ~Fig. 1, left panel!. Within a radius of 10 km from th
center of the watershed, a network of seven rain gauges pr
representative estimates of the basin-averaged hourly rainfal
mean annual precipitation accumulation derived from the g
network is estimated to be in the range of 1,600–1,800 mm
sina is 68% forested and saturation-excess is the main ra
runoff generation mechanism. Further details about the s
area, including its terrain characteristics and rain climatology
be found in the work by Borga et al.~2000!.

The rainfall runoff model TOPMODEL~Beven and Kirkby
1979! was chosen to simulate the rainfall-runoff processe
floods in the Posina watershed. It is a semidistributed wate
model that can simulate the variable source area mechani
storm runoff generation and incorporates the effect of topogr
on flow paths. This model makes a number of simplifying
sumptions about the runoff generation process that are thou
be reasonably valid in this wet and humid environment.
model is premised on the following two assumptions:~1! that the
dynamics of the saturated zone can be approximated by su
sive steady-state representations; and~2! that the hydraulic grad
ent of the saturated zone can be approximated by the local s
topographic slope. These assumptions are most likely to b
propriate for mountainous regions with dense and humid ve
tion where the typical rain rates rarely exceed the potential
tration rate of the soils. Detailed background information of
model and applications can be found in Beven et al.~1995!. The
model has been applied in past studies in the study region
found adequate to simulate the rainfall-runoff transformation
cess of the watershed with a correlation coefficient excee
0.90 ~Borga et al. 2000; Hossain et al. 2004a, 2004b!. As with
many other TOPMODEL applications, the topographic in
lnsa/ tanbd is used as an index for hydrological similarity, wh
a is the area draining through a point, and tanb is the loca
surface slope. In this study, the derivation of the topogra
index from a 20 m grid size digital terrain model used the m
tiple flow direction algorithm by Quinn et al.~1991, 1995!. The
important model parameters common to any watershed arT0,
flnsm2/h−1dg the lateral transmissivity;XK0, sm·h−1d, the vertica

ed elevation map~left panel!, overlaid by rain-gauge network locatio
tersh
L 2005
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conductivity; SZM ~m!, the exponential decay rate of hydrau
conductivity with depth; SRMAX~m!, the maximum storage c
pacity of the root zone, interpreted here as the soil moistu
field capacity; TD sh·m−1d, the time-delay parameter used
simulate the vertical unsaturated drainage flux; RVsm·h−1d, the
overland flow velocity parameter; and CHVsm·h−1d-the channel
flow velocity parameter. The rainfall input to the model, like
model parameters, was lumped~i.e., basin-averaged! in this study
The generated runoff was routed to the main channel usin
overland flow delay function. The main channel routing eff
are considered using an approach that is based on an a
flood wave velocity for the channel network.

A series of 15 widespread storms~3–7 days long! that took
place from 1987 to 1997 and caused flooding in the nearby re
was studied. Statistics of the floods are shown in Table 1, w
rainfall is basin-averaged and discharge measured at the ou
the Posina watershed.

Probabilistic Discharge Prediction Scheme

GLUE Methodology

GLUE, first proposed by Beven and Binley~1992!, is based o
Monte Carlo simulations: a large number of hydrologic mo
runs are performed, each with parameter values randoml
lected from probability distributions representing the uncerta
in model parameters. This uncertainty of model paramete
argued on the grounds of the physical theory that there shou
sufficient interactions among the components of a hydrologic
tem that, unless the detailed characteristics of these compo
can be specified independently, many representations m
equally acceptable~Beven and Freer 2001!. The acceptance
each run is assessed through a likelihood measure evalua
the basis of predicted to observed differences. Parameter se
achieve likelihood values below a certain likelihood threshold
rejected as “nonbehavioral”~i.e., nonrepresentative of the hyd
logic process!. The assignment of likelihood thresholds is sub

Table 1. Statistics of Flood Events Used in This Study

Storm
number

Date Rainfall statistics
Discharage

sm3/sd

Month
and year

Duration
~h!

Rainfall
volume
~mm!

Maximum
rain rate
~mm/h!

Peak
discharge

sm3/sd

1 08 1987 72 128.8 26.7 54.4

2 10 1987 96 137.3 11.2 75.7

3 07 1989 96 125.2 10.9 31.5

4 11 1990 96 120.8 8.7 64.4

5 12 1990 108 191.4 13.9 76.4

6 03 1991 72 77.4 8.3 32.6

7 10 1991 84 185.2 16.9 117.4

8 04 1992 120 113.0 8.7 56.9

9 10 1992 120 440.3 18.0 192.5

10 12 1992 144 118.6 6.8 41.6

11 09 1993 132 286.2 8.4 49.4

12 11 1994 72 146.0 11.7 106.9

13 10 1996 96 299.8 12.9 156.5

14 11 1996 120 179.9 10.2 70.8

15 12 1997 84 126.1 9.3 70.3
JOURNAL OF
e

t

tive and is based on the hydrologist’s understanding of what
stitutes an acceptable simulation of the physical proce
Following the rejection of nonbehavioral runs, the likelihood
ues~hereafter calledlikelihood weights! of the retained paramet
sets are rescaled so that their cumulative total is 1~Freer et al
1996!. In this study, the GLUE method was applied to chara
ize the uncertainty in streamflow prediction by TOPMODEL
each time step, the predicted discharge values from the re
parameter sets are weighted according to the corresponding
lihood weights and ranked to determine discharge quantil
selected exceedance probability levels. We used the expon
efficiency measure for evaluating the likelihood weight of a
rameter set, which is,

Eexp= expF− se
2

sobs
2G s1d

wherese
2=variance of the errors in prediction for a given hyd

logic parameter set andsobs
2=variance of the observed dischar

The variance is computed over the whole simulation period.
choice for the preceding likelihood measure was governed b
following reasons:~1! it is always nonnegative and bounded
tween 0 and 1;~2! it increases monotonically as the closenes
behavior between the predicted and observed variable incre

To implement the GLUE methodology, each paramete
TOPMODEL was specified a range of acceptable values. Ta
lists the four TOPMODEL parameters used in GLUE and
ranges assigned to each. Constant~calibrated! values were use
for the other three less-sensitive parameters. These four p
eters ~SZM, TD, T0, and RV! were found most sensitive~for
Posina! by applying the generalized sensitivity analysis~Spea
and Hornberger 1980!, which is indicated by the sensitivity of t
behavioral parameter values’ cumulative distribution functio
the varying likelihood threshold. Fig. 2 shows the cumula
distribution functions~CDF! of these four sensitive paramet
for three different likelihood thresholds~i.e., Eexp.0.2, 0.4, and
0.6!, indicating differences in the shapes of the CDF functi
The CDFs of the three nonsensitive parameters were almost
tical ~not shown here!. Following the GLUE methodology, mu
tiple simulations were conducted by sampling randomly and
formly from the specified ranges of the sensitive param
~Table 2!. Discharge simulations were carried out for each
domly generated parameter set, and the likelihood measur
calculated on the basis of Eq.~1!. A large number of rando
simulations were conducted to allow the selection of 500 be
ioral parameter sets characterized by simulation efficiency gr
than an assigned threshold of 0.4. Ensemble runs based
selected behavioral parameter sets characterize the range
certainty in the model prediction. Beven and Binley~1992! have
argued that this procedure of GLUE would typically reflect
sources of uncertainty collectively in discharge simulation
would allow the uncertainty to be carried forward into the pre
tions. For further details about the GLUE method, the read

Table 2. Parameter Value Ranges Used in GLUE Sampling

Parameter
Minimum

value
Maximum

value
Sampling
strategy

SZM ~m! 0.001 0.25 Uniform

TD sh·m−1d 0.001 15.0 Uniform

T0 flnsm2·h−1dg 0.001 10.0 Uniform

RV sm·h−1d 200.000 2,000.0 Uniform
HYDROLOGIC ENGINEERING © ASCE / MARCH/APRIL 2005 / 143



er

r set
at ca
pa-

mine
n-
the
-
hest

es
f
st a
rate
irtue
hood
torm
of its
ch of
ction
llows:

ste-

ikeli-
with

ribu-
ed
for
odel
bable
antile.
entu-
th of
ess.
e the
eter

onbe-
pro-
ram-
s in
rm to
at
-
dure
inley

eme
cal
r sets
vent,

d to
rtainty
erated
s for

l
ctions
referred to the original work of Beven and Binley~1992! and
subsequent follow-ups in Freer et al.~1996! and Beven and Fre
~2001!.

Prediction Scheme

As previously discussed, the behavioral ensemble paramete
can be used to generate a range of discharge predictions th
be weighted by the corresponding likelihood weights of the
rameter sets~hereafter calledlikelihood-weighted discharges!.
The likelihood-weighted discharges are then ranked to deter
discharge prediction quantiles~ranging from 1st to 99th perce
tile!. Comparison with observed runoff is used to evaluate
likelihood weight @based on Eq.~1!# of each quantile. The hy
drograph resulting from the quantile associated with the hig
likelihood value~hereafter calledoptimum quantile! is termed the
most probable hydrograph. The most probable hydrograph do
not necessarily correspond to the mean~expected! or median o
all hydrograph simulations. Rather, it is an attempt to foreca
likelihood-weighted discharge that is likely to be most accu
since it reflects the most current prior knowledge. Thus, by v
of the a priori evaluated model parameter sets and the likeli
of the prediction quantiles, we can predict for a subsequent s
event the most probable discharge, along with an estimate
uncertainty. When new observations become available, ea
the behavioral parameter sets and likelihood of the predi
quantiles are updated on the basis of Bayes’ equation, as fo

LPsY ! uid =
Lsui ! YdL0suid

C
s2d

whereui refers either to theith parameter set or theith prediction
quantile; L0suid=prior likelihood weight; Lsui uYd=likelihood
weight calculated with the set of observed~current! data Y;

Fig. 2. Generalized sensitivity analyses~GSA; Spear and Hornbe
flow velocity parameter RVsm h−1d; ~b! exponential decay rate
transmissivity parameterT0 slnsm2 h−1dd. Three different curves
achieved with behavioral thresholdEexp of 0.2, 0.4, and 0.6, each
LPsY!uid=posterior likelihood weight for the simulation byY

144 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / MARCH/APRI
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n

given ui; andC=scaling constant calculated such that the po
rior weights add up to one.

For successive storm events, the calculated posterior l
hood distribution is used to project the uncertainty associated
the predictions to future events, thus becoming the prior dist
tion in Eq. ~2!. The posterior likelihood distribution is also us
directly to evaluate the uncertainty limits for future events
which observed streamflow data is not available to validate m
predictions. In successive prediction instances, the most pro
hydrograph may not necessarily correspond to the same qu
Nevertheless, the optimum quantile may be expected to ev
ally converge to a certain percentile depending on the wor
model, additional data, and stationarity of the hydrologic proc
The previously described Bayesian updating may also hav
effect of reducing the size of the sample of behavioral param
sets, i.e., sets that were behavioral a priori may become n
havioral a posteriori because of the multiplicative updating
cess of Eq.~2!. Thus, it may be necessary to resample the pa
eter distribution to reflect the regions of high likelihood value
parameter space, which can be expected to vary from sto
storm ~Beven and Binley 1992!. In resampling, it is ensured th
the sample size remains constant~500 sets! to maintain consis
tency. In this study, we have employed the resampling proce
of nearest neighborhood search proposed by Beven and B
~1992!.

We summarize the probabilistic discharge prediction sch
with a flowchart ~Fig. 3!. The scheme starts with a histori
storm-runoff data set to determine 500 behavioral paramete
and the derived optimum quantile. In a subsequent storm e
the preceding information of the optimum quantile is use
evaluate its most probable hydrograph. The associated unce
is characterized by the ensemble discharge prediction gen
by the behavioral parameter sets. When runoff observation

980! for the four most sensitive TOPMODEL parameters:~a! overland
eter SZM~m!; ~c! time delay parameter TDsh m−1d; and ~d! latera

sent the three different cumulative probability distribution fun
g equal numbers of model simulation runs.
rger 1
param
repre
havin
the new event become available, the likelihood weights of the
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parameter sets and prediction quantiles are updated using B
equation. The procedure is repeated for successive storm e

Assessment Framework

Assessment of the probabilistic discharge prediction schem
performed on series of 15 flood-inducing storm events show
Table 1. Comparisons were made against discharge predi
derived from a best parameter set~hereafter calleddeterministic
scheme! derived on the basis of the optimization algorithm
Duan et al.~1992!. The first storm of the series was used as
priori data set for generating the ensemble of behavioral pa
eters and deriving the optimal parameter set for the determi
scheme. For consistency in comparison, the deterministic sc
employed Eq.~1! for the cost function and the same param
search space shown in Table 2. The comparison between th
schemes is performed as follows. On the basis of the chrono
cal series of 15 floods, one can evaluate 14 prediction/up
instances. To generate statistically sufficient cases for com
son, we shuffled the original chronological storm series to syn
size more hypothetical storm sequences. Since is it impossi
account for all possible combinations of storm sequences~in the
order of 1012!, limited shuffling was performed to generate
more distinct storm sequences which are shown in Table 3.
leads to a total of 210 prediction/update cases for assessme
minimize potential dependence on the initialization of the hy
logic model, no two sequences in the selected set had a com
initial storm. The deterministic scheme was recalibrated, i.e.
dated, after prediction for every new storm in a sequence co
ering all prior storm cases and using the values used in pred
as a first guess of the parameter set. For the probabilistic sc
the likelihood weights of the ensemble of behavioral param
sets and prediction quantiles were updated with each new o
vation, as described in the section describing the probab

Fig. 3. Flowchart for the probabilistic discharge prediction sche
discharge scheme and summarized in the flowchart of Fig. 3. For

JOURNAL OF
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event simulations, we recognize that the initial moisture co
tions of the watershed can be a sensitive issue and that the
parameter associated with this initial condition may be unce
To ensure consistency in comparison, we constrained the
moisture condition for each event to physically representative
ues common to both schemes.

We define the relative errors«d in three runoff parameter
runoff volume~RV!, peak runoff~PR!, and time to peak~TP!, as

«X =
Xsim − Xobs

Xobs
s3d

whereX is defined as one of the runoff parameters~i.e., RV, PR
or TP!. For the probabilistic scheme, the simulated runoff pa
eters were derived from the most probable hydrograph; an
the deterministic scheme, they were obtained from the opti
parameter set–based hydrograph. We evaluated the proba
scheme’s prediction limits~derived on the basis of the differe
quantiles! in terms of its ability to envelope the observed p
runoff and time-to-peak parameters. For this purpose, we
lyzed the sensitivity of exceedance probability in peak runoff
time to peak with respect to different quantile ranges. Consi
with the arguments of Beven and Binley~1992!, our aim is to
assess whether our probabilistic scheme predicts uncer
bounds that are consistent with validation statistics, which re
sent both modeling and input uncertainty.

Results and Discussion

Fig. 4 shows comparisons between deterministic and probab
scheme predictions for the chronological storm sequence~first
column in Table 3!. The most probable hydrograph is shown
the thick dashed line, whereas the deterministic predictio
shown by the thin dashed line. It is observed that both sch
perform with the same accuracy. For certain storm cases~such as
storms 2, 3, and 13!, the most probable hydrograph appears
perior in prediction to the deterministic scheme, whereas in
cases~such as storms 5, 9, and 14!, peak runoff is moderate
overestimated while the deterministic scheme underestima
Fig. 5 presents the prediction limits associated with the 90%

Table 3. The 15 Storm Sequences

Storm sequences

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1

2 1 1 6 1 1 1 1 10 1 13 1 1 1

3 3 8 13 2 2 2 2 11 6 14 2 2 2

4 4 7 3 3 3 3 3 15 3 15 3 3 3

5 5 9 11 12 4 4 9 4 4 4 4 4 4

6 6 4 1 6 5 5 5 5 5 5 5 5 5

Storm
number

7 7 7 10 7 7 6 6 6 2 6 6 6 11

8 8 2 8 8 14 8 7 13 7 7 10 7 7

9 9 9 9 9 9 9 4 8 8 8 8 8 8

10 10 10 7 10 10 10 10 1 9 9 9 9 9

11 11 11 5 11 11 11 13 2 11 10 7 10 10

12 15 12 15 4 12 12 12 12 12 12 11 11 6

13 14 13 2 13 13 13 11 7 13 1 13 12 12

14 12 14 14 14 8 14 14 14 14 2 14 14 13

15 13 15 12 15 15 15 15 3 15 3 15 15 15

Note: The first column is the original chronological series; the num
refer to the storm numbers in Table 1.
fidence bounds~5th and 95th percentile! for prediction of peak
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runoff and time to peak. The observed peak runoff is boun
within the 90% confidence bounds for 10 out of 14 predic
instances~storms 4, 5, 7, 8, 9, 10, 11, 13, 14, 15!. This resul
indicates that the upper and lower uncertainty limits corresp
ing to the 90% confidence bounds of the probabilistic sch
have sufficient value to the decision makers for assessin
probable level of river stages during a flood. Similarly, for p
dicting the arrival time of the peak flood wave~i.e., time to peak!,
we observe that it is sufficiently bounded by the 90% predic
limits in 13 storms out of 14~compare the vertical lines wi
shading with the thick solid line in Fig. 5!. The probabilistic
scheme can therefore adequately predict the lower and uppe
its of the two most important runoff parameters during a flo
time to peak and peak runoff.

Table 4, summarizes the mean and standard deviation o
prediction accuracy of the two schemes on the basis of the
prediction cases. The mean prediction efficiency@Eq. ~1!# for the
probabilistic scheme~corresponding to the most probable
drograph! is slightly higher~0.57! than the deterministic schem
~0.55!. The standard deviation of the probabilistic scheme’s
ciency of prediction is about 15% less than that of the deter

Fig. 4. Observed~solid line! versus predicted runoff hydrographs
schemes for chronological sequence of 15 storm events
istic scheme. For mean simulation error of runoff volume, both

146 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / MARCH/APRI
schemes have very low bias~around 6%!, whereas peak runoff
underestimated by about 13% by the probabilistic scheme
pared with the 6% overestimation by the deterministic sch
The most noticeable difference is observed in the predictio
time to peak. The probabilistic scheme has 50% less varia
than the deterministic scheme in time-to-peak error, even th
the mean errors are comparable.

Table 5 shows the reliability of the probabilistic scheme’s c
fidence bounds in terms of runoff and time to peak predict
The runoff exceedance probabilityis defined as the number
hours that the observed discharge exceeds the 90% confi
bounds derived from the probabilistic scheme normalized b
total number of hours.The time-to-peak exceedance probabilitis
evaluated by the number of prediction cases where the obs
time to peak is beyond the 90% confidence bounds of the
dicted time to peak normalized by the total number of cases~i.e.,
210!. A high exceedance probability would indicate the prob
listic scheme’s inability to explain the uncertainty in runoff p
diction. In Table 5, we observe that the probabilistic scheme
low time to peak exceedance probability~12.4%!. The runoff ex

ed from deterministic~thin dashed line! and probabilistic~thick dashed!
deriv
ceedance probability is moderately low~47%!, indicating that the
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runoff ~including the peak runoff! error bounds can capture 53
of the variability in true runoff.

In Fig. 6, we evaluate the sensitivity of runoff and time
peak exceedance probabilities and uncertainty range in tim
peak ~in hours! with respect to error bounds varied from 1
~45th to 55th percentile! to 90% ~5th to 95th percentile! quantile
ranges. We define this range as the “width of prediction lim
We observe a monotonic decrease of the Runoff exceedance
ability for an increasing width of prediction limits~uppermos
panel!. The lowermost panel shows a similar pattern~rate of in-

Fig. 5. Probabilistic prediction with uncertainty limits correspo
discharge. Dashed lines represent the 5th and 95th percentiles
percentiles of time to peak.

Table 4. Comparison of Prediction Accuracy of Probabilistic Schem

Prediction/error

Deterministic sch

Mean Sta

Prediction efficiency 0.552

Error in runoff volume −0.063

Erro in peak runoff 0.064

Error in time to peak −0.043
Note: Prediction efficiency is based on Eq.~1!. For the probabilistic scheme,
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-

crease! in the sensitivity of time-to-peak uncertainty, expresse
relative terms as a fraction of the storm duration to the width.
lowermost panel shows the variation of time to peak exceed
probability with respect to the width of prediction limits. Wh
the middle and uppermost panels are assessed jointly, it is
cluded that at nearly 70% confidence bounds, we get the
prediction uncertainty scenario, which gives an optimal comb
tion of low runoff exceedance probability with relatively low u
certainty range in time to peak. Analyses of all three panels
bined can potentially assist decision makers in identifying

to 90% confidence bounds. The thick solid line represents
off prediction. Vertically drawn lines with shading represent the 5

Deterministic Scheme

Probabilistic scheme

deviation Mean Standard deviati

318 0.517 0.280

02 0.063 0.591

15 −0.134 0.584

428 0.094 0.205
nding
of run
e with

eme

ndard

0.

0.5

0.5

0.
it is computed from the most probable hydrograph.
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reliable.

Fig. 7 shows the impact of additional data on the converg
toward the optimum parameter set for the deterministic sch
~upper panel! and optimum prediction quantile for the probabi
tic scheme~lower panel!. The purpose of this analysis is to ide
tify whether the schemes~probabilistic and deterministic! are ca
pable of reaching steady-state prediction conditions. In the u
panel, the convergence toward the global parameter set is e
ated by using the norm of the optimum parameter set. The
was computed by first normalizing the four optimum param
values by their respective means and standard deviations
ated from all the 210 prediction cases. This transformed
parameter to a consistent 0–1 scale. The norm was then com
as the square root of the sum of squares of the normalized

Table 5. Exceedance Probabilities for Runoff and Time to Peak fo
Probabilistic Scheme

Runoff exceedance
probability
~mean!

Time-to-peak
exceedance probability

~mean!

0.467 0.124

Fig. 6. Runoff and time-to-peak exceedance probability~upper and
middle panels! versus width of prediction limit~upper-lower quantil
range!; lower panel: uncertainty in time-to-peak versus width of
diction limit
148 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / MARCH/APRI
mum parameter values. For the lower panel, the optimum qu
is essentially the prediction quantile with the highest a poste
likelihood weight after application of Bayesian updating. For b
schemes, we note convergence. The norm gradually minim
and then stabilizes to a near-zero value as additional storm d
incorporated in the optimization process~upper panel!. The erro
bars representing one standard deviation gradually reduce
successive prediction cases. This outcome suggests that the
of the parameter set that contains the optimum set is beco
increasingly constrained as more data is taken into accoun
the probabilistic scheme, the mean optimum quantile appea
stabilize at the 70th percentile after the 14th Bayesian upd
~upper panel!. The error bars, however, do not decrease as the
in the deterministic scheme. This outcome indicates that
may be more than one region of high likelihood values in
parameter space, which may be an indicator of the nonstatio
of the hydrologic system and the inherent uncertainty.

Conclusions

This study assessed a probabilistic discharge prediction sc
based on an uncertainty framework called GLUE. In predic
the probabilistic scheme simulated the most probable hydro
with the upper and lower uncertainty limits associated wi
given confidence bound. Bayes’ theorem was used to upda
posterior likelihood weights of the parameter sets and predi
quantiles. Upon comparison with the conventional optimum
rameter set deterministic prediction, it was observed tha
probabilistic scheme was subject to nearly 50% less variabil
time-to-peak prediction error. The probabilistic scheme ha
added value to decision making and risk assessment beca
the uncertainty predicted for the arrival time of peak runoff
magnitude of the flood wave. The procedure is simple in de
is model-independent, and can be easily implemented in a
time operational scenario for computationally efficient rain
runoff models.

The findings are conditioned on the characteristics of a s
watershed. Hence, as part of a natural extension of this s
multiple watersheds under different hydro-climatic regi
should be studied to understand the wider range of variabil
performance of the prediction scheme. Furthermore, a major
tation of our scheme is its requirement for multiple model r
which is prohibitive for use with physically based distribu
rainfall-runoff models. However, such models are increasi
used to predict consequences of land use and climatic chan
catchments. Their incorporation in a GLUE framework to sup
the probabilistic scheme formulated in this article would be i
ficient because of the large number of Monte Carlo runs ne
for both model prediction and parameter sampling. An impro
parameter-sampling scheme that both accelerates the par
search and reduces the total number of model runs is des
The uniform sampling procedure usually recommended
GLUE ~Beven and Binley 1992; Freer et al. 1996; Beven
Freer 2001! is the aspect that requires special attention. Met
such as the guided Monte Carlo scheme of Shorter and R
~1997!, the tree-structured search of Spear et al.~1994!, Latin
hypercube sampling~McKay et al. 1979!, and the Monte Carl
Markov chain method~Kuczera and Parent 1998; Bates
Campbell 2001! are worth considering as future extensions to

study.
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