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Abstract: This study presents the development of a probabilistic discharge prediction scheme based on an uncertainty framework calle
generalized likelihood uncertainty estimati@BLUE). By being explicit about a hydrologic model’'s parameter uncertainty, historical data

is used adaptively on a storm-to-storm basis to derive ensembles of representative parameter sets, along with the corresponding likeliho
weights of discharge prediction quantiles. The quantile with highest likelihood weight represents the most probable discharge hydrograpt
with upper/lower uncertainty limits represented by the various upper/lower likelihood weight quantiles. On the basis of new data, the
Bayesian theorem is used to update for the posterior representative parameter sets and likelihood weights of prediction quantiles. Tt
probabilistic scheme is evaluated using 15 flood-inducing storms over a medium-sized watershed in northern Italy. The scheme’s dis
charge predictions on the basis of its highest likelihood quantile are evaluated comparatively to the conventional single optimum
parameter set prediction. It is observed that the two methods have comparable accuracy in terms of the overall hydrograph prediction, b
the probabilistic scheme is subject to 50% less variability in time to peak error. The probabilistic scheme has an added value important t
decision making and risk assessment, which is its ability to provide consistent assessment of uncertainty in such major flood paramete|
as peak runoff and time-to-peak. The procedure is simple in design, model-independent, and can be easily implemented in real-time fc
computationally efficient rainfall-runoff models.
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Introduction probably the only probabilistic systems developed and imple-
mented in an operational discharge prediction syst8eo et al.

The need to address hydrologic prediction of flood events in a 2000.
probabilistic framework has been argued for a long time. Such a  Both BFS and ESP approaches to probabilistic prediction of
framework should have two main aspedts): characterization of ~ discharge have limitations of their own. The BFS approach
the sources of uncertainty an®) verification of the predictive ~ a@mounts to solving quasianalyticalfyith via the total probabil-
probability distribution functions on the basis of observed data. ity law) for the conditional probability distribution of the future
Although much research has been conducted in the last 20 yearsiver stage, given initial and boundary conditions. The key to the
to address these two aspeitstanidis and Bras 1980; Day 1985;  solution is to decompose the conditional probability distribution
Georgakakos 1987, among othersnost operational systems into two components—one because of hydrologic model uncer-
worldwide produce largely deterministic hydrologic flood predic- tainty and the other because of uncertainty in input. These two
tions. Murphy and Cartef1980 have shown that probabilistic ~components are integrated in the final stage of river-stage predic-
prediction schemes can enable the evaluation of predictive uncertion. The basic idea behind the BFS scheme is to blend prior and
tainty and thus support a more rational decision making. In view posterior information using Bayes’ theorem. Schaake et al.
of this realization, the U.S. National Weather Seris@Vs) first (2001, however, notes that at present, it is not entirely clear what
implemented an ensemble streamflow prediction syste®P procedure is best for such blending of information on an adaptive
that is based on the framework of D&}985. Most recently, a basis. Apart from being analytically very complex, the BFS re-
small-scale prototype end-to-end probabilistic prediction system quires a very long climatic record of streamflow data to determine
was implemented by NW&Schaake et al. 200%nd is based on  the mean and variance of the prior distribution of river discharges
two distinct approaches. The first is the Bayesian forecasting sys-(Krzysztofowicz 1999. This also imposes an additional limita-
tem (BFS) of Krzysztofowicz (1999, and the second is an en- tion, since many model applications need to be made for water-
hancement of the earlier ESP model. These two approaches argheds without surface hydrologic data. Earlier Bayesian analyses
of various forecast data also have suggested that certain version
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cast uncertainty is often not available for most watersheds, andarea of 116 krhand altitudes ranging from 2,230 to 390 m at the

(2) the method typically underestimates the uncertainty in river- outlet (Fig. 1, left panel. Within a radius of 10 km from the

stage prediction because it does not account for all sources ofcenter of the watershed, a network of seven rain gauges provide

uncertainty(Krzysztofowicz 1999. representative estimates of the basin-averaged hourly rainfall. The

This study was prompted by the need to address some of themean annual precipitation accumulation derived from the gauge
limitations of present probabilistic schemes. It is approached network is estimated to be in the range of 1,600—1,800 mm. Po-
through developing and assessing an alternative probabilisticsina is 68% forested and saturation-excess is the main rainfall-
scheme with the following desirable features as design objectives:runoff generation mechanism. Further details about the study

* It should have moderate computational efficiency. area, including its terrain characteristics and rain climatology, can

* It should be independent of a hydrologic model. be found in the work by Borga et &2000.

* It should be conceptually simple to understand and implement  The rainfall runoff model TOPMODEL(Beven and Kirkby
without needing a long climatic record of streamflow and pre- 1979 was chosen to simulate the rainfall-runoff processes of
cipitation data. _ ) floods in the Posina watershed. It is a semidistributed watershed
The scheme builds upon an established framework for uncer-mode that can simulate the variable source area mechanism of

tainty assessment of hydrologic models called generalized likeli- gtorm runoff generation and incorporates the effect of topography

hood uncertainty estimatiofGLUE; Beven and Binley 1992 on flow paths. This model makes a number of simplifying as-

GLUE is a Bayesian approach to uncertainty estimation for non- g mptions about the runoff generation process that are thought to
linear hydrological models that recognizes explicitly the equiva- reasonably valid in this wet and humid environment. The

lence, or near-equivalence, of different parameter sets in the mod-,qqel is premised on the following two assumptiofis:that the

el’s representation of hydrological processes. GLUE was chosend namics of the saturated zone can be approximated by succes-

because of its widespread use and ease in implementation, as h ve steady-state representations; &)chat the hydraulic gradi-

been_ d_emonstrate_d ina number_ of studies dealing with hyOIrOIOg'cent of the saturated zone can be approximated by the local surface
prediction uncertaintyRomanowicz et al. 1994; Freer et al. 1996; topographic slope. These assumptions are most likely to be ap-

Fisher and Beven 1996; Franks and Beven 1997; Franks et al. g . : . .
i P : ’ propriate for mountainous regions with dense and humid vegeta-
1998; Beven and Freer 2001; Hossain et al. 2004a, among bthers tion where the typical rain rates rarely exceed the potential infil-

The paper 'S o.rgamzed as follows. In the next section, WE tration rate of the soils. Detailed background information of the
present a description of data, the watershed, and the hydrologic

model used in the study. This section is followed by a brief de- model and appllcatlon's can be found n B'even e(1895. The
scription of the GLUE method, a description of the GLUE-based model has been applled In past ;tudles in the study region and
probabilistic discharge prediction scheme, and a description of thefound afdﬁqquatetto sllqméjlatgt;he ralnfalll-tr_unoff tra]:fns_for{natlon p()jr_o-
assessment framework used for evaluating the probabilistic andtess Of the watershed with a correlation coeflicient exceeding

deterministic model predictions. Next, we discuss the results, ando'90 (Bork?a e_lt_gllz..l\igoDOIi:LHossall_ln e_t al. 22048’ Zqomh_wnh d
the last section summarizes our major conclusions and discusse any ot er - app ications, t € top_ograp IC ihdex
extensions of this work. n(a/tanp) is used as an index for hydrological similarity, where

a is the area draining through a point, and fars the local
surface slope. In this study, the derivation of the topographic

Study Area, Hydrologic Model, and Data index from a 20 m grid size digital terrain model used the mul-
tiple flow direction algorithm by Quinn et a(1991, 199%. The
The watershed chosen for this stughamed Posinais located in important model parameters common to any watershedlgre

northern ltaly, close to Venic&Fig. 1, right panel Posina has an  [In(m?/h™)] the lateral transmissivityXK,, (m-h?), the vertical
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Fig. 1. Geographic location of Posina watersieaght pane)] and watershed elevation mépft pane), overlaid by rain-gauge network locations
(in solid circles
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conductivity; SZM(m), the exponential decay rate of hydraulic tive and is based on the hydrologist’s understanding of what con-
conductivity with depth; SRMAX(m), the maximum storage ca- stitutes an acceptable simulation of the physical processes.
pacity of the root zone, interpreted here as the soil moisture atFollowing the rejection of nonbehavioral runs, the likelihood val-
field capacity; TD(h-mi1), the time-delay parameter used to ues(hereafter calledikelihood weights of the retained parameter

simulate the vertical unsaturated drainage flux; ®v-h?), the sets are rescaled so that their cumulative total i&rker et al.
overland flow velocity parameter; and CH¥ - 'Y)-the channel- 1996. In this study, the GLUE method was applied to character-
flow velocity parameter. The rainfall input to the model, like the ize the uncertainty in streamflow prediction by TOPMODEL. At
model parameters, was lumpé@c., basin-averagedh this study. each time step, the predicted discharge values from the retained

The generated runoff was routed to the main channel using anparameter sets are weighted according to the corresponding like-
overland flow delay function. The main channel routing effects lihood weights and ranked to determine discharge quantiles at
are considered using an approach that is based on an averagselected exceedance probability levels. We used the exponential
flood wave velocity for the channel network. efficiency measure for evaluating the likelihood weight of a pa-
A series of 15 widespread storn8—7 days long that took rameter set, which is,
place from 1987 to 1997 and caused flooding in the nearby region
was studied. Statistics of the floods are shown in Table 1, where E - exp[ _Uez]
exp

(€

rainfall is basin-averaged and discharge measured at the outlet of 2

Tob
the Posina watershed. 2 _ A .
whereo“=variance of the errors in prediction for a given hydro-

logic parameter set ang,, 2=variance of the observed discharge.
Probabilistic Discharge Prediction Scheme The variance is computed over the whole simulation period. The
choice for the preceding likelihood measure was governed by the
following reasons{1) it is always nonnegative and bounded be-
GLUE Methodology tween 0 and 1(2) it increases monotonically as the closeness in
GLUE, first proposed by Beven and Binl€$992, is based on behavior between the predicted and observed variable increases.
Monte Carlo simulations: a large number of hydrologic model ~ To implement the GLUE methodology, each parameter of
runs are performed, each with parameter values randomly se-TOPMODEL was specified a range of acceptable values. Table 2
lected from probability distributions representing the uncertainty lists the four TOPMODEL parameters used in GLUE and the
in model parameters. This uncertainty of model parameters isranges assigned to each. Constaatibrated values were used
argued on the grounds of the physical theory that there should befor the other three less-sensitive parameters. These four param-
sufficient interactions among the components of a hydrologic sys- eters (SZM, TD, To, and RV were found most sensitivéfor
tem that, unless the detailed characteristics of these component&0sina by applying the generalized sensitivity analys$&pear
can be specified independently, many representations may beand Hornberger 1980which is indicated by the sensitivity of the
equally acceptabl¢Beven and Freer 2001 The acceptance of  behavioral parameter values’ cumulative distribution function to
each run is assessed through a likelihood measure evaluated ofhe varying likelihood threshold. Fig. 2 shows the cumulative
the basis of predicted to observed differences. Parameter sets thadistribution functions(CDF) of these four sensitive parameters
achieve likelihood values below a certain likelihood threshold are for three different likelihood thresholdse., Eey,>0.2, 0.4, and
rejected as “nonbehaviorali.e., nonrepresentative of the hydro- 0.6), indicating differences in the shapes of the CDF functions.
logic process The assignment of likelihood thresholds is subjec- The CDFs of the three nonsensitive parameters were almost iden-
tical (not shown herg Following the GLUE methodology, mul-
tiple simulations were conducted by sampling randomly and uni-

Table 1. Statistics of Flood Events Used in This Study formly from the specified ranges of the sensitive parameters
Dischara (Table 2. Discharge simulations were carried out for each ran-
ge o
Date Rainfall statistics (m3/9) domly generated parameter set, and the likelihood measure was
calculated on the basis of E@l). A large number of random
Rainfall Maximum Peak simulations were conducted to allow the selection of 500 behav-
Storm Month ~ Duration volume rainrate  discharge ioral parameter sets characterized by simulation efficiency greater
number and year (h (mm) (mm/h) (m®/s) than an assigned threshold of 0.4. Ensemble runs based on the
1 08 1987 72 128.8 26.7 54.4 selected behavioral parameter sets characterize the range of un-
2 10 1987 96 1373 11.2 75.7 certainty in the model prediction. Beven and Binlg92 have
3 07 1989 26 125.2 10.9 315 argued that this procedure of GLUE would typically reflect all
4 11 1990 96 1208 8.7 64.4 sources of uncertainty _collectlvely in discharge _5|mulat|on a_nd
would allow the uncertainty to be carried forward into the predic-
° 121990 108 1914 13.9 6.4 tions. For further details about the GLUE method, the reader is
6 03 1991 72 77.4 8.3 32.6 ’
7 10 1991 84 185.2 16.9 117.4
8 04 1992 120 113.0 8.7 56.9 ) .
9 10 1992 120 4403 18.0 1925 Table 2. Parameter Value Ranges Used in GLUE Sampling
10 12 1992 144 1186 6.8 41.6 Minimum Maximum Sampling
11 09 1993 132 286.2 8.4 49.4 Parameter value value strategy
12 11 1994 72 146.0 11.7 106.9 SZM (m) 0.001 0.25 Uniform
13 10 1996 96 299.8 12.9 156.5 TD (h-nmh) 0.001 15.0 Uniform
14 11 1996 120 179.9 10.2 70.8 To [In(m2- h1)] 0.001 10.0 Uniform
15 12 1997 84  126.1 9.3 70.3 RV (m-h?) 200.000 2,000.0 Uniform
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Fig. 2. Generalized sensitivity analysé6SA; Spear and Hornberger 198@r the four most sensitive TOPMODEL parametdi®: overland

flow velocity parameter RMmh™1); (b) exponential decay rate parameter SZM); (c) time delay parameter Thhm™1); and (d) lateral
transmissivity parametet, (In(m?h™1)). Three different curves represent the three different cumulative probability distribution functions
achieved with behavioral thresholg,, of 0.2, 0.4, and 0.6, each having equal numbers of model simulation runs.

referred to the original work of Beven and Binlg$992 and given 8;; and C=scaling constant calculated such that the poste-
subsequent follow-ups in Freer et 61996 and Beven and Freer  rior weights add up to one.
(2001. For successive storm events, the calculated posterior likeli-

hood distribution is used to project the uncertainty associated with
the predictions to future events, thus becoming the prior distribu-
tion in Eq. (2). The posterior likelihood distribution is also used
As previously discussed, the behavioral ensemble parameter setgjrectly to evaluate the uncertainty limits for future events for
can be used to generate a range of discharge predictions that cayhich observed streamflow data is not available to validate model
be weighted by the corresponding likelihood weights of the pa- predictions. In successive prediction instances, the most probable
rameter sets(hereafter calledikelihood-weighted discharggs hydrograph may not necessarily correspond to the same quantile.
The likelihood-weighted discharges are then ranked to determineNevertheless, the optimum quantile may be expected to eventu-
discharge prediction quantilésanging from 1st to 99th percen- 41y converge to a certain percentile depending on the worth of
tile). Comparison with observed runoff is used to evaluate the oqe| additional data, and stationarity of the hydrologic process.
likelihood weight[based on Eq(1)] of each quantile. The hy-  ne previously described Bayesian updating may also have the
drograph resulting from the quantile associated with the highest oot of reducing the size of the sample of behavioral parameter
likelihood value(hereafter calle@ptimum quantilgis termed the sets, i.e., sets that were behavioral a priori may become nonbe-
most probablg hydrographrhe most probable hydrogra.ph does havioral a posteriori because of the multiplicative updating pro-
not necessarily (_:orrespond to the m_e{_anpecteci or median of cess of Eq(2). Thus, it may be necessary to resample the param-
6.1” hydrograp_h S|mulgt|ons. Rather,.lt IS an attempt to forecast A eter distribution to reflect the regions of high likelihood values in
likelihood-weighted discharge that is likely to be most accurate parameter space, which can be expected to vary from storm to
since it reflects the most current prior knowledge. Thus, by virtue storm (Beven and, Binley 1992 In resampling, it is ensured that
of the a priori evaluated model parameter sets and the likelihood . : T .

the sample size remains const#B00 set$ to maintain consis-

of the prediction quantiles, we can predict for a subsequent storm ] .
. . K .. _tency. In this study, we have employed the resampling procedure
event the most probable discharge, along with an estimate of its . .
f nearest neighborhood search proposed by Beven and Binley

uncertainty. When new observations become available, each of0

the behavioral parameter sets and likelihood of the prediction (19\?\/2' ize th babilistic disch dicti h
quantiles are updated on the basis of Bayes’ equation, as follows: € summarize the probabilistic discharge prediction scheme

with a flowchart (Fig. 3). The scheme starts with a historical
L(6; | Y)Lo(6)) storm-runoff data sgt to determipe 500 behavioral parameter sets
(2) and the derived optimum quantile. In a subsequent storm event,
c the preceding information of the optimum quantile is used to
whereb; refers either to théth parameter set or thiéh prediction evaluate its most probable hydrograph. The associated uncertainty

Prediction Scheme

Le(Y [ 6)=

quantile; Ly(6;)=prior likelihood weight; L(6;|Y)=likelihood is characterized by the ensemble discharge prediction generated
weight calculated with the set of observédurren} data; by the behavioral parameter sets. When runoff observations for
Lp(Y|6;)=posterior likelihood weight for the simulation by the new event become available, the likelihood weights of the
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Table 3. The 15 Storm Sequences
CALIBRATION
1) Generate 500 behavioral parameter sets from historical data Storm sequences
2) Evaluate the prior likelihood weights of these parameter sets 1 2 3 5 6 7 8 9 10 11 12 13 14 15
3) Evaluate the prior likelihood weights of prediction quantiles 2 11 6 1 1 1 110 1 13 1 1 1 1
4) Identify the optimum quantile 3 3 813 2 2 2 211 6 14 2 2 2 2
4 4 7 3 3 3 3 315 315 3 3 3 3
< 5 5 91112 4 4 9 4 4 4 4 4 4 4
6 6 4 1 6 5 5 5 5 5 5 5 5 5 5
Stom 7 7 7 10 7 7 6 6 6 2 6 6 6 11 6
PREDICTION number 8 8 2 8 8 14 8 7 13 7 710 7 7 7
5) Propagate -the Z\rameter s.ets u'sin‘g GLUE :or a n:w event. 9 99 99 9 9 4 8 8 8 8 8 8 8
e R 01010 7LD 1899990
11 11 12 5 11 11 11 13 2 11 10 7 10 10 10
12 15 12 15 4 12 12 12 12 12 12 11 11 6 11
13 14 13 2 13 13 13 11 7 13 1 13 12 12 12
\ 14 12 14 14 14 8 14 14 14 14 2 14 14 13 13
UPDATING 15 13 15 12 15 15 15 15 3 15 3 15 15 15 14
8) Update for posterior likelihood weights of parameter sets (Eqn. 2) Note: The first column is ths_a original chronological series; the numbers
9) Update for posterior likelihood weights of prediction quantiles (Eqn. 2) - refer to the storm numbers in Table 1.
10) Update optimum quantile for the most probable hydrograph
11) Resample parameter sets if necessary following Beven and Binley (1992) event simulations, we recognize that the initial moisture condi-

tions of the watershed can be a sensitive issue and that the model
Fig. 3. Flowchart for the probabilistic discharge prediction scheme parameter associated with this initial condition may be uncertain.
To ensure consistency in comparison, we constrained the initial
moisture condition for each event to physically representative val-
parameter sets and prediction quantiles are updated using Bayes/€S common to both schemes.

equation. The procedure is repeated for successive storm events. We define the relative errofe) in three runoff parameters:
runoff volume(RV), peak runoff(PR), and time to peakTP), as

_ Xsim ~ Xobs

Assessment Framework EXT Ty 3
obs

Assessment of the probabilistic discharge prediction scheme iswhereX is defined as one of the runoff parametérs., RV, PR,
performed on series of 15 flood-inducing storm events shown in or TP). For the probabilistic scheme, the simulated runoff param-
Table 1. Comparisons were made against discharge predictionsters were derived from the most probable hydrograph; and for
derived from a best parameter gbereafter calledieterministic the deterministic scheme, they were obtained from the optimum
schemg derived on the basis of the optimization algorithm of parameter set—-based hydrograph. We evaluated the probabilistic
Duan et al.(1992. The first storm of the series was used as an a scheme’s prediction limitéderived on the basis of the different
priori data set for generating the ensemble of behavioral param-quantile$ in terms of its ability to envelope the observed peak
eters and deriving the optimal parameter set for the deterministicrunoff and time-to-peak parameters. For this purpose, we ana-
scheme. For consistency in comparison, the deterministic schemdyzed the sensitivity of exceedance probability in peak runoff and
employed Eq.1) for the cost function and the same parameter time to peak with respect to different quantile ranges. Consistent
search space shown in Table 2. The comparison between the twavith the arguments of Beven and Binl€$992, our aim is to
schemes is performed as follows. On the basis of the chronologi-assess whether our probabilistic scheme predicts uncertainty
cal series of 15 floods, one can evaluate 14 prediction/updatebounds that are consistent with validation statistics, which repre-
instances. To generate statistically sufficient cases for compari-sent both modeling and input uncertainty.
son, we shuffled the original chronological storm series to synthe-
size more hypothetical storm sequences. Since is it impossible to
account for all possible combinations of storm sequelticethe Results and Discussion
order of 13?), limited shuffling was performed to generate 14
more distinct storm sequences which are shown in Table 3. ThisFig. 4 shows comparisons between deterministic and probabilistic
leads to a total of 210 prediction/update cases for assessment. Techeme predictions for the chronological storm sequeficst
minimize potential dependence on the initialization of the hydro- column in Table 3 The most probable hydrograph is shown by
logic model, no two sequences in the selected set had a commorthe thick dashed line, whereas the deterministic prediction is
initial storm. The deterministic scheme was recalibrated, i.e., up- shown by the thin dashed line. It is observed that both schemes
dated, after prediction for every new storm in a sequence consid-perform with the same accuracy. For certain storm césaesh as
ering all prior storm cases and using the values used in predictionstorms 2, 3, and )3the most probable hydrograph appears su-
as a first guess of the parameter set. For the probabilistic schemeperior in prediction to the deterministic scheme, whereas in other
the likelihood weights of the ensemble of behavioral parameter cases(such as storms 5, 9, and)l$eak runoff is moderately
sets and prediction quantiles were updated with each new obseroverestimated while the deterministic scheme underestimates it.
vation, as described in the section describing the probabilistic Fig. 5 presents the prediction limits associated with the 90% con-
discharge scheme and summarized in the flowchart of Fig. 3. Forfidence boundg$5th and 95th percentilefor prediction of peak
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Fig. 4. Observedsolid line) versus predicted runoff hydrographs derived from determinigtio dashed lineand probabilistiqthick dashegl
schemes for chronological sequence of 15 storm events

runoff and time to peak. The observed peak runoff is bounded schemes have very low bigaround 6%, whereas peak runoff is

within the 90% confidence bounds for 10 out of 14 prediction underestimated by about 13% by the probabilistic scheme com-
instances(storms 4, 5, 7, 8, 9, 10, 11, 13, 14,)19his result  pared with the 6% overestimation by the deterministic scheme.
indicates that the upper and lower uncertainty limits correspond- The most noticeable difference is observed in the prediction of
ing to the 90% confidence bounds of the probabilistic scheme time to peak. The probabilistic scheme has 50% less variability

have sufficient value to the decision makers for assessing theinan the deterministic scheme in time-to-peak error, even though
probable level of river stages during a flood. Similarly, for pre- e mean errors are comparable.

dicting the arrival time of the peak flood waviee., time to peak
we observe that it is sufficiently bounded by the 90% prediction
limits in 13 storms out of 14compare the vertical lines with

Table 5 shows the reliability of the probabilistic scheme’s con-
fidence bounds in terms of runoff and time to peak predictions.

shading with the thick solid line in Fig.)5The probabilistic ¢ runoff exceedance probabiliag defined as the number of
scheme can therefore adequately predict the lower and upper lim-ours that _the observed d|scharge_exceeds the 90/.0 confidence
its of the two most important runoff parameters during a flood: bounds derived from the probablllstm scheme normallzed_t_)y the
time to peak and peak runoff. total number of hoursThe time-to-peak exceedance probabitty
Table 4, summarizes the mean and standard deviation of the€Valuated by the number of prediction cases where the observed
prediction accuracy of the two schemes on the basis of the 210time to peak is beyond the 90% confidence bounds of the pre-
prediction cases. The mean prediction efficiefiy. (1)] for the ~ dicted time to peak normalized by the total number of cases
probabilistic schemecorresponding to the most probable hy- 210. A high exceedance probability would indicate the probabi-
drograph is slightly higher(0.57) than the deterministic scheme listic scheme’s inability to explain the uncertainty in runoff pre-
(0.55. The standard deviation of the probabilistic scheme’s effi- diction. In Table 5, we observe that the probabilistic scheme has a
ciency of prediction is about 15% less than that of the determin- low time to peak exceedance probabili2.4%. The runoff ex-
istic scheme. For mean simulation error of runoff volume, both ceedance probability is moderately I¢4i7%), indicating that the
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Fig. 5. Probabilistic prediction with uncertainty limits corresponding to 90% confidence bounds. The thick solid line represents observed
discharge. Dashed lines represent the 5th and 95th percentiles of runoff prediction. Vertically drawn lines with shading represent the 5th and 95t
percentiles of time to peak.

runoff (including the peak runofferror bounds can capture 53% creasgin the sensitivity of time-to-peak uncertainty, expressed in
of the variability in true runoff. relative terms as a fraction of the storm duration to the width. The
In Fig. 6, we evaluate the sensitivity of runoff and time-to- lowermost panel shows the variation of time to peak exceedance
peak exceedance probabilities and uncertainty range in time toprobability with respect to the width of prediction limits. When
peak (in hourg with respect to error bounds varied from 10% the middle and uppermost panels are assessed jointly, it is con-
(45th to 55th percenti)eto 90% (5th to 95th percentilequantile cluded that at nearly 70% confidence bounds, we get the best
ranges. We define this range as the “width of prediction limits.” prediction uncertainty scenario, which gives an optimal combina-
We observe a monotonic decrease of the Runoff exceedance probtion of low runoff exceedance probability with relatively low un-
ability for an increasing width of prediction limittuppermost certainty range in time to peak. Analyses of all three panels com-
pane). The lowermost panel shows a similar pattérate of in- bined can potentially assist decision makers in identifying the

Table 4. Comparison of Prediction Accuracy of Probabilistic Scheme with Deterministic Scheme

Deterministic scheme Probabilistic scheme
Prediction/error Mean Standard deviation Mean Standard deviation
Prediction efficiency 0.552 0.318 0.517 0.280
Error in runoff volume -0.063 0.502 0.063 0.591
Erro in peak runoff 0.064 0.515 -0.134 0.584
Error in time to peak -0.043 0.428 0.094 0.205

Note: Prediction efficiency is based on Ed). For the probabilistic scheme, it is computed from the most probable hydrograph.
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Table 5. Exceedance Probabilities for Runoff and Time to Peak for the
Probabilistic Scheme

Runoff exceedance Time-to-peak
probability exceedance probability
(mean (mean

0.467 0.124

optimum uncertainty quantile range, which is not too wide, yet
reliable.

mum parameter values. For the lower panel, the optimum quantile
is essentially the prediction quantile with the highest a posteriori
likelihood weight after application of Bayesian updating. For both
schemes, we note convergence. The norm gradually minimizes
and then stabilizes to a near-zero value as additional storm data is
incorporated in the optimization proce@gper panel The error

bars representing one standard deviation gradually reduce with
successive prediction cases. This outcome suggests that the space
of the parameter set that contains the optimum set is becoming
increasingly constrained as more data is taken into account. For

Fig. 7 shows the impact of additional data on the convergence the probabilistic scheme, the mean optimum quantile appears to
toward the optimum parameter set for the deterministic schemestabilize at the 70th percentile after the 14th Bayesian updating

(upper pangland optimum prediction quantile for the probabilis-
tic scheme(lower panel. The purpose of this analysis is to iden-
tify whether the schemegrobabilistic and deterministiare ca-

(upper panel The error bars, however, do not decrease as they do
in the deterministic scheme. This outcome indicates that there
may be more than one region of high likelihood values in the

pable of reaching steady-state prediction conditions. In the upperparameter space, which may be an indicator of the nonstationarity
panel, the convergence toward the global parameter set is evalupf the hydrologic system and the inherent uncertainty.

ated by using the norm of the optimum parameter set. The norm
was computed by first normalizing the four optimum parameter
values by their respective means and standard deviations evalu
ated from all the 210 prediction cases. This transformed each

Conclusions

parameter to a consistent 0-1 scale. The norm was then computed o o
as the square root of the sum of squares of the normalized opti_Thls study assessed a probabilistic discharge prediction scheme
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range; lower panel: uncertainty in time-to-peak versus width of pre-
diction limit

based on an uncertainty framework called GLUE. In prediction,
the probabilistic scheme simulated the most probable hydrograph
with the upper and lower uncertainty limits associated with a
given confidence bound. Bayes’ theorem was used to update the
posterior likelihood weights of the parameter sets and prediction
quantiles. Upon comparison with the conventional optimum pa-
rameter set deterministic prediction, it was observed that the
probabilistic scheme was subject to nearly 50% less variability in
time-to-peak prediction error. The probabilistic scheme has an
added value to decision making and risk assessment because of
the uncertainty predicted for the arrival time of peak runoff and
magnitude of the flood wave. The procedure is simple in design,
is model-independent, and can be easily implemented in a real-
time operational scenario for computationally efficient rainfall-
runoff models.

The findings are conditioned on the characteristics of a single
watershed. Hence, as part of a natural extension of this study,
multiple watersheds under different hydro-climatic regimes
should be studied to understand the wider range of variability in
performance of the prediction scheme. Furthermore, a major limi-
tation of our scheme is its requirement for multiple model runs,
which is prohibitive for use with physically based distributed
rainfall-runoff models. However, such models are increasingly
used to predict consequences of land use and climatic change in
catchments. Their incorporation in a GLUE framework to support
the probabilistic scheme formulated in this article would be inef-
ficient because of the large number of Monte Carlo runs needed
for both model prediction and parameter sampling. An improved
parameter-sampling scheme that both accelerates the parameter
search and reduces the total number of model runs is desirable.
The uniform sampling procedure usually recommended for
GLUE (Beven and Binley 1992; Freer et al. 1996; Beven and
Freer 2001 is the aspect that requires special attention. Methods
such as the guided Monte Carlo scheme of Shorter and Rabitz
(1997, the tree-structured search of Spear et(4894), Latin
hypercube samplingMcKay et al. 1979, and the Monte Carlo
Markov chain method(Kuczera and Parent 1998; Bates and
Campbell 2001 are worth considering as future extensions to this
study.
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