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6 [1] The key question that is asked in this study is ‘‘how are the three independent bias
7 components of satellite rainfall estimation, comprising hit bias, missed, and false
8 precipitation, physically related to the estimation uncertainty of soil moisture and runoff
9 for a physically based hydrologic model?’’ The study also investigated the performance

10 of different satellite rainfall products as a function of land use and land cover (LULC)
11 type. Using the entire Mississippi river basin as the study region and the variable
12 infiltration capacity (VIC)-3L as the distributed hydrologic model, the study of the
13 satellite products (CMORPH, 3B42RT, and PERSIANN-CCS) yielded two key findings.
14 First, during the winter season, more than 40% of the rainfall total bias is dominated by
15 missed precipitation in forest and woodland regions (southeast of Mississippi). During the
16 summer season, 51% of the total bias is governed by the hit bias, and about 42% by the
17 false precipitation in grassland-savanna region (western part of Mississippi basin).
18 Second, a strong dependence is observed between hit bias and runoff error, and missed
19 precipitation and soil moisture error. High correlation with runoff error is observed with
20 hit bias (�0.85), indicating the need for improving the satellite rainfall product’s ability
21 to detect rainfall more consistently for flood prediction. For soil moisture error, it is the
22 total bias that correlated significantly (�0.78), indicating that a satellite product needed to
23 be minimized of total bias for long-term monitoring of watershed conditions for drought
24 through continuous simulation.

25 Citation: Gebregiorgis, A. S., Y. Tian, C. D. Peters-Lidard, and F. Hossain (2012), Tracing hydrologic model simulation error as a
26 function of satellite rainfall estimation bias components and land use and land cover conditions, Water Resour. Res., 48, XXXXXX,
27 doi:10.1029/2011WR011643.

28 1. Introduction
29 [2] Precipitation (hereafter used synonymously with
30 ‘‘rainfall’’) is one of the most important atmospheric inputs
31 for hydrologic model simulation. Precipitation dominates
32 the spatial and temporal variability of other hydrological
33 variables (such as soil moisture, runoff, and evapotranspira-
34 tion) [Syed et al., 2004; Famiglietti et al., 1995]. About
35 70%–80% of space-time variability in the hydrologic cycle
36 is reportedly dictated by precipitation variability. Because
37 precipitation is the key element of the hydrologic cycle, its
38 quantitative estimation is essential for hydrologic modeling
39 in both scientific and applied research. The accuracy of

40hydrologic prediction depends, among many factors, on the
41accuracy of the model input, the primary one being rainfall.
42[3] Rainfall measurement from the ground using conven-
43tional methods is more direct and reliable than satellite-
44based rainfall [Villarini et al., 2008], but it lacks the desired
45spatial and temporal sampling needed to achieve a high-
46resolution rendition of the terrestrial hydrologic fluxes in
47the continuum of space and time. The major concern for the
48hydrologist is the representativeness of point measurements
49for areally averaged rainfall which is the usual input to dis-
50tributed and physically based hydrologic models [Habib
51et al., 2004]. This issue becomes more important when we
52consider that ground observation networks are either
53sparse, nonexistent, or declining for most parts of the world
54[Stokstad, 1999; Shiklomanov et al., 2002]. More impor-
55tantly, precipitation’s spatial variability and intermittent na-
56ture makes it difficult to observe using the conventional
57ground-based rain gauge method. These practical limita-
58tions of ground rain gauge networks have prompted increas-
59ingly wider use of spaceborne observation of rainfall as an
60indispensable bridge to quantifying precipitation fluxes over
61large and inaccessible areas [Anagnostou et al., 2010; Tian
62et al., 2009; Hong et al., 2007; Gottschalck et al., 2005].
63[4] With a capability to provide rainfall estimates for
64data sparse regions not well covered by gauges or ground
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65 radars (e.g., water bodies, mountainous and remote desert
66 areas), satellite rainfall estimates are a promising additional
67 source of forcing data for large scale hydrologic modeling
68 [Nijssen and Lettenmaier, 2004; Tian and Peters-Lidard,
69 2010]. Many efforts have been undertaken to fulfill the
70 demand of the scientific community in providing accurate
71 satellite rainfall estimates at hydrologically relevant spatio-
72 temporal scales [Hsu et al., 2010; Huffman et al., 2007;
73 Joyce et al., 2004; Sorooshian et al., 2000]. The studies
74 have collectively contributed to the progress made from 1
75 deg spatial and monthly time scales [Huffman et al., 1997;
76 Huffman et al., 2001; Adler et al., 2003] to 0.25 deg spatial
77 and hourly temporal scale [Huffman et al., 2007; Joyce
78 et al., 2004; Sorooshian et al., 2000; Joyce and Xie, 2011,
79 Ushio et al., 2009, Behrangi et al., 2010; Hong et al.,
80 2004] to make satellite rainfall data potentially more useful
81 as a forcing for macroscale hydrologic modeling.
82 [5] In the evolution of space technology, the next prom-
83 ising and future global rainfall data source that is founded
84 on the heritage of Tropical Rainfall Measuring Mission
85 (TRMM) and preceding satellite missions, is the Global
86 Precipitation Measurement (GPM) Mission. The planned
87 GPM mission will provide rainfall estimates at spatial reso-
88 lutions of 25–100 km2 and temporal scales of 3 to 6 h for
89 about 90% of global coverage [Hou et al., 2008]. Rainfall
90 estimates from GPM hold great promise for river flow mod-
91 eling, water resource management, flood and drought disas-
92 ter management, and environmental protection. In particular,
93 GPM and its associated rain products will be the only avail-
94 able rainfall data source for many parts of the world.
95 [6] Although the overall progress and improvements in
96 satellite rainfall measurement from space has been notable
97 for hydrologic modeling and other applications, the level of
98 uncertainty associated with rainfall estimation and sam-
99 pling frequency is still significant [Hossain and Huffman,

100 2008; Nijssen and Lettenmaier, 2004; Chang and Chiu,
101 1999]. Nijssen and Lettenmaier [2004] evaluated the effect
102 of precipitation sampling errors on simulated moisture
103 fluxes and states by forcing a macroscale hydrologic model
104 with error-corrupted precipitation fields for different tem-
105 poral sampling and spatial scales. They found that simu-
106 lated satellite precipitation (with sampling errors similar to
107 that expected from the constellation of passive microwave
108 sensors) exhibited significant errors in moisture fluxes and
109 states. They also showed that the propagated error in simu-
110 lated fluxes and states significantly reduced for larger areas
111 and longer sampling intervals. For instance, for 2500 km2

112 and a 3 h sampling interval, the areally averaged root mean
113 square error (RMSE) was greater than 50%, which reduced
114 to 10% for 500,000 km2. Tian and Peters-Lidard [2010]
115 produced such a satellite rainfall uncertainty map at global
116 scale by computing the standard deviation from the ensem-
117 ble mean of different satellite rainfall products at every
118 grid box and time step without ground validation data.
119 Their study reported the occurrence of less uncertainty over
120 oceans and large uncertainty over the surfaces at high ele-
121 vations where the orographic rainfall processes present sig-
122 nificant challenges for satellite-based remote sensing of
123 precipitation.
124 [7] Several other studies have recently emerged on the
125 application of TRMM-based multisatellite rainfall products
126 for hydrologic modeling [Nijssen and Lettenmaier, 2004;

127Su et al., 2008; Gebregiorgis and Hossain, 2011, among
128many others]. It is crucial for hydrologists now to under-
129stand how rainfall uncertainties affect hydrologic predict-
130ability. Many of the available satellite rainfall products are
131developed directly or indirectly from merging of infrared
132[inferior rectus (IR)] and passive microwave (PMW) sensors
133estimates based on different algorithmic approaches. For
134instance, the 3B42RT algorithm [Huffman et al., 2010] uses
135MW data to calibrate IR estimates to obtain a merged product
136from MW and calibrated IR when and where PMW estimates
137are unavailable. The CMORPH algorithm [Joyce et al., 2004]
138utilizes the IR estimates only to derive the cloud motion field
139that helps to propagate the rainfall estimates of PMW data.
140The PERSIANN (precipitation estimation from remotely
141sensed information using artificial neural networks) algorithm
142utilizes the relationship between IR and MW estimates as
143derived from artificial neural network techniques and the rain-
144fall estimates are then obtained from the MW data downscaled
145to the IR footprint. There are different versions of PERSIANN
146products. The first algorithm [PERSIANN, Sorooshian et al.,
1472000] uses gridded IR brightness temperature obtained from
148geostationary satellites to compute the corresponding gridded
149rainfall rate by adjusting the model parameters routinely to
150PMW rainfall estimates. This product is available at spatial re-
151solution of 0.25 deg � 0.25 deg and temporal scale of 30 min
152which is later converted to a 6 h rainfall accumulation. The
153second PERSIANN version is developed based on patch cloud
154classification system [PERSIANN-CCS, Hong et al., 2004;
155Hong et al., 2005; Hsu et al., 2010]. The cloud images are
156classified into cloud patch regions based on cloud height, areal
157extent, and texture features extracted from satellite imagery.
158Finally, a relationship between rain rate and brightness tem-
159perature is established for pixels within each cloud patch
160region. GSMap [Ushio et al., 2009] is also another satellite
161rainfall product which uses a similar technique as CMORPH
162in propagating the PMW derived precipitation field using the
163IR-derived motion vectors, but unlike the CMOPRH algo-
164rithm, it also uses cloud top brightness temperature to propa-
165gate precipitation estimates. Among the discussed rainfall
166algorithms, CMORPH, GSMaP, and PERSIANN-CCS offer
167resolutions higher than 3 h and 0.25 deg.
168[8] Recognizing the vast complexity and interdependen-
169cies of the multiple sensors used in quasi-statistical rainfall
170algorithms of today, Gebregiorgis and Hossain [2011] dem-
171onstrated a multiproduct merging method that leverages the
172a priori uncertainty of individual products. Therein, they
173reported that it is indeed feasible to create a more superior
174merged product by making skillful and complementary use
175of the uncertainty of each individual product in hydrologic
176model simulation of the fluxes (such as soil moisture and
177runoff). Runoff and soil moisture based merged products
178improved the runoff and soil moisture simulation. On aver-
179age the RMSE of streamflow with runoff based merged
180product decreased by 41%, 82%, and 60% and soil moisture
181based merged product by 50%, 79%, and 53% for 3B42RT,
182CMORPH, and PERSIANN-CCS products, respectively.
183[9] The natural follow-up question now is, how can we
184implement such a multiproduct merging approach in regions
185where there is no ground truth data to derive a priori esti-
186mates of uncertainty? A recent study by Tang and Hossain
187[2011] on the similarity of satellite rainfall error as a function
188of Koppen climate class reported that certain measures of
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189 rainfall uncertainty can be clustered according to climate and
190 terrain type. Their study showed promise in ‘‘transferring’’
191 error information from a gauged region to an ungauged
192 region with similar climate characteristics. Similarly, there
193 are also other studies that report the performance of rainfall
194 products as a strong function of the region and topography.
195 For example, most TRMM-based products that do not utilize
196 comprehensively the precipitation radar (PR) data are known
197 to be generally weak in detecting orographic precipitation
198 [Dinku et al., 2010]. In particular, the poor performance of
199 some of the commonly used multisensor products over the
200 Himalayas, Andes, or the Ethiopian highlands, is now well
201 known [Dinku et al., 2007; Hirpa et al., 2010]. Thus, it
202 appears that multiproduct merging can potentially improve
203 further from an investigation of climate, land use and land
204 cover (LULC), and terrain features in dictating the rainfall
205 estimation uncertainty.
206 [10] The present study is driven by the need to raise
207 more awareness and understanding about the complex
208 interrelationship between uncertainty of rainfall and hydro-
209 logic simulation (of key fluxes such as soil moisture and
210 runoff errors) as a function of LULC and terrain features.
211 To make the study directly relevant to data product devel-
212 opers engaged in improving their algorithms for GPM, this
213 study traces the source of error observed in hydrologic pre-
214 dictability to the input (rainfall) error predecomposed into
215 easy to understand independent components. Such compo-
216 nents, by virtue of the power of their simplicity and physi-
217 cal significance, stand to provide tangible feedback to
218 developers on how exactly algorithms may need to be re-
219 vised to advance their application for hydrology. The study
220 is conducted on a continental scale (the Mississippi River
221 basin) using multiyear data sets to arrive at statistically ro-
222 bust and comprehensive findings at regions with similar
223 LULC.
224 [11] The paper is organized as follows. Description of the
225 study area, hydrologic model, and data used are introduced

226in section 2. The methodology of satellite rainfall error
227decomposition and the linkage to hydrologic simulation error
228are elaborated in section 3. Section 4 presents the results of
229the study, focusing particularly on spatial and temporal char-
230acteristics of satellite rainfall uncertainty and the interrela-
231tionship with soil moisture, runoff errors, and LULC. Finally,
232conclusions and recommendations of the study are presented
233in section 5.

2342. Study Area, Model and Data
2352.1. Study Area
236[12] The Mississippi River Basin (MRB), which is the
237largest basin in North America (Figure 1), was chosen as the
238study region. Because of diverse topography, climate, and
239LULC types over an area of about 3 million km2, that are
240also witnessed in other parts of the world, the MRB was ideal
241for the study objectives. The topography of the basin varies
242from low-lying areas of 1 m to high elevation areas 4500 m
243above sea level (a.s.l). For this particular study, three LULC
244types were considered at six different geographical locations.
245These LULC data was derived from United States Geological
246Survey, National Land Cover Database [NLCD2001] at spa-
247tial resolution of 0.004 deg, source: http://www.mrlc.gov/
248nlcd01_data.php. The left panel of Figure 1 shows the loca-
249tion of the study zones with LULC type in MRB, which are
250(1) forest and woodland (zones A1 and B1); (2) cropland
251system (agriculture and irrigation practice) (zones C2 and
252D2); and (3) grassland and savanna systems (zones E3
253and F3). The size selection of each LULC zone was deter-
254mined based on the areal extent of LULC type that was
255dominant in the region. Each zone needed to enclose large
256number of pixels of the same LULC type to yield statisti-
257cally significant results. The percentage coverage of the
258designated LULC type within a given zone varied from
25982% for zone A1 to 98% for zone F3. Detailed description
260of location, percentage coverage by the dominant LULC

Figure 1. Location of Mississippi basin in United States of America (left) and land use/land cover
(LULC) map with the selected study zones (right). Zone nomenclature: Zone xy where x indicates the
location of specific region and y shows the LULC type defined by 1 forest and woodland systems;
2 human land use (cropland) system; and 3 savanna and grassland systems.
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261 type, elevation, and LULC features of each zone are sum-
262 marized in Table 1.

263 2.2. Model and Data
264 [13] A variable infiltration capacity (VIC) macroscale
265 hydrologic model [Liang et al., 1994] was implemented to
266 simulate land surface states and fluxes for MRB at the daily
267 time step and a spatial resolution of 0.125 deg. The model
268 setup and calibration were performed based on gridded
269 ground observation data sets obtained from the University
270 of Washington [Maurer et al., 2002]. Using the calibrated
271 model and forcing data sets, land surface fluxes (soil mois-
272 ture and runoff) were generated. These model-derived sur-
273 face fluxes, derived from gridded ground observations,
274 were used as ‘‘synthetic’’ truth data to evaluate the per-
275 formance of satellite rainfall products in simulating soil
276 moisture and runoff as a function of LULC and error type.
277 The study period considered was 8 years (2003–2010).
278 Analysis was broken down seasonally to winter (December,
279 January, and February [DJF]) and the summer (June, July,
280 and August [JJA]) and for some of the cases, the result was
281 presented only for 2006 and 2010 to allow sufficient model
282 spin up and focus on a period with the highest number of
283 microwave sensors for the satellite algorithms.
284 [14] Generally, the realism of the synthetic data depends
285 highly on the choice and quality of the ground truth data
286 sets injected into the model, which likely affects the finding
287 of this study. Therefore, to minimize such impact and
288 ensure accuracy of simulated runoff and soil moisture, the
289 ground rainfall data was first checked against NEXRAD-IV
290 (next-generation radar of stage IV) data (Figure 2a, left
291 panels). In addition, the VIC model parameters, such as vari-
292 able infiltration curve parameter, maximum velocity of base
293 flow, fraction of maximum soil moisture, fraction of velocity
294 of base flow, and depth of soil layers, were calibrated at
295 seven and validated at 12 internal gauging stations of MRB
296 using simulated and observed streamflow (Figure 2b).
297 [15] The selection of gauging stations was driven by the
298 need to minimize the impact of human regulation of flow.
299 The selection of stations (as shown in Figure 2b) was guided

300by three rules. (1) Less regulated watersheds regions were
301considered for validation and calibration, for example Min-
302nesota River near Jordan. (2) To adequately represent the
303basin wide response, several small-sized watersheds were
304selected. For example, Kentucky River at Lockport (area
3056180 sq. mi), French Broad River near Newport (area 1858
306sq. mi), Wabash River at Mt. Carmel (area 28,635 sq. mi);
307and Quachita River at Camden (5360 sq. mi). (3) On regu-
308lated rivers, stations located upstream or very far downstream
309of the dam have been considered, for example Canadian
310River at Calvin, Quachita River at Camden, and Missouri
311River at Hermann. Through these three rules we have com-
312pletely avoided gauging stations that are influenced heavily
313by human regulation of streamflow. As seen in Figure 2a
314(right panels), there is strong agreement between the simu-
315lated and observed streamflow according to measures of
316correlation coefficient and efficiency. Both performance
317measures provided the necessary confidence in hydrologic
318model simulation.
319[16] The forcing data set for the VIC model includes the
320major observed meteorological variables, such as precipita-
321tion, minimum and maximum temperature, wind speed,
322vapor pressure, incoming long-wave and short-wave radia-
323tion, and air pressure. For the contiguous United States, the
324meteorological forcing data set were processed and made
325available for users by the University of Washington (see Ac-
326knowledgment). To prepare the gridded ground rainfall, the
327daily ground precipitation data was collected from the
328National Oceanic and Atmospheric Administration (NOAA).
329The average density of gauge stations used in gridding pro-
330cess was 700 km2/station, or equivalently on average 7200
331stations in the study region (MRB). According to Maurer
332[2002], this precipitation data were gridded to spatial resolu-
333tion of 0.125 deg using the synergraphic mapping system
334(SYMAP) algorithm. Finally, the gridded data set were stat-
335istically adjusted using the parameter-elevation regressions
336on independent slopes model (PRISM) to consider local var-
337iations due to terrain complexity. More importantly, before
338using these data sets for the study objectives, both qualitative
339and quantitative comparisons were performed with the

Table 1. Detail Description of Study Zonesa

Region/Zone Location LULC Type Coverage, % Detail Description

A1 S Arkansas Woodland and forest
systems

82 Mainly dominated by mixed and deciduous broadleaf forest.
Small and scattered savanna woody also exists in central part of
the region. Elevation ranges from 60 to 400 m.

N Louisiana
SE Oklahoma

B1 E Central Tennessee Woodland and forest
systems

94 Characterized by mixed and deciduous broadleaf forest and
dispersed cropland. Elevation varies from 250 to 1000 m.S Kentucky

C2 S Iowa Cropland system 97 Cropland is the dominant land use system of this region. Few
deciduous broadleaf forests also exist. Elevation is between
200 snd 300 m.

N Missouri
NE Kansas
E Nebraska

D2 W Mississippi Cropland system 96 This region extends along either side of main lower Mississippi
river which is dominated by irrigation cropland system.
Elevation ranges between 30 and 100 m.

E Arkansas

E3 C South Dakota Grassland and
savanna systems

97 Dominated by grassland and savanna systems. Its elevation
extends from 700 to 1300 mS North Dakota

NC Nebraska
F3 E Colorado Grassland and

savanna systems
98 Grassland, open shrubland, and savanna are the dominate land

use system. Elevation ranges from 1300 to 2000 m.NE New Mexico

aN is north, S is south, E is east, W is west, SE is southeast, NE is northeast, and NC is north central.
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Figure 2. (a) Qualitative comparison of gridded ground with NEXRAD-IV rainfall record for two
randomly selected days (left four panels); correlation of gridded and NEXRAD-IV average rainfall over
Mississippi basin (left-lower panel) ; model calibration (2003–2004) and validation (2005) of VIC model
using observed streamflow at two gauging stations (right panels). (b) Selected hydrological gauging
stations for the purpose of calibration and validation of VIC model over Mississippi River basin.
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340 NEXRAD-IV data set on MRB for the purpose of validation
341 (Figure 2, left panels). The mean daily rainfall of the gridded
342 and NEXRAD-IV data sets agreed very well, with a correla-
343 tion coefficient of 0.98.
344 [17] The error characteristics of three satellite rainfall
345 products were investigated in runoff and soil moisture sim-
346 ulation. The surface runoff rate generated from each grid
347 cell was considered as runoff. The routable portion of sub-
348 surface runoff was not included in the analysis as runoff.
349 Computation related to runoff was generally performed at
350 spatial resolution of 0.125 deg. On the other hand, the VIC
351 model simulates the soil moisture in three different soil
352 layers. The upper layer is the top 10 cm soil depth which
353 represents the dynamic behavior of the soil that responds to
354 the weather-scale meteorological processes, whereas the
355 lower two layers characterize the seasonal and long-term
356 soil moisture behavior. Even though the upper soil layer
357 has a smaller thickness compared to the lower layers, the
358 memory effects could contaminate the transient temporal
359 behavior of the soil moisture error. To minimize such
360 impacts, the soil moisture information in the top layer was
361 extracted for each pixel at the beginning of a time step
362 W i�

1 ½t� and end of time step W iþ
1 ½t� where i and t represent

363 the pixel number and time step, respectively. The differ-
364 ence between the two values (if it exists) is considered as
365 the memory-less (fast) response of the soil moisture column
366 to rainfall at that particular time step. This difference was
367 also considered as the daily soil moisture production and
368 used in the computation of percentage of runoff and soil
369 moisture production.
370 [18] The volume of soil moisture production due to the
371 rainfall intensity at daily time step t for pixel i (�W1

i[t]) is
372 given by equation (1):

�W i
1½t� ¼ W iþ

1 ½t� � W i�
1 ½t�: (1)

373374 The total spatial sum of runoff and soil moisture production
375 (Rj

tot and W j
tot, respectively) for zone j during the summer

376 season are computed per equations (2) and (3):

Rj
tot ¼

Xn

t¼1

Xm

i¼1

Ri½t�; (2)

377378

W j
tot ¼

Xn

t¼1

Xm

i¼1

�W i
1½t�; (3)

379380 where n is the number of days in the summer season and m
381 is the number of pixels in zone j.
382 [19] Finally, to compute the daily percentages of runoff
383 and soil moisture production with respect to daily ground
384 rainfall intensity, equations (4) and (5) are used:

Rj
%½t� ¼

Xm

i¼1

Ri½t�

Rj
tot

;
(4)

385386

W j
%½t� ¼

Xm

i¼1

�W i
1½t�

W j
tot

:
(5)

387388[20] The multisensor satellite rainfall products consid-
389ered were 3B42RT [Huffman et al., 2010; Huffman et al.,
3902007], CMORPH [Joyce et al., 2004], and PERSIANN-
391CCS [Hong et al., 2004]. All three satellite rainfall products
392are available to end users in near real time that favor the de-
393velopment of various decision-making tools. 3B42RT is one
394of the products provided by the TRMM multisatellite pre-
395cipitation analysis (TMPA) algorithm at a spatial resolution
396of 0.25 deg � 0.25 deg and a temporal sampling of 3 h
397[Huffman et al., 2010]. It is a combination of PMW and
398PMW-calibrated IR data merged in a manner that MW pre-
399cipitation estimate is considered where it is available, and
400the IR estimate is used to fill the gap (in space and time)
401elsewhere. CMORPH is a high-resolution satellite rainfall
402product known as the climate prediction center (CPC) using
403MORPHing technique. This product is also available at a
404spatial resolution of 0.25 deg and temporal resolution of
4053 h. This product uses rainfall estimates from MW exclu-
406sively and the rainfall patterns are propagated in space and
407time via motion vectors obtained from IR data to bridge the
408MW sampling gaps [Joyce et al., 2004]. PERSIANN-CCS is
409based on extraction of cloud features from IR imagery of a
410geostationary satellite to derive rainfall estimates at finer scale
411(0.04 deg � 0.04 deg) and hourly temporal resolution using
412MW data as a guide for the artificial neural network. These
413key data products essentially use the same suite of PMW and
414IR sensors, such as advanced microwave sounding unit
415(AMSU), TRMM microwave imager (TMI), special sensor
416microwave/imager (SSM/I), advanced microwave scanning
417radiometer for Earth observing system (AMSR-E), IR sensor
418aboard geostationary operational environmental satellite
419(GOES), etc.

4203. Error Decomposition
421[21] In a demonstration of error decomposition, Tian et al.
422[2009] have outlined a general scheme of breaking down
423total rainfall error (hereafter used interchangeably with ‘‘total
424bias’’) into three independent components: hit error H,
425missed precipitation –M, and false precipitation F. Figure 3
426illustrates the concept of false, hit, and missed precipitation
427of satellite rainfall observation relative to ground observa-
428tion. According to Figure 3, H represents observed rainfall
429events which are detected by both satellite and ground vali-
430dation data (hits), M shows missed rainfall events by the sat-
431ellite but detected by the validation data, and F indicates
432false observation of rainfall events by the satellite which are
433not reported by the reference data. On the same figure, an
434example is provided to illustrate the total error decomposi-
435tion into completely independent hit bias, missed, and false
436precipitation for individual grid cells.
437[22] In this study, the total error E (or bias) is defined as
438satellite estimate minus ground reference (error unit in
439mm d�1 as the rainfall). Hit error H indicates the discrep-
440ancy between the satellite and ground rainfall data given
441both data report rainfall coincidently and as a result, hit
442error could be positive or negative. On the other hand,
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443 missed M and false F errors have always negative and
444 positive signs, respectively. The relation between the total
445 rainfall error E and error components can be expressed as
446 E ¼ H – M þ F. For a detailed explanation, readers are

447referred to Tian et al. [2009 and Wilks [1995]. It is obvious
448from the above error relationship that the magnitude of the
449total error cannot completely characterize the full measure
450of performance for satellite rainfall products. For example,
451M and F can cancel each other as they have opposite signs,
452resulting in a low total bias (E) but not necessarily a low
453hydrologic simulation error that is dictated by the compo-
454nents [Tian et al., 2009]. Therefore, breaking down the
455total satellite rainfall error into its distinct components
456(H, �M, and F) helps us to gain a clearer picture of error
457amplitudes so that the performance of the algorithm for sat-
458ellite rainfall product can be evaluated in more detail. More
459importantly, breaking down of the total error into such
460components helps to trace the source of error that propa-
461gates into soil moisture and runoff through a hydrologic
462model. It also helps to constrain the error behavior as a
463function of LULC and runoff generation physics. Eventu-
464ally, this knowledge is expected to improve satellite rainfall
465algorithm development, application, and the data assimila-
466tion scheme in the future.

4674. Results
4684.1. Satellite Rainfall, Soil Moisture and Runoff
469Production
470[23] To reduce visual cluttering, Figure 4 compares the
471variability of the 31 day moving average time series of satel-
472lite rainfall and ground (reference) data. Although time series
473of satellite rainfall products capture the temporal trend of the
474reference rainfall data in all zones (except PERSIANN-CCS
475in zone E3), CMORPH and PERSIANN-CCS generally
476overestimate the rainfall magnitude during the summer

Figure 4. A 31 day of moving average time series of rainfall estimates spatially averaged over zone
A1 (top, forest and woodland), zone C2 (middle, cropland), and zone E3 (bottom, savanna-grassland).

Figure 3. Diagram showing hits (H), misses (M), and
false alarms (F) for dichotomous variables (satellite rainfall
estimate and ground observation) and simple exemplary ta-
ble that shows how error components are identified and
separated at basin gridcell level (unit in mm d�1).
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477 season. Particularly, the overestimation is significantly high
478 almost for the entire period over LULC zones E3 and F3,
479 which is largely absent in forest and woodland regions (zone
480 A1). These regions are mainly characterized by savanna-
481 grassland systems in mountainous terrain. More importantly,
482 the PERSIANN-CCS does not capture the rainfall trend
483 during the winter season over the mountainous regions par-
484 ticularly after 2005. 3B42RT, on the other hand, provide rel-
485 atively better rainfall estimation in all regions for the study
486 period. However, it has a tendency to underestimate rainfall
487 for cropland systems during wet seasons. The underestima-
488 tion is more noticeable since July 2005 and this may be tied
489 with the implementation of new version of 3B42RT algo-
490 rithm as of 3 February 2005. The underestimation can be
491 traced to the amount of significant missed precipitation of
492 3B42RT in central and eastern part of MRB (as shown in
493 Figures 6 and 7).
494 [24] Figure 5 illustrates the percentage of runoff and
495 soil moisture production with respect to ground rainfall in-
496 tensity (mm d�1) during the summer seasons of 2006 and
497 2010. The percentage of soil moisture production remains
498 nearly constant for different rainfall rate in all study

499zones. Because the soil moisture has longer duration mem-
500ory, it is difficult to observe its moisture variation at
501smaller time scales. Moreover, soil column moisture hold-
502ing capacity is also bounded by a finite moisture holding
503capacity (equal to porosity) and initial moisture content
504[Raj and Hossain, 2010] that makes soil moisture insensi-
505tive for high rainfall rates. As a result, the percentage of
506soil moisture production on a daily basis displays very
507low variation. On the other hand, as the rainfall intensity
508increases, the percentage of runoff production grows expo-
509nentially for various LULC systems with different growth
510rate. The percentage of runoff production rate for forest
511and woodland systems (Figure 5 zones A1 and B1) is seen
512to increase slowly. The rate of rainfall at which the runoff
513production exceeds the soil moisture is higher than the
514other zones. In forest and woodland systems, the infiltra-
515tion process is better facilitated than runoff which prob-
516ably delays formation of runoff until the rainfall rate
517increases to nearly 10 mm d�1. For the cropland system
518(zones C2 and D2), the rainfall rate at which the runoff
519production exceeds the soil moisture is smaller (about
5205 mm d�1) potentially due to human impacts of irrigation

Figure 5. Percentage of runoff and soil moisture production for different rainfall intensities (ground
observation) for selected zones of summer 2006 (upper six panels) and 2010 (lower six panels).

XXXXXX GEBREGIORGIS ET AL.: TRACING HYDROLOGIC MODEL SIMULATION ERROR XXXXXX

8 of 17



521 and other activities that facilitate runoff production more
522 quickly. In case of zones E3 and F3, the runoff production
523 exceeds the soil moisture at much smaller rainfall rate
524 (less than 3 mm d�1). In these zones, in addition to
525 LULC, the topographic features dominate the runoff pro-
526 duction. Because the VIC model simulates runoff without
527 directly incorporating the effects of topographic gradient,
528 this seems to indicate the predominance of the orographi-
529 cally enhanced rainfall-runoff process.

530 4.2. Spatial Nature of Errors
531 [25] Figures 6 and 7 present the spatial pattern of rainfall,
532 soil moisture, and runoff errors. Related to spatial error dis-
533 tribution, the three satellite rainfall products share certain
534 similarities. The southern and southeastern coast regions of
535 the Mississippi basin (Louisiana, Mississippi, and Tennes-
536 see) are dominated by missed precipitation during winter
537 season for all satellite rainfall products. In general, missed
538 precipitation is also the major source of total bias for the
539 eastern and central part of the basin during the winter season
540 for 3B42RT and CMORPH products. This is tied with the
541 occurrence of high snow cover in these regions during the
542 winter season and the weakness of PMW sensors to detect
543 warm rain processes.

544[26] The western mountainous parts of the basin (upstream
545of Missouri and Arkansas-Red basins) exhibit significant pos-
546itive total bias during the winter season for the PERSIANN-
547CCS product, which is mainly caused by false precipitation
548and positive hit bias. In this region, the PERSIANN-CCS
549product displays considerable false precipitation both in the
550winter season of 2006 and 2010 signifying weakness of the
551algorithm in producing false precipitation in moderate alti-
552tude and highland regions. On the other hand, 3B42RT
553shows a positive hit bias in the eastern part of MRB during
554the same season but the positive hit bias and missed precipi-
555tation cancel each other resulting in much smaller total bias
556in the region. The soil moisture error during this season has a
557similar pattern with the total bias but the magnitude of the
558error is higher than the precipitation. Most of the error from
559the rainfall is propagated into soil moisture and its magnitude
560is amplified. There is a modest error signature observed on
561the runoff due to less runoff production during the winter
562season except for the PERSIANN-CCS product, which dis-
563played smaller positive runoff error in the western edges of
564the MRB due to significant false precipitation.
565[27] For the summer season, the hit bias is the major con-
566tributor to the total error in all parts of the basin except for
567the northern part of Wisconsin and Minnesota, which are

Figure 6. Error component of three satellite rainfall products: total bias (E), hit bias (H), missed pre-
cipitation (�M), and false precipitation (F), soil moisture and runoff errors. Upper panel is for the winter
of 2006 (D05–JF06) and lower panel is for summer 2006 (JJA).
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568 also characterized by both missed precipitation and negative
569 hit bias. In general, during the summer season, CMORPH
570 and PERSIANN-CCS products overestimate the rainfall in
571 the central and western region of the basin. The soil moisture
572 error during the summer is not amplified like the winter sea-
573 son. A positive soil moisture error is observed in most parts
574 of the region comparatively similar to the total rainfall bias.
575 The occurrence of a large soil moisture error during the win-
576 ter season can be explained due to formation of snow over
577 the land surface because of false precipitation and positive
578 hit bias (upper panel of Figures 6 and 7). Less runoff error is
579 observed during the summer season for the 3B2RT product
580 and large positive runoff errors are produced in the central
581 and northern parts of the basin for CMORPH and PER-
582 SIANN-CCS due to the occurrence of false and positive hit
583 bias in the region. In general, this confirms that rainfall error
584 first propagates to soil moisture until the soil column reaches
585 its maximum holding capacity, after which the remaining
586 of error portion transfers to the runoff process [Raj and
587 Hossain, 2010].

588 4.3. Temporal Error Analysis
589 [28] Temporal error analysis was performed for the iden-
590 tified study zones based on LULC type. For each zone, the
591 spatial average error was computed for the analysis period
592 of 8 years (2003 to 2010). The time series plot (3B42RT

593panel) also included specific timelines where different sen-
594sors were added or decommissioned from the constellation
595used for precipitation estimation [Huffman et al., 2010] to
596help the reader understand the variation in performance as a
597function of the sensors’ history. To distinguish the temporal
598pattern of the errors clearly and avoid visual cluttering, a
59931 day moving average is applied again (similar to Figure 4)
600for the rainfall error components, runoff, and soil moisture
601errors.
602[29] Figure 8 shows that the temporal errors pattern for
603forest and woodland systems. In these two particular zones
604(zones A1 and B1), 3B42RT has positive hit bias most of
605the time and high missed precipitation during the entire pe-
606riod resulting in smaller total bias. The hit bias drops down
607to negative during the summer seasons and gains during the
608winter (Figure 8). As a result, the total error drastically
609reduces during the summer and becomes slightly positive
610during the winter. Generally, the total bias is dominated by
611missed precipitation. Apart from that, there is no consis-
612tently similar trend between the two zones for 3B42RT.
613More interestingly, the soil moisture error follows the trend
614of the total rainfall bias and the runoff error trails the hit
615bias trend. Similar to the total bias, the soil moisture error
616is reduced during the summer season due to high hit bias
617and is highly negative during the winter due to significant
618missed precipitation.

Figure 7. Same as Figure 6 except for the winter (DJF, upper panel) and summer (JJA, lower panel) of
2010.
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Figure 8. Time series of error components for three satellite rainfall products and simulated soil mois-
ture and runoff errors for forest and woodland systems for the period of 2003 to 2010 (MB: missed-rain
bias; FB: false-rain bias; HB: hit bias; TB: total bias; ROE: runoff error ; SME: soil moisture error).
Timeline for satellite sensors that was added or decommissioned from the constellation used for precipi-
tation estimation (hidden line with right arrow head, added timeline; hidden line with left arrow head,
decommissioned year; yellow smooth line, transition from GPCC to CAMS).
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619 [30] For the same LULC zones (A1 and B1), CMORPH
620 has a completely different temporal pattern compared to
621 3B42RT. The total error is dominated by hit bias. CMORPH
622 has strong positive total and hit bias during the summer
623 season and negative during the winter for zone A1. CMORPH
624 at zone B1 displays closer similarity with zone A1 except the
625 magnitude of positive total and hit bias during summer dimin-
626 ish in the later case. The absence of false precipitation that
627 contributes to positive hit and total bias results in the forma-
628 tion of weak positive bias. Unlike 3B42RT, the total bias for
629 CMORPH is controlled by the hit bias in both regions. The
630 PERSIANN-CCS data are characterized by a smaller amount
631 of false precipitation and positive hit bias in both zones. The
632 total error is mostly caused by hit bias and the presence of
633 small amplitude of false precipitation. Generally, for the case
634 of forest and woodland systems, the natures of errors are simi-
635 lar for CMORPH and PERSIANN-CCS because the hit bias
636 is the leading error, while 3B42RT is distinguished by strong
637 missed precipitation and mostly positive hit bias. Runoff and
638 soil moisture errors are dictated by the hit and total bias for
639 both CMORPH and PERSIANN-CCS.
640 [31] As seen in Figure 9, the drift of temporal errors for
641 the human land use system (cropland) shares considerable
642 common characteristics with forest and woodland system.
643 The total bias is largely controlled by missed precipitation
644 for 3B42RT, whereas for CMORPH and PERSIANN-CCS,
645 total errors are dominated by hit bias. In zone C2, missed
646 and false precipitation components are considerably higher
647 during the summer time for all satellite rainfall products
648 leading the hit bias to dominate the total error. By and
649 large, zone D2 is different from zone C2, and instead shares
650 significant error characteristics with zone A1. This shows
651 that LULC classification is not the only governing factor to
652 display more consistent error characteristics and that there
653 are other factors related to geographical features that need
654 to be considered. Such factors may include climatic factors
655 (Koppen climate class), topography (e.g., elevation, slope,
656 topographic index), and soil types (e.g., hydraulic proper-
657 ties and texture).
658 [32] Figure 10 presents the error characteristics of sa-
659 vanna and grassland systems (zones E3 and F3). Missed
660 precipitation is small in CMORPH and PERSIANN-CCS
661 for both zones; whereas false precipitation is large in both
662 regions except that it is small for 3B42RT in zone F3. For
663 the CMORPH product, hit bias is the dominant error com-
664 ponent which dictates the total bias, whereas due to signifi-
665 cant amount of false precipitation in PERIANN-CCS, the
666 total bias is fully dominated by false-rain bias. As seen in
667 Figure 10, the amplitude of the soil moisture error is higher
668 than the component or total errors during the winter time for
669 CMORPH and PERSIANN-CCS products. Despite the peak
670 amplitudes of soil moisture error during the winter period,
671 there is a systematic trend between the rainfall and soil mois-
672 ture errors throughout the analysis period (2003–2010). These
673 zones are mainly characterized by mountainous regions (up
674 to 2000 m a.s.l). As explained in section 4.1, CMORPH and
675 PERSIANN-CCS rainfall products overestimate the rainfall
676 in these zones during the wet season and winter season,
677 respectively (Figure 4, bottom panel). Due to mountainous
678 nature of the region, the overestimated rainfall from satellite
679 products is converted to snowfall by the hydrologic model,
680 resulting in the formation of significant snow pack depth

681during the winter seasons particularly for the PERSIANN-
682CCS product due to considerable false-rain bias (Figure 11,
683left-lower panel).
684[33] From the hydrologic modeling perspective, there are
685potentially two main reasons for soil moisture error to be
686high in these two particular zones. First, because of the for-
687mation of significant snow pack depth, the soil column is con-
688tinuously supplied with moisture from snow water equivalent
689through melting during the spring season regardless of addi-
690tional rainfall during the season. Second, a previous study on
691evaluation of models for simulating snow cover extent has
692shown that VIC-3L has the tendency to overestimate the
693snow depth over mountainous regions [Sheffield et al., 2003],
694which ultimately has an impact in soil moisture simulation
695over highland regions.
696[34] Correlation coefficients are used to determine the
697degree to which rainfall error patterns are associated with soil
698moisture and runoff errors. According to Figure 12, strong
699correlations (above 0.8) are observed between runoff and
700total error and hit bias for 3B42RT and CMORPH products
701in all zones (left three panels, the black and green bars). The
702runoff has weak correlation with missed (less than 0.4) and
703moderately correlated with false precipitation in the highland
704region where false-rain bias is a common error. For PER-
705SIANN-CCS, the degree of correlation of runoff with the hit
706bias is weak for the highland region of the Mississippi basin
707(zones E3 and F3) but it has strong correlation with total bias
708and false precipitation in this region. As it has been men-
709tioned above, false-rain bias is the leading error that domi-
710nates the total bias for PERSIANN-CCS in these particular AQ1
711regions (Figure 13). In general, AQ2
712[35] On the contrary, the soil moisture is also strongly
713associated with missed precipitation, hit and total bias, and
714sometime with false precipitation (right three panels, blue
715and orange bars). Missed precipitation often occurs because
716of light rain during summer and rain over snow covers dur-
717ing winter seasons. Light rain is generally responsible for
718the increase in simulated soil moisture content but does not
719facilitate runoff generation unless the soil moisture reaches
720saturation. Rainfall over snow cover is also not responsible
721for runoff generation as the rain is converted in the model
722to snow when it reaches the ground. On the other hand,
723these types of events have significant effects on soil mois-
724ture production, leading the soil moisture to depend on all
725three error components. As a result, if the contribution of
726missed precipitation to the total error is significant, runoff
727error is dictated by the hit bias more than by the total error.

7285. Conclusions and Recommendations
729[36] In this study the total rainfall bias was decomposed
730into hit bias, missed, and false precipitation for the entire
731MRB. Spatial distribution of rainfall error components, soil
732moisture, and runoff error were analyzed. For three dominant
733land use scenarios, the temporal patterns of rainfall error
734components, soil moisture, and runoff errors were character-
735ized both qualitatively and quantitatively. For forest and
736woodland and human land use system, the soil moisture was
737mainly dictated by the total bias for 3B42RT, CMORPH,
738and PERSIANN-CCS products. On the other hand, runoff
739error was largely dominated by hit bias rather than the total
740bias. This difference most likely occurred due to the presence
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Figure 9. Same as Figure 8, except for cropland system.
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Figure 10. Same as Figure 8, except for savanna-grassland system.
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741 of missed precipitation, which was a major contributor to the
742 total bias both during the summer and winter seasons.
743 [37] In summary, the tracing of error in hydrologic simu-
744 lation to rainfall error can be summarized into the follow-
745 ing key rules for product developers and end users.
746 [38] 1. The magnitude of the rainfall at which rate of pro-
747 duction of runoff exceeds the soil moisture depends on the
748 LULC type. The percentage of runoff production exceeds
749 soil moisture when the rainfall magnitudes are 10, 5, and
750 3 mm d�1 for forest and woodland, cropland, and savanna-
751 grassland systems, respectively. Since the magnitude of the
752 rainfall error propagating to the fluxes depends on the
753 amount of production of the fluxes (such as soil moisture,
754 runoff, and evapotranspiration), these threshold values are
755 ultimately useful to understand the proportion of the error
756 propagating to them, which could be applicable for hydro-
757 logically relevant merging of multisatellite rainfall
758 products.
759 [39] 2. For most cases, the hit bias and missed precipita-
760 tion are the major error components that dominate the total
761 bias during summer and winter, respectively. Moreover,
762 missed precipitation dictates the soil moisture error but not
763 the runoff error; indicating probably that missed precipita-
764 tion mostly occurs because of local convective type of rain-
765 fall that takes place for a relatively short period of time.
766 Additionally, the low level warm rain clouds are difficult to
767 be detected by the scattering channels of the passive micro-
768 wave sensor, often resulting in missed precipitation. The run-
769 off error is highly correlated with hit bias, which is a
770 common problem for CMORPH and PERSIANN-CCS over

771mountainous regions during the heavy rain season. The
772CMORPH product is characterized by positive hit bias in
773most part of the basin during the rainy season. We speculate
774the overestimation of precipitation arises because of the tech-
775nique of merging IR and MW estimates in the ‘‘morphing’’
776algorithm as it is pointed out by Tian et al. [2009].
777[40] 3. For hydrologists and other data users, it is impor-
778tant to realize the implication of satellite errors in soil
779moisture and runoff simulation. The total bias alone does
780not show the clear picture of rainfall or hydrologic error
781structures. As the error components have different signs,
782sometimes they cancel each other to produce a lower total
783bias [Tian et al., 2009]. As a result, the magnitude of soil
784moisture and runoff errors should be evaluated based on the
785amplitude of error components rather than the total bias. For
786hydrologic model simulation, the performance of the satel-
787lite products with respect to the geographic location needs to
788be assessed to make more accurate model prediction.
789[41] Like any other modeling problem, the finding of this
790study is likely sensitive to the quality of data that has been
791assumed as ‘‘reference.’’ Particular to this study, the
792gridded soil moisture and runoff from the VIC model are
793assumed as the ‘‘synthetic’’ truth or reference. It is impor-
794tant to recognize the limitation that this assumption is asso-
795ciated with because the model’s structural or parametric
796error is introduced into the hydrologic fluxes during the
797simulation process. We believe that the task of input data
798quality control, the method of model calibration, and vali-
799dation implemented in the study prior to modeling are very
800important to minimize such impacts.

Figure 11. Temporal pattern of snow pack depth and snow water equivalent for zone E3 (left panels)
and zone F3 (right panels) in Mississippi basin (note: SWEE is snow water equivalent error ; SPDE is
snow pack depth equivalent ; ROE is runoff error; and SME is soil moisture error).
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801 [42] Despite the aforementioned limitation, this particu-
802 lar study has vital applications for algorithm developers
803 and data users to understand satellite rainfall, soil moisture,
804 and runoff errors in the continuum of time, space, and land
805 use/land cover. Such a wide range of investigation by char-
806 acterizing satellite rainfall error as a function of LULC
807 type, tracing back the source of errors in soil moisture and
808 runoff simulation, understanding the role of LULC on run-
809 off and soil moisture production, and error propagation are
810 expected to improve multisensor algorithms or multiprod-
811 uct merging. A natural follow-up question now is to explore

812the nature of the errors as a function of additional criteria
813such as climate type, soil type, and terrain features (topogra-
814phy). These additional criteria are likely to have their own
815unique and identifiable contribution to the performance sat-
816ellite products and formation of runoff and soil moisture,
817such as those observed herein for LULC. Thus, considera-
818tion of additional governing features have merit in extending
819merging of a multiproduct satellite data at ungauged regions
820where these features are always known a priori. Work is
821under way along this direction and will be reported in a
822future study.

Figure 12. Correlation coefficient of soil moisture and runoff errors with total bias and rainfall error
components for the period of 2005–2010.

Figure 13. Correlation coefficient of soil moisture and runoff errors with total bias and rainfall error
components averaged over the entire basin.
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