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Investigating the Optimal Configuration of
Conceptual Hydrologic Models for

Satellite-Rainfall-Based Flood Prediction
Amanda Harris and Faisal Hossain

Abstract—In this letter, we investigated the optimal configura-
tion of conceptual hydrologic models for satellite-rainfall-based
flood prediction in the 970-km2 Upper Cumberland basin of
Kentucky. We explored the impact of integrating NASA’s real-
time global satellite rainfall product (IR-3B41RT), available at
0.25◦-hourly resolution, in four conceptual model configurations:
three built using the modular Hydrologic Modeling System of the
Hydrologic Engineering Center that focused on structural differ-
ences in infiltration schemes (i.e., National Resources Conserva-
tion Service (NRCS) curve number (CN) method, Green–Ampt
infiltration method, and deficit/constant loss method) and the
fourth being the topographic-index-based TOPMODEL. For the
case presented in this letter, a spatially distributed model ap-
plication did not appear to yield greater accuracy than lumped
approaches when using spatially distributed satellite rainfall data
for such a medium-sized basin. In general, the NRCS CN method
was found to be most effective in terms of minimizing flood
prediction uncertainty, followed by the Green–Ampt infiltration
and deficit/constant loss methods.

Index Terms—Floods, model complexity, satellite rainfall.

I. INTRODUCTION

THE GLOBAL importance of satellite-derived rainfall
has led to the development of an increasing number of

satellite-based rainfall products that are now available to meet
the needs of various users (for a summary of currently available
products, refer to [3]). However, satellite-estimated rainfall,
being only a proxy measurement, has uncertainty that bears
significant implications on the hydrologic simulation of land
processes. This uncertainty can lead to high uncertainties in
runoff simulation [9]. The manifestation of runoff uncertainty
due to error in rainfall input is commonly known as “error
propagation.” If satellite rainfall data, in anticipation of the
Global Precipitation Measurement (GPM) mission [11], are
to be critically assessed regarding the opportunities for flood
monitoring over medium and large basins, it is important that
we first understand the error propagation that is associated with
satellite-estimated rainfall.

There have been numerous studies on uncertainty of flood
prediction, mostly involving radar-estimated rainfall [6], [12],
[13]. However, much less is known on the reliability of satel-
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lite rainfall for flood monitoring. The structure of satellite
precipitation errors can be highly complex at scales relevant
for flood modeling. This complexity is now being recognized
by hydrologists who are generally not familiar with satellite
remote sensing techniques. However, a current knowledge gap
that has remained relatively unexplored is how to account
for hydrologic model complexity when identifying optimal
strategies for integrating satellite rainfall data in operational
flood monitoring systems. Recently, calls have been made for
hydrologists to become more involved in the satellite rainfall
data development process by providing feedback to data pro-
ducers that can potentially lead to development of better next-
generation algorithms for overland applications [5].

In this letter, we investigated the optimal configuration of
conceptual hydrologic models for satellite-rainfall-based flood
prediction in the Upper Cumberland (UC) basin of Kentucky
(KY) that has witnessed periodic catastrophic flooding. We ex-
plored the impact of integrating NASA’s real-time satellite rain-
fall data (IR-3B41RT), available at 0.25◦-hourly resolution, in
four conceptual configurations. Our motivation is driven by the
need to understand how model complexity triggers the transfor-
mation of the satellite rainfall estimation error to runoff error.

II. TESTABLE HYPOTHESIS

To extract the most hydrologically useful information from
satellite rainfall data, we need to understand the streamflow
simulation error as a function of complexities in both satellite
rainfall estimation error and model configuration.

III. STUDY AREA AND DATA

Our study area is the 970-km2 basin of the UC River in
southeastern Kentucky bordering with Virginia and Tennessee
(Fig. 1). The area is primarily mountainous and forested, and
it lies in the Eastern Coal Field physiographic region. The
underlying rock formations are primarily sandstone, shale, and
siltstone. The percentage distribution of major land-use types
is forest land (80.13%), urban (8.20%), cropland and pasture
(11.15%), and lakes and reservoirs combined (0.52%). The
outlet of the basin is in the town of Loyall, KY.

The storm event for this study took place on March 16–20,
2002, with the majority of the rainfall occurring on March 17
and 18. The total storm rainfall volume (i.e., mean areal rain-
fall), as reported from gages, was about 6.12 in (155.4 mm)
over the basin. The observed streamflow was measured at
the outlet of the basin in Loyall, KY, at the U.S. Geological
Survey streamflow gage #03401000. This gage was operated in
cooperation with the U.S. Army Corps of Engineers (USACE).
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Fig. 1. UC river basin. Yellow lines show locations of 0.25◦ grids for 3B41RT rainfall data. Rainfall and runoff for March 2002 storm event shown in the inset.

The peak flow for the storm was approximately 29 600 ft3/s
(Fig. 1). The reference rainfall data set for calibrating hydro-
logic models comprised the National Weather Service Stage III
data that have been bias corrected against gage data (hereafter
called NEXRAD) [4].

IV. HYDROLOGIC MODEL CONFIGURATIONS

We selected the Hydrologic Engineering Center’s (HEC)
Hydrologic Modeling System (HMS) for investigating various
hydrologic model configurations. We focused on three par-
ticular model configurations related to rainfall–runoff trans-
formation in HEC-HMS. These concerned infiltration scheme
conceptualizations to calculate excess rainfall leading to surface
runoff. Other components of the model such as base flow,
river routing, and evapotranspiration were kept constant. The
Muskingum–Cunge routing [1] and ModClark transformation
[8] method were used across all model types in HEC-HMS.
Required parameters for surface runoff routing were length,
energy slope, Manning’s n roughness coefficients, and station
elevation data. The reader is referred to the HEC-HMS Techni-
cal Reference Manual, March 2000 [14] for more details on
these methods. The infiltration schemes considered were the
following: 1) deficit/constant loss method; 2) Green–Ampt in-
filtration; 3) National Resources Conservation Service (NRCS)
curve number (CN) method. We used the topographic-index-
based model called TOPMODEL, which was first developed
by Beven and Kirkby [2], as our fourth model configuration.
We provide a very brief description of each rainfall–runoff
configuration hereafter.

A. Deficit/Constant Loss Method

The deficit/constant loss method assumes that, for a storm
event, the precipitation loss potential is constant. Until the
precipitation accumulation becomes greater than the initial

loss value, runoff does not occur. The method requires two
input parameters to describe the physical characteristics of the
watershed: the initial loss and the constant rate of loss.

B. Green–Ampt Infiltration Method

The Green and Ampt soil loss method is physically con-
ceptualized based on the law of conservation of mass and
Darcy’s equation for flow in porous media. The advantage
of this configuration is that its parameters can be estimated
by knowledge of the soil type and are physically meaningful.
When the initial loss is filled, the Green and Ampt equations
are used to determine the excess precipitation. The required
parameters for the Green and Ampt method include initial loss,
volumetric moisture deficit, wetting front suction, conductivity,
and percent imperviousness.

C. NRCS CN Method

In the NRCS CN method, the antecedent moisture (AM),
soil type, land use, and cumulative precipitation are used to
determine the excess precipitation. Like the deficit/constant loss
method, no runoff occurs until the initial abstraction has been
filled. The CNs for the basins in this letter were determined
by delineating the land use from aerial photography taken by
USACE. Assuming AM group 2, good hydrologic conditions,
and soil group B, the CN for each land-use type were obtained
from the HEC-HMS Technical Reference Manual, Appendix A.
When a basin contained more than one type of land use,
the CN was determined using the area-weighted method. The
input parameters required for the NRCS method were initial
abstraction and the CN.

D. TOPMODEL Method

This model may be considered the most complex among the
four configurations assessed in this letter. A topographic index
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Fig. 2. Observed versus NEXRAD simulated streamflow for the four hydrologic model configurations (time starts from March 16, 2002, 0000 UTC).

ln(a/ tan β) is used as an index of hydrologic similarity, where
a is the area draining through a point and tan β is the local
surface slope. In this letter, the topographic index was derived
from a 10-m-resolution digital elevation model for the UC
watershed by using a multiple-flow-direction algorithm [10].
Further details of TOPMODEL can be found in [2].

Using NEXRAD radar rainfall data as the baseline, it was
possible to derive very accurate streamflow simulations for
the various model configurations (see Fig. 2). Due to the very
negligible difference observed between baseline simulation and
observed streamflow across all four model types (Fig. 2), all
subsequent assessment of satellite-derived streamflow simu-
lation was therefore performed with respect to the observed
streamflow hydrograph.

V. SATELLITE DATA AND SATELLITE

RAINFALL ERROR MODEL

We employed a 2-D (i.e., spatial) satellite rainfall error model
(SREM2D) [6] for ensemble generation of synthetic satellite
rainfall data for error propagation experiments. The purpose
of SREM2D was to mimic satellite-like representation of the
rainfall fields using, as input, the reference rainfall of higher
accuracy (i.e., NEXRAD Stage III data in this letter). This can
be achieved through error corruption of the input rain fields in
a space-and-time stochastic framework. The major dimensions
of error structure in satellite estimation, which are modeled by
SREM2D, are as follows: 1) the joint probability of successful
delineation of rainy and nonrainy areas accounting for a spatial
structure; 2) the temporal dynamics of the conditional rainfall
estimation bias (rain > 0 unit); and 3) the spatial structure of the
conditional (rain > 0 unit) random deviation. In this letter, error
parameters were derived for a real-time satellite rainfall data
product produced by NASA–3B41RT [7], using the NEXRAD
rainfall as our reference for a nearby region over Oklahoma
[6]. This satellite rainfall product is produced at 0.25◦-hourly
resolution and is globally available on a near-real-time basis
from the World Wide Web. Five pixels was directly over the
basin area (Fig. 1).

VI. SIMULATION METHODOLOGY

FOR ERROR PROPAGATION

Because the most current version of HEC-HMS lacks an
automatic scheme for Monte Carlo (MC) simulation, the error
propagation using SREM2D was carried out manually. Hence,
only a 50-member MC ensemble of rain time series was
produced. These simulated ensembles were propagated one
by one through the three HEC-HMS-model and TOPMODEL
configurations.

In this letter, the following two modes of SREM2D were used
for the analysis: 1) spatially lumped mode over the basin and
2) spatially distributed mode using each satellite grid box
(Fig. 1). The SREM2D error modeling approach was applied
to the actual satellite rainfall data. This is a more pragmatic
approach for ungauged basins where ground validation rainfall
data (such as NEXRAD) is not available. The roles of reference
and estimated rain fields were therefore reversed in SREM2D.
This means that ensembles of time-varying rainfall fields
were generated from satellite rainfall data [7]. In essence,
this approach tried to “correct” available satellite rainfall
data according to the error structure known a priori. For the
spatially lumped case, a 1-D (spatially lumped) version of the
error model was used.

For this letter, we limited our uncertainty estimation in runoff
(i.e., delineation of error bounds) to calculation of the standard
deviation of simulated streamflow at every time step. Two
contrasting issues were considered in the error propagation.
If either the uncertainty limits of simulation runoff were too
narrow or the whole ensemble envelope was biased (i.e., the
observed streamflow is consistently outside the prediction error
bounds), then comparison with in situ/reference measurements
would suggest that the model complexity structure was invalid
for the satellite rainfall data. If, on the other hand, the uncer-
tainty limits were too wide, then it could be concluded that the
hydrologic modeling structure had little predictive capability.
The dichotomous nature of “structural validity” and “predictive
ability” was quantified by the exceedance probability (EP) and
uncertainty ratio (UR) in (1) and (2), respectively, found at the
bottom of the next page.
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Fig. 3. Streamflow error bars using satellite rainfall ensembles in MC simula-
tions in the lumped mode (i.e., basin is considered lumped).

VII. RESULTS AND DISCUSSION

A. Streamflow Error Propagation in Lumped Mode

In Fig. 3, the streamflow error propagation in the MC frame-
work using the SREM2D error model in the lumped mode [6]
is shown. The error bars of the four models shown represent
the uncertainty width in streamflow simulation for two standard
deviations (±1σ from the mean) of the derived distribution. For
a normal distribution, this would represent about 67% of “total”
uncertainty. It is interesting to note that while TOPMODEL
yields the narrowest uncertainty bars during the rising and
receding limbs of the hydrograph, its simulation uncertainty is
the highest during peak flows.

A more critical understanding of the dichotomous nature of
simulation uncertainty (in terms of precision UR and accuracy
EP) is obtained from Fig. 4. The NRCS CN method stands
out as the most optimal one because it generally has both
the narrowest uncertainty limits and the greatest proportion of
observed streamflow values within those limits. The EP drops
steeply while maintaining a moderate level in UR [note: the
UR is the lowest among all four models (Fig. 4, second panel
from top)].

B. StreamflowError Propagation in Spatially DistributedMode

When the error propagation experiments are repeated for
the spatially distributed configuration using SREM2D, the

Fig. 4. EP and UR versus standard deviation of streamflow simulation un-
certainty for lumped MC simulations. The x-axis represents the width of
uncertainty limit in terms of standard deviation of distribution.

simulation uncertainty is found to be considerably lower than
that from the lumped configuration of application (compare
Fig. 5 with Fig. 3). However, the nature of error propagation
is much more complex. First, a false peak flow manifests more
prominently during the rising limb of the hydrograph. Second,
the true peak runoff is almost invariably not captured within
the simulation error bars of any of the four models. While the
magnitude of the peak is within two standard deviations of
uncertainty, the peak is simulated late, and hence, the obser-
vation falls outside the envelope. Possible reasons for this may
be attributed to the spatial mismatch between satellite and true
rainfall data in terms of successful detection of rain and no rain.
It is well known that satellite rainfall at these hydrologic scales
can often suffer from imperfect detection capabilities for delin-
eation of nonstationary rainy and nonrainy areas. Consequently,
this may result in some subbasins overestimating the surface
runoff and vice versa.

Although the width of the error bars may be lower than that
from lumped application, the uncertainty in terms of accuracy,
i.e., EP, is found to be higher. Fig. 6 shows that the sensitivity
of EP to width of simulation uncertainty (or spread of derived
distribution) is lower and continues to remain at higher levels
than the lumped approach. Thus, if flood warnings were to be
issued with wider levels of error bars (from ±1σ or ±2σ error
bars) using spatially distributed rainfall, the benefit in terms
of observations more frequently falling within the stated error
bounds is likely to remain unimproved compared to the lumped
application. Overall, it is observed that the NRCS CN method
using lumped rainfall is the configuration that performs at the

EP =
Number of times that observed streamflow exceeds the uncertainty limits

Total number of time steps
(1)

UR =
Uncertainty in runoff volume simulation (between uncertainty limits)

Observed runoff volume
(2)
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Fig. 5. Streamflow error bars using spatially distributed satellite rainfall
ensembles in MC simulations (time starts from March 16, 2002, 0000 UTC).

Fig. 6. EP and UR versus standard deviation of runoff simulation uncertainty for
distributed MC simulations (i.e., model was run using distributed rainfall data).

optimal level in terms of EP and UR (note: both EP and UR are
the lowest; TOPMODEL is not shown, as it was run only in the
lumped mode).

VIII. CONCLUSION

We explored NASA’s real-time global satellite rainfall prod-
uct (IR-3B41RT), available at 0.25◦-hourly resolution, for four
conceptual model configurations: three built using the modular
HMS of HEC that focused on structural differences in infiltra-
tion schemes and the fourth being the topographic-index-based
TOPMODEL. The spatially distributed model application did
not appear to yield greater accuracy than lumped approaches
when using spatially distributed satellite rainfall data for such

a medium-sized basin. In general, the NRCS CN method was
found to be most effective in terms of minimizing flood predic-
tion uncertainty, followed by the Green–Ampt infiltration and
deficit/constant loss methods.

The complex-natured uncertainty of satellite rainfall at hy-
drologically relevant scales may warrant simpler and lumped
rainfall–runoff modeling schemes for modeling dynamic flood
events when the fundamental scale of satellite rainfall data is
relatively large compared to the overall size of the basin. This,
however, should not be construed as our universal endorsement
of lumped conceptual models over fully distributed physically
based hydrologic models. We believe that the spatial averaging
of satellite rainfall over a medium-sized basin tends to minimize
the magnitude of the various dimensions of error (such as
error variance, falsely detected rain and no rain, etc.) during
a dynamic flood event. Consequently, this results in less error
magnification during the rainfall–runoff transformation process
for the lumped application of satellite rainfall data.

We therefore recommend that considerable caution be exer-
cised in satellite rainfall data application when the scale of
available satellite rainfall data is comparable to the overall size
of the watershed.
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