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Understanding the Dependence of Satellite Rainfall
Uncertainty on Topography and Climate for

Hydrologic Model Simulation
Abebe S. Gebregiorgis and Faisal Hossain

Abstract—A quantitative and physical understanding of satellite
rainfall uncertainties provides meaningful guidance on improving
algorithms to advance hydrologic prediction. The aim of this study
is to characterize satellite rainfall errors and their impact on
hydrologic fluxes based on fundamental governing factors that
dictate the accuracy of passive remote sensing of precipitation.
These governing factors are land features—comprising topogra-
phy (elevation)—and climate type, representing the average am-
bient atmospheric conditions. First, the study examines satellite
rainfall errors of three major products, 3B42RT, Climate predic-
tion center MORHing technique (CMORPH), and Precipitation
Estimation from Remotely Sensed Information using Artificial
Neural Networks (PERSIANN), by breaking the errors down into
independent components (hit, miss-rain, and false-rain biases) and
investigating their contribution to runoff and soil moisture errors.
The uncertainties of three satellite rainfall products are explored
for five regions of the Mississippi River basin that are categorized
grid cell by grid cell (at the native spatial resolution of satellite
products) based on topography and climate. It is found that total
and hit biases dictate the temporal trend of soil moisture and
runoff errors, respectively. Miss-rain and hit biases are the lead-
ing errors in the 3B42RT and CMORPH products, respectively,
whereas false-rain bias is a pervasive problem of the PERSIANN
product. For 3B42RT and CMORPH, about 50%–60% of grid
cells are influenced by the total bias during winter and 60%–70%
of grid cells during summer. For PERSIANN, about 70%–80% of
the grid cells are marked by total bias during the summer and
winter seasons. False-rain bias gradually increases from lowland
to highland regions universally for all three satellite rainfall prod-
ucts. Overall, the study reveals that satellite rainfall uncertainty
is dependent more on topography than the climate of the region.
This study’s results indicate that it is now worthwhile to assimilate
the static knowledge of topography in the satellite estimation of
precipitation to minimize the uncertainty in anticipation of the
Global Precipitation Measurement mission.

Index Terms—Climate, precipitation, remote sensing, satellite,
topography, uncertainty.
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I. INTRODUCTION

A S PRECIPITATION (hereafter used synonymously
with “rainfall”) is the key factor in hydrologic model

simulation [1]–[3], determining the uncertainty of satellite
precipitation estimation has fundamental importance for many
applications. Quantifying and characterizing error in rainfall
estimates provide meaningful information in the short- and
the long-term monitoring of water-driven processes such as
weather forecasting [4]–[7], flood monitoring and control [8],
[9], agriculture and drought monitoring [10], [11], climate
research and prediction [12], [13], and hydrological and
water resource planning [14], [15]. Satellite rainfall uncertainty
(hereafter used synonymously with “errors”) analysis can range
from a simple error source description [16], [17] to complex
methods of quantification and propagation in hydrologic
models [2], [18]–[21].

Several studies have been conducted on satellite rainfall
uncertainty [1], [2], [16], [17], [21]–[27]. For example, Nijssen
and Lettenmaier [1] pointed out that the major sources of
uncertainty in satellite rainfall products arise from sampling, in-
strumental, and algorithmic errors. In particular, sampling error
contributes considerably to satellite rainfall uncertainty and can
occur due to the location of satellite orbit, size of swath width,
and spatial and temporal mismatch between satellite and refer-
ence rainfall fields. In another study, Hossain and Anagnostou
[28] developed a satellite rainfall error model to understand
the propagation of errors for passive microwave (PMW) and
infrared (IR) products by corrupting a more accurate ground
rainfall measurement. By considering a realistic IR retrieval
scheme and merging it with simulated PMW retrievals, they
studied the effect of satellite rainfall uncertainty on hydrologic
prediction. The study underscored the need for more frequent
sampling and merging of IR and PMW rainfall estimates to
reduce the uncertainty in satellite-based flood prediction.

Tian et al. [17] developed a scheme to break down the total
bias of satellite rainfall precipitation into hit bias, miss-rain bias
(missed precipitation), and false-rain bias (false precipitation)
for the contiguous United States. A hit (H) is defined as a
record of rainfall (greater than a threshold value, usually 1
mm/day according to Tian et al. [17]) reported by both satellite
and validation (ground) data. The difference between these
records (satellite minus ground observations) is a hit bias. A
miss (M) occurs when the satellite product documents no rain
during actual rain condition, whereas if the satellite data report
rain but it is not verified by the ground data, then it is called a
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false precipitation (F ). These error components are mutually
independent and closely related to satellite retrieval stages:
signal detection (screening) and rain rate estimation. Missed
and false precipitations are the possible error components that
can occur during the screening stage (identifying rain/no-rain
areas), and hit bias can occur due to weak signal, such as cloud-
top temperature which has a weak physical link to rainfall pro-
cesses and cloud optical properties. The study [17] advocated
that error decomposition can distinguish the source of bias
and identify the sources of error components that contribute to
the total bias. These error components can sometimes cancel
each other due to opposite signs to yield smaller total bias
and sometimes add up together to increase larger total bias
[17]. Thus, such breaking down of error helps to gain an
in-depth understanding of error sources tied to the retrieval
process, which eventually guides data producers and algorithm
developers toward appropriate adjustment and correction.

Gebregiorgis et al. [21] addressed the effect of three error
components (hit, miss-rain, and false-rain biases) of satellite
rainfall products on hydrologic simulation based on land use
and land cover (LULC) condition. This breaking down of
satellite rainfall error allowed the tracing back of simulated
hydrological fluxes and states to the source of error compo-
nents. Using the entire Mississippi River basin (MRB) as the
study region and the variable infiltration capacity (VIC)-3L as
the distributed hydrologic model [39], the study of the satellite
products (CMORPH [44], 3B42RT [42], and PERSIANN [45])
yielded two key findings. First, during the winter season, more
than 50% of the rainfall total bias was found to be dominated by
missed precipitation in forest and woodland regions (southeast
of Mississippi). During the rainy season, 45% of the total bias
was governed by the hit bias, and about 28% was governed
by the false precipitation in grassland–savanna region (west
part of the Mississippi basin). Second, a strong dependence
was observed between hit bias and runoff error and missed
precipitation and soil moisture.

Herein, it is important to highlight the physical insight that
the study of LULC provides. First, LULC has an impact
on satellite rainfall retrieval algorithm because of the surface
emissivity variation for different land cover systems. Hewison
[29] operated low-level aircraft that carried a PMW radiometer
over an area characterized by different vegetation covers. His
study revealed a strong correlation between background surface
emissivity and vegetation cover. Based on this study, bare soil
displayed high emissivity with very little polarization contrast,
close conifer forest showed very high emissivity at all frequen-
cies with no polarization difference, and the remaining forest
group exhibited low emissivity at lower frequencies. Such
emissivity variation due to LULC diversity can be sufficiently
large to affect the retrieval process during satellite rainfall
estimation process. In satellite-based rainfall estimation, it is
well known that different products use information from IR
and PMW spectral bands in their retrieval algorithms. How-
ever, surface emissivity specifically affects the PMW retrievals,
and that in turn affects the algorithms’ performance only to
the degree to which the PMW retrievals contribute in each
case. Therefore, CMORPH (which uses purely PMW), 3B42RT
(which uses mainly PMW), and PERSIANN (which uses only

IR calibrated against PMW) should be affected to various
degrees by the surface emissivity variations. In principle, even
though the calibrated IR should reflect the average behavior
of PMW, differing levels of sensitivity to surface emissivity in
retrieval techniques are unavoidable. In addition, to what extent
does surface emissivity affect the retrieval process of the three
products is also an interesting science question but is not the
focus of this study.

Second, LULC has a significant impact on the transformation
of incoming rainfall into direct runoff, percolation, and infiltra-
tion. For instance, forest and woodland systems facilitate more
percolation and infiltration processes than runoff generation
at the beginning of a storm, whereas human land use (crop
land system) facilitates the formation of runoff rather than
the infiltration process [21]. Thus, it is not surprising that
LULC-based studies of uncertainty reveal clear patterns (such
as [21]) that should to be acknowledged if the estimation and
application of satellite rainfall products are to be advanced.

In addition to LULC, land features, such as topography, can
play a profound role on the formation and type of precipita-
tion at global, regional, and local scales [30]. For instance,
the literature indicates that satellite rainfall estimation over
mountainous regions or complex terrains remains a challenge
[31]–[35]. In the case of the IR spectral range, clouds are
opaque, and precipitation is estimated from cloud-top temper-
ature that is related to cloud height. Such a retrieval heuristic
can often miss warm and orographic rainfall in mountainous
regions [36]. Moreover, this IR heuristic based on cloud-top
temperature undermines stratiform clouds that can be warm but
rain bearing and overvalues cirrus clouds that are not as rain
bearing. Similarly, the PMW retrieval algorithm comes from
two signal detection methods: ice scattering and emissivity. In
the case of ice scattering, the rainfall rate is associated with
the amount of ice in clouds, but warm orographic clouds in
tropics can produce substantial rainfall with little or no ice,
which could lead to missed precipitation by PMW sensors.
On the other hand, as surface emissivity is sensitive to land
cover, as discussed earlier, the background emissivity signal
that comes from cold surfaces and ice cover over mountainous
regions may sometimes be identified as rain, which could lead
to false precipitation (i.e., false-rain bias).

It is apparent from the aforementioned review that satellite
rainfall uncertainty studies have so far explored issues such as
sampling [1], retrieval [28], and, more recently, geophysical
features such as LULC [21]. However, other accompanying
geophysical features such as topography and climate, which
can collectively control surface emissivity (e.g., lower surface
temperature at higher altitudes or sparse vegetation at semi-arid
climates), have not been investigated in detail. Herein, we refer
to topography as “elevation” or “altitude” and climate accord-
ing to the standard Koppen climate classification [38]. These
two features are neither dependent nor mutually exclusive of
LULC that has been recently studied [21]. In many places,
LULC data can be an unreliable feature because of outdated
land surveys or recent and rapidly evolving land cover change
due to human settlement. However, topography and climate
are relatively “stable” as features and therefore deserve an
equally detailed investigation if future application of satellite
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Fig. 1. (a) Geographic location, (b) digital elevation model of the study basin, (c) elevation-based categorized regions, and (d) overlay of region boundary
[the numbers indicate the corresponding regions shown in (c)] and Koppen climate classes (http://koeppen-geiger.vu-wien.ac.at) of the Mississippi basin
(Table I—detail description of Koppen climate classes).

precipitation data is to be improved on the basis of optimal
merging according to the a priori hydrologic predictability
of the data product. The study of Gebregiorgis and Hossain
[37] on the optimal merging of various satellite rainfall data
sets revealed that a detailed understanding of the range of
geophysical controls of satellite rainfall uncertainty for each
grid box is necessary to improve application over ungauged
regions where in situ data are nonexistent.

Given that there has historically been no study of the de-
pendence of topography and climate on satellite rainfall uncer-
tainty, this paper is intended to address the following two key
questions.

1) How do rainfall total bias and error components of satel-
lite products vary with different topography and climate
features?

2) How does the topography or climate-dependent uncer-
tainty of satellite rainfall products affect the simulation
of hydrological fluxes and states?

As a broader impact, answers to the aforementioned question
are directly relevant to improving satellite rainfall estimation.
By leveraging the a priori uncertainty of three different near-
real-time satellite rainfall products (3B42RT, CMORPH, and
PERSIANN), Gebregiorgis and Hossain [37] have devised a
merging method to produce a more accurate and superiorly
merged product. To implement such a multiproduct merging ap-
proach in regions where observation data are often nonexistent
or sparse, derivation of these a priori estimates of uncertainty
from commonly available information is required. Thus, the un-
derstanding of uncertainties based on climate and topographic
features stands to afford the transfer of error information to

TABLE I
KÖPPEN CLIMATE CLASSES FOR MRB [38]

an ungauged basin where ground-truth data are unavailable
[27]. This paper is organized as follows. The study area, data,
and methodology are presented in Section II. Major findings
and analysis of results are introduced in section III. Finally, in
Section IV, the conclusion and possible recommendations are
described.

II. STUDY AREA, DATA, MODEL, AND METHOD

A. Study Area

The study was conducted in the MRB which is the largest
basin in North America and the third largest drainage basin in
the world next to the Amazon and Congo Rivers [see Fig. 1(a)].
MRB encompasses more than 40% of the U.S. land area,
extending from the Allegheny Mountains in the east to the
Rocky Mountains in the west. Due to its diverse physiographic
conditions ranging from lowland and flat floodplains to high
mountains [see Fig. 1(b) and (c)] and different climate features
[see Fig. 1(d)], MRB has been selected as a test bed for this
particular study.

http://koeppen-geiger.vu-wien.ac.at
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TABLE II
SUMMARY OF SATELLITE AND GAUGED RAINFALL DATA SETS FOR THE STUDY

For this study, the MRB was classified into different regions
based on topography and climate conditions. According to
topography of the area (i.e., elevation), it was grouped into
five different regions as follows: lowland/region 1 [elevation
ranging from 0 to 100 m above sea level (a.s.l)], region 2
(elevation ranging from 100 to 500 m), region 3 (elevation
ranging from 500 to 1500 m), region 4 (elevation ranging from
1500 to 2500 m), and highland/region 5 (elevation ranging
from 2500 to 4500 m) [see Fig. 1(c)]. Although 12 different
Koppen climate classes are present in the MRB [38], only the
five most dominant classes that cover most of the basin area
were considered [see Fig. 1(d) and Table I].

B. Study Data and Hydrologic Model

Three near-real-time satellite rainfall products (3B42RT,
CMORPH, and PERSIANN) were used to simulate runoff
and soil moisture over the Mississippi basin. The VIC-3L
macroscale hydrologic model [39] was implemented at a 0.125◦

spatial resolution and daily temporal scale during the three-year
study period (2003–2005). The start of the study period (2003)
was selected because this period was the first operational year
for the three products. On the other hand, the end period of
the study was considered to be 2005 due to the fact that VIC
input gridded meteorological driving data sets were available
only for the period spanning from 1915 to 2005 at the time of
writing and revising this manuscript (early 2011). Given that the
study period 2003–2005 is closer to the start of all three satellite
algorithms than to their present forms, the impact of the study
may be limited on the extent of the existing algorithm improve-
ments which must be highlighted as the limitation of this study.
The gridded ground observation data sets obtained from the
University of Washington [40] were used for model calibration
and validation and as reference data set for error computation.
Using these reference data sets and calibrated model, the runoff
and soil moisture were simulated and considered as synthetic
truth data to evaluate the runoff and soil moisture errors of
satellite rainfall products by taking hydrological model errors

Fig. 2. Schematic representation of satellite rainfall error components, hit bias
(H), missed precipitation (M), and false precipitation (F ), relative to ground-
truth observation.

into account. Detailed descriptions of the data sets were sum-
marized in Table II. The reader is also referred to [37] and [21]
for further details on the VIC-3L model setup over MRB.

C. Method

Tian et al. [17] and Habib et al. [41] have demonstrated
a method of breaking down the total rainfall bias into three
independent components consisting of the bias associated with
successful detection (hit), bias due to missed precipitation, and
bias due to false detections. Fig. 2 illustrates the schematic
representation of the error decomposition concept for satellite
rainfall observation relative to ground validation data. The left
region on Fig. 2 shows the outcomes of false alarm. In this case,
the satellite detects a rainfall event actually where there is no
rain on the ground. Hit occurs when both satellite and reference
data report rainfall coincidently. If the rainfall estimates in both
cases are the same, then it is a successful detection; otherwise,
it is a hit bias. On Fig. 2, the middle region represents the
occurrence of hit outcomes in which the bias could be negative,
positive, or zero. The occurrence of such error is realistic during
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Fig. 3. Time series of error components of three satellite rainfall products and simulated soil moisture and runoff errors for (left panels) lowland region and (right
panels) Cfa Koppen climate class. In this case, the lowland region is characterized as elevation below 100 m a.s.l. Cfa class is distinguished as humid subtropical
region (see Fig. 1 for detail description). Line/area color description: Dark line—total bias; red line—hit bias; blue line—runoff error; green line—soil moisture
error; orange shade—false precipitation; turquoise shade—missed precipitation.

the second stage of retrieval process (rain estimation). On the
other hand, the satellite could fail to detect the rain event that
is actually happening on the ground and such outcome is called
missed rainfall (Fig. 2, right region). Both outcomes (missed
and false precipitations) occur during the first stage of retrieval
process (screening) and always contribute a positive and a
negative bias, respectively.

The total bias can be expressed as a sum of three independent
bias components. Such decomposition helps to distinguish the
contribution of each error component for the formation of the
total bias. The error components can sometimes be canceling
each other to give the small value of the total bias and, at
other times, can add up to build up the total bias [17]. Thus,
to get more insight of the error source during satellite retrieval
process, such an approach has remarkable contribution toward
improving the estimation procedure and understanding the error
source. For the reader, a general description of the error decom-
position scheme with the appropriate mathematical illustration
is presented in Appendix.

III. RESULT ANALYSIS

The result of the study is presented on two key aspects. The
first aspect focuses on the temporal error characteristics and
variation (rainfall error components, runoff, and soil moisture
errors) based on topography (elevation) and climate conditions
(see Figs. 3–5). The error components for each product are

spatially averaged within the given region on a daily time scale
for the entire study period (2003–2005). In general, this section
deals with the volume of magnitude of each error component
in time. The second aspect discusses the spatial distribution of
rainfall error components, runoff, and soil moisture errors. It
focuses on the area magnitude (extent of area coverage) of each
error component on a seasonal basis.

A. Temporal Nature of Error Characteristics
(Volume Magnitude of Errors)

To remove cluttering, a 31-day moving average is applied
for the temporal error trend analysis (see Fig. 3). On the graph,
the turquoise and orange shades are the missed and the false
precipitation, respectively. The black, red, blue, and green
lines represent the total bias, hit bias, runoff error, and soil
moisture error, respectively. Fig. 3 shows the trends of time
series of satellite rainfall error components, simulated runoff,
and soil moisture errors for lowland regions (0–100 m a.s.l)
(left) and Cfa Koppen climate class (temperate without dry
season) (right) for three satellite rainfall products: 3B42RT
(top), CMORPH (middle), and PERSIANN (bottom). For all
products, both regions have similar error trends. The 3B42RT
product displays significant miss-rain bias with high amplitude
during the winter season. The miss-rain bias is consistently
reduced for the CMORPH and PERSIANN products. On
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Fig. 4. Same as Fig. 3, except for land feature between (left panels) 500–1500-m altitude and (right panel) midlatitude steppe dry (BSk) climate region.

the other hand, 3B42RT is characterized by positive hit bias
throughout the study period but less in magnitude than the
missed precipitation. Therefore, for this product, the total bias
is totally dominated by miss-rain bias.

For the CMORPH and PERSIANN products, the trends of
total and hit biases are similar (wave-shaped trend). Both errors
have peak positive during summer and dip negative during
winter time. As the magnitudes of miss-rain and false-rain
biases are smaller, the total bias is totally dominated by hit bias
for both products. False-rain bias is almost negligible in case
of 3B42RT and fairly noticeable in the PERSIANN product.
In general, false precipitation is not the main challenge for all
products in lowland region. From visual observation (on Fig. 3),
interestingly, the runoff error follows the trend of hit bias, and
soil moisture error maintains the pattern of total bias. The soil
moisture error is negative for the 3B42RT product in most cases
due to missed precipitation, whereas the runoff error is positive
during the same period because of significant amount of hit
bias. This proves the strong correlation of runoff with hit bias
and soil moisture with miss-rain bias. In case of CMORPH and
PERSIANN, similar to the trend of the total bias and hit bias,
the soil moisture error has positive error during the summer and
drops to negative during the winter season.

Fig. 4 illustrates the temporal trends of rainfall, runoff, and
soil moisture error for two regions characterized by an altitude
of 500–1500 m a.s.l and BSk climate class (Koppen climate:
arid steppe and cold). Even though miss-rain bias is lower
in these regions as compared to the lowland areas, there is

still significant variation across the three products; miss-rain
bias is enhanced in case of 3B42RT and diminished for the
PERSIANN product. On the other hand, while significant false-
rain bias is observed in the PERSIANN product, 3B42RT
reflects the lowest false-rain error.

In all these regions, the total error is largely dominated by
hit bias for CMORPH and PERSIANN during the summer
season. Therefore, like Fig. 3, the soil moisture error has a
similar trend with total bias and hit bias for these two products.
Furthermore, in the CMORPH and PERSIANN products, the
amplitude of soil moisture error is greater than the magnitude
of rainfall error components. We speculate that the reason for
high soil moisture error is linked with the occurrence of a con-
siderable amount of false precipitation in these two products, as
Gebregiorgis et al. [21] have recently reported. False precipi-
tation leads to the overestimation of rainfall that is eventually
converted to snow depth at intermediate and high altitude
regions by the model, particularly for the winter season. As
a result, a large amount of positive error is introduced into
simulated soil moisture. In addition, during the summer and
early fall months, due to continuous overestimation of rainfall
(positive hit bias), the simulated soil moisture remains signifi-
cantly high.

As seen in Fig. 5, the temporal error trend of highland
region (elevation ranging from 2500 to 4000 m a.s.l) and Dfc
Koppen climate class (cold without dry season) have many
characteristics in common with the previous regions. The drifts
of false-rain bias, hit bias, and total bias are some of the
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Fig. 5. Same as Fig. 3, except for (left panel) highland regions and (right panel) Dfc Koppen climate class.

common features. For the Dfc Koppen climate class, the missed
precipitation of CMORPH has increased for the winter and
spring seasons; consequently, it leads the soil moisture error to
drop to negative during these seasons.

Overall, the temporal aspect of the study reveals the fol-
lowing key findings. False-rain bias gradually increases from
lowland to highland regions consistently for all products, al-
though the sensitivity is less for 3B42RT and much large for
the PERSIANN product. This finding leads us to the following
rules for improving satellite rainfall estimation. First, false
precipitation is the main challenge for all satellite rainfall
products in the midaltitude and mountainous (highland) regions
and should be minimized if the products are to improve in
these regions (see Figs. 4 and 5). We think that the existence
of long-lasting orographic clouds over mountain peaks leads
to false precipitation. Misdetection of clear and cold surface
as precipitating cloud over land and sea surfaces can also
result in false-rain bias. Second, the sensor type and technique
of retrieval algorithm may play a key role on the magnitude
of false precipitation of each product. PERSIANN, which is
based on the IR sensor, shows the highest false-rain bias, while
3B42RT, which is merged from IR and PMW, has the least false
precipitation. CMORPH (an essentially PMW product) shows
some high value of false precipitation during summer season
but generally experiences low false precipitation as 3B43RT
(see Figs. 4 and 5).

Another aspect of this study is the existence of correlation of
rainfall error components with runoff and soil moisture errors.
The runoff error is found to be strongly correlated with the

hit bias with a correlation coefficient above 0.80 (Fig. 6, left
panels). When the hit bias is the dominant error, the runoff error
exhibits a strong correlation with the total bias. Correlation
coefficients are also found to diminish progressively (even
negative with false precipitation in some cases) from lowland
to highland region (see Fig. 6). This indicates the changing
dependence of errors because of the complex climatic and
hydrologic processes over highland regions.

Likewise, the soil moisture error is highly correlated with the
total bias (Fig. 6, right panels). From this, we can infer that soil
moisture error is affected by all error components. For instance,
for PERSIANN, where false precipitation is significant, the soil
moisture is equally correlated with false precipitation as it does
with the other error components (Fig. 6, right lower panel).

B. Spatial Nature of Error Characteristics
(Area Magnitude of Errors)

The spatial coverage and distribution of each error compo-
nent, including the runoff and soil moisture error, are analyzed
as a percentage of the total number of grid cells by counting
the pixels for the respective errors. The analysis result includes
only lowland (elevation ranging from 0 to 100 m a.s.l) and
highland (from 2500 to 4500 m a.s.l) for the winter and summer
seasons. Fig. 7 presents the percentage of grid cells dominated
by each type of error for lowland region of winter and summer
seasons. For the winter season (upper six panels), for 3B42RT
and CMORPH, most of the grid cells are controlled by negative
total bias due to significant missed precipitation in the region,
whereas for the PERSIANN product, the dominance of negative
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Fig. 6. Correlation coefficient of soil moisture and runoff errors with total bias and rainfall error components for topography-based regions.

total bias reduces due to the large number of false precipitation
pixels. The reason for such significant size of missed precipi-
tation in lowland region is attributed to the short-lived storms
that are a challenge for PMW sensors due to the infrequent
sampling time. As rainfall estimates are derived from PMW for
CMORPH and 3B42RT, missed precipitation is expected from
these two products. Given the fact that the 3B42RT product uses
pure PMW in most grid boxes and IR in others, it should have
less missed precipitation than the CMORPH product. However,
the higher missed precipitation for the summer season can
probably be attributed to the lack of proper IR calibration in
3B42RT. In addition, the percentage of negative hit bias grid
cells is found to be larger than that of the positive hit bias grid
cells. This shows that PERSIANN underestimates rainfall in
large areas even during successful rainfall detection. By large,
negative runoff and soil moisture errors dominate the region due
to missed precipitation for 3B42RT and CMORPH and due to
negative hit bias for PERSIANN. For the summer season, the
area coverage of missed precipitation notably reduced for all
products.

Fig. 8 illustrates the percentage of areal coverage of errors
in highland region (elevation ranging from 2500 to 4500 m
a.s.l). About 45% of the region is characterized by miss-rain
bias for the 3B42RT and CMORPH products in the highlands
during the winter season. Consequently, the negative total
bias dominates the region by large. Surprisingly, for these two
products, the extent of hit bias is limited to a very small fraction
of grid cells. This proves that the major challenge of 3B42RT
and CMORPH is missed precipitation in the highland region
during the winter season. As pointed out by Tian et al. [17],

this could be due to the inability of PMW sensors to detect
rainfall over snow-covered areas or due to low-level warm rain
which may not have a strong signature of ice particles to be
detected by the scattering channels. The other possibility is that
developers could probably shed light on how the old-version
algorithms performed over snowy surfaces for the study period
(2003–2005). Unlike the 3B42RT and CMOPRH products, a
large percentage of grid cells are dominated by hit bias error for
PERSIANN.

The differences in performance among these products lead
us to the following conclusions. During the winter (snow)
season, for 3B42RT and CMORPH, the problem of missed
precipitation is linked to the weakness of screening strategies
which fails to discriminate rain from no-rain event. However,
the PERSIANN has a weakness during both retrieval stages
(screening and estimation). The false precipitation is related
to the screening process, and hit bias is linked to the lack of
physical correlation between the rain rate and detected signal
of cloud-top temperature.

In terms of spatial coverage, on average, 50%–60% and
60%–70% of pixels were influenced by the total bias dur-
ing winter and summer, respectively, for both 3B42RT and
CMORPH. Out of these grid cells, 30%–35% were labeled by
miss-rain bias during winter, and 30%–65% were marked by
hit bias during summer. For the PERSIANN product, about
70%–80% of the grid cells were marked by total bias during
the summer and winter times. For PERSIANN, 45%–50%
of the pixels were labeled by hit bias during summer, and
20%–40% were pronounced by false-rain bias during the
winter. In general, for the PERSIANN product, hit bias and
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Fig. 7. Percentage of grid cells dominated by various rainfall error components and soil moisture and runoff errors for lowland region for (top six panels) winter
and (bottom six panels) summer of 2005.

false-rain bias were the major error contributors for the total
bias in terms of the areal coverage during summer and winter
seasons, respectively. For 3B42RT and CMORPH, hit bias and

miss-rain bias were the dominant error sources for the summer
and winter seasons, respectively. The overall percentage of
error distribution is presented in Table III.
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Fig. 8. Same as Fig. 7, except highland region (NOTE: pos.—postive; neg.—negative).

Fig. 9 demonstrates the fraction of magnitude of each rainfall
error component as a ratio of total bias for lowland (upper
panel) and highland (lower panel) regions during winter and

summer seasons. For 3B42RT, the largest magnitude of the
error is missed precipitation. For CMORPH, the proportion of
hit bias is considerably high for the summer season (74% and
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TABLE III
SUMMARY OF PERCENTAGE OF PIXELS AFFECTED BY DIFFERENT ERRORS

Fig. 9. Ratio of bias components to the total bias (HB/TB, MB/TB, and
FB/TB, where HB is the hit bias, TB is the total bias, MB is the miss-rain bias,
and FB is the false-rain bias), with the three ratios adding up to 1, for (upper
panel) lowland and (lower panel) highland regions (NOTE: The inner circle is
for winter, and the outer one is for summer season).

68% for lowland and highland, respectively). This shows that,
during the rainy season, CMORPH overestimates the rainfall
with noticeably high magnitude. In case of PERSIANN, the
ratio of false precipitation is high during summer for lowland
and high during winter for highland region (numerically, it is
20% and 69% for lowland and highland, respectively).

To demonstrate the relative contributions of terrain and cli-
mate feature, a more rigorous study is conducted by dividing
pixels from the same elevation band among Koppen climate
subclasses. Within a particular region, the dominant climate
zones are only considered as shown in Figs. 1(d) and 10.
Fig. 10 shows how much the terrain height and the climate are
sensitive to the relationship between rainfall error components
and hydrologic fluxes. First, except for region 5 (highland),
the average percentage difference of correlation coefficients
for climate subclasses is less than 15% for both runoff and
soil moisture in all regions. This shows that, within the same
topographic region, the climate type does not influence the
correlation coefficients. The lengths of the bars in Fig. 10
illustrate little variation of coefficient of correlation for the
leading error components (such as total bias, hit bias, and also

missed-rain bias in the case of soil moisture). Second, the same
climate classes that are found in different topographic regions
do not have consistent correlation coefficients. This indicates
that topography is a major controlling factor. On the other hand,
climate type also plays a major role in highland region (region
5). The percentage difference of correlation coefficient in this
region amounts to 70%. In highland regions, irrespective of the
altitude, the rainfall variability is significant across windward
and leeward sides of the mountain, resulting in uneven error
characteristics.

IV. CONCLUSION AND RECOMMENDATION

In this paper, the total bias of satellite rainfall was de-
composed into hit bias, miss-rain bias, and false-rain bias,
and the nature of these error components, including runoff
and soil moisture errors, was thoroughly investigated based
on regions that were categorized by topography and Koppen
climate classes. Based on topography, MRB was regionalized
into five regions and, also based on Koppen climate type, into
five dominant climate classes (see Fig. 1). Perhaps the most
revealing finding of this study is the dominance of topography
over climate features on satellite rainfall uncertainty. This is
not surprising because topography is also a governing factor
for Koppen climate classification, and thus, to some extent,
the geographic location and the layout of regions are similar
for both classification scenarios. It appears therefore that the
study of topography, by default, makes the inclusion of climate
information somewhat redundant as no additional underlying
and physical insights are revealed.

It was found that the hit bias and missed precipitation are
the two leading error sources for the total bias for both the
3B42RT and CMORPH products. The missed precipitation was
pervasive during the winter time, and the hit bias prevailed dur-
ing the summer. For the PERSIANN product, the two principal
error sources were false-rain bias and hit bias (hit bias being a
common prime error for all products) for winter and summer
seasons, respectively.
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Fig. 10. Correlation coefficient of rainfall error components with (left panel) runoff and (right panel) soil moisture errors for different Koppen climate classes in
regions 2, 3, 4, and 5. Region 1 is characterized only by a single climate type (Cfa). The black bar shows the correlation coefficient between errors for the entire
region, whereas the other color bars show the correlation coefficient when the regions are subdivided into climate subclasses.

The temporal trend analysis proved that the simulated soil
moisture and runoff errors were controlled by the total bias
and hit bias, respectively. Runoff error did not depend on
miss-rain bias because, usually, missed precipitation occurs due
to relatively short-lived storms such as local convective type
of rainfall (T-storms). Local thunderstorms actually generate
significant runoff as the rain rates usually exceed infiltration
capacity by a significant margin; however, the storms are so
short lived and cover such a small geographic region that the
overall impact is lost when looking at coarser scales in space

and time. The results of this study can be summed up into the
following key points.

1) Characterizing error information based on governing
factors such as topography and climate types provides
valuable information, similar to LULC [21], on satellite
rainfall error characteristics and its reliability for hy-
drologic model simulation. By breaking down rainfall
total bias into its distinct components, the source of
errors propagated into hydrologic fluxes and states can be
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traced. This information enables hydrologist to make cor-
rect prediction considering the product type, geographic
location, and the season of the simulation.

2) The performance of the three satellite rainfall products
varies based on the seasons and location. Each product
exhibits distinct pros and cons that collectively justify
the motivation for a further merged product (similar to
[37]) based on a priori hydrologic model predictability.
For example, 3B42RT has anomalously high missed pre-
cipitation and less hit bias and false-rain bias; CMORPH
tends to have strong hit bias during summer, miss-
rain bias during winter, and less false-rain bias; and
PERSIANN has considerably strong false precipitation in
highland regions, high hit bias, and small miss-rain bias.
The problems of the missed and the false precipitation
are linked with the lack of influential screening strategies,
whereas hit bias and, in some cases, false-rain bias are
related to weak physical correlation between signal and
rain estimate.

One of the major limitations of this work is that the study
period is not recent enough to reflect the present status of
rainfall algorithms. The algorithms of 3B42RT and CMORPH
used stable configuration of PMW sensors from 2003 to 2008
[15] with the exception of the Advanced Microwave Scanning
Radiometer sensor that started operation in April 2004. On the
other hand, according to the information obtained courtesy of
3B42RT algorithm developers, many of the sensors (such as
NOAA15, NOAA16, and NOAA17) are currently phased out
and replaced by other new satellite sensors such as NOAA18
and MetOp1. Likewise, several improvements have also been
made on the CMORPH product, but the data have recently
been reprocessed for the entire CMORPH history [49] after this
manuscript was written. The reader should be aware, however,
that the old version of the CMORPH data set has been used
in this study. In general, the validity of the recommendations in
the study depends on the extent of improvements that have been
made on the rainfall algorithms. The other key limitation of our
study is that a detailed physical (process-based) understanding
of rainfall uncertainties is attainable only for regions that have
ground-truth (gauged) data. However, satellite rainfall products
are more valuable for data sparse or remote regions of the
world. Therefore, a key concern is addressing the nature of
errors in poorly instrumented regions. We hope to conduct a
deeper rooted investigation of error to address this issue for the
vast regions of the world lacking in ground validation rainfall
data from in situ networks. The goal of this future study, which
we hope to report soon, will be to convey the quality-controlled
information from gauged basins to the ungauged basins lo-
cated far apart in a logical and systematic way by leveraging
a priori information on readily available geophysical features in
anticipation of the Global Precipitation Measurement mission.

APPENDIX I

Let us assume that Ps is the precipitation estimate by the
satellite, Pr is the reference (ground-truth) precipitation, TB is
the total bias, HB is the hit bias, MB is the missed-rain bias,

FB is the false-rain bias, and TH is the threshold value. For
practical purpose, TH can be considered between 0 and 1 mm/
day of rainfall [17]

TB = Ps − Pr

If Ps > TH and Pr > TH, then HB = Ps − Pr

If Ps ≤ TH and Pr > TH, then MB = Ps − Pr = −Pr

If Ps > TH and Pr ≤ TH, then FB = Ps − Pr = Ps

.

Therefore, to evaluate the error, it is important to develop the
event mask for the respective error components as shown in the
following:

Condition
Error
component

Event mask
H M F

Ps > TH and Pr > TH
Ps ≤ TH and Pr > TH
Ps > TH and Pr ≤ TH
Ps ≤ TH and Pr ≤ TH

Hit
Miss
False
No error

1 0 0
0 1 0
0 0 1
0 0 0

If the event masks are denoted as Rh, Rm, and Rf for hit,
miss-rain, and false-rain components, respectively, then we can
demonstrate that the sum of error components is equal to the
total bias

HB+MB+FB=(Ps−Pr)×Rh+(−Pr)×Rm+(Ps)×Rf

=Ps×Rh−Pr×Rh−Pr×Rm+Ps×Rf

=Ps(Rh+Rf )−Pr(Rh+Rf )

but from the event mask matrix above, one can understand that
Rh +Rf = Rh +Rf = 1 for all conditions except Ps ≤ TH
and Pr ≤ TH (“no error” condition).

Thus, HB+MB+FB=Ps×1−Pr×1=Ps−Pr=TB.
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