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ABSTRACT

This paper addresses the following open question: What set of error metrics for satellite rainfall data can
advance the hydrologic application of new-generation, high-resolution rainfall products over land? The
authors’ primary aim is to initiate a framework for building metrics that are mutually interpretable by
hydrologists (users) and algorithm developers (data producers) and to provide more insightful information
on the quality of the satellite estimates. In addition, hydrologists can use the framework to develop a
space–time error model for simulating stochastic realizations of satellite estimates for quantification of the
implication on hydrologic simulation uncertainty. First, the authors conceptualize the error metrics in three
general dimensions: 1) spatial (how does the error vary in space?); 2) retrieval (how “off” is each rainfall
estimate from the true value over rainy areas?); and 3) temporal (how does the error vary in time?). They
suggest formulations for error metrics specific to each dimension, in addition to ones that are already widely
used by the community. They then investigate the behavior of these metrics as a function of spatial scale
ranging from 0.04° to 1.0° for the Precipitation Estimation from Remotely Sensed Information Using
Artificial Neural Networks (PERSIANN) geostationary infrared-based algorithm. It is observed that mov-
ing to finer space–time scales for satellite rainfall estimation requires explicitly probabilistic measures that
are mathematically amenable to space–time stochastic simulation of satellite rainfall data. The probability
of detection of rain as a function of ground validation rainfall magnitude is found to be most sensitive to
scale followed by the correlation length for detection of rain. Conventional metrics such as the correlation
coefficient, frequency bias, false alarm ratio, and equitable threat score are found to be modestly sensitive
to scales smaller than 0.24° latitude/longitude. Error metrics that account for an algorithm’s ability to
capture rainfall intermittency as a function of space appear useful in identifying the useful spatial scales of
application for the hydrologist. It is shown that metrics evolving from the proposed conceptual framework
can identify seasonal and regional differences in reliability of four global satellite rainfall products over the
United States more clearly than conventional metrics. The proposed framework for building such error
metrics can lay a foundation for better interaction between the data-producing community and hydrologists
in shaping the new generation of satellite-based, high-resolution rainfall products, including those being
developed for the planned Global Precipitation Measurement (GPM) mission.

1. Introduction

Rainfall is a critical input for hydrologic models that
predict the makeup of the hydrologic state over land.
Because rainfall is intermittent, accurate modeling of
the dynamic surface hydrologic state requires accurate

rainfall data at the highest possible resolution. How-
ever, as in situ networks for rainfall measurements con-
tinue to decline worldwide (Stokstad 1999; Shiklo-
manov et al. 2002), spaceborne global observations are
the only viable means to promote our understanding of
terrestrial hydrology over the vast regions that are un-
gauged (Hossain and Lettenmaier 2006).

The global importance of satellite-derived rainfall
has led to the development and accuracy assessment of
an increasing number of satellite-based rainfall prod-
ucts to meet the needs of various users. Anagnostou

Corresponding author address: Faisal Hossain, Department of
Civil and Environmental Engineering, Tennessee Technological
University, 1020 Stadium Drive, Cookeville, TN 38505-0001.
E-mail: fhossain@tntech.edu

JUNE 2008 H O S S A I N A N D H U F F M A N 563

DOI: 10.1175/2007JHM925.1

© 2008 American Meteorological Society

JHM925



(2004) provides a detailed synopsis of the evolution of
current satellite-estimation techniques over land, while
Ebert et al. (2007) summarize several “high-resolution
rainfall products” that are currently available via the
Internet. Generally, the satellite data and hydrologic
communities tend to characterize the accuracy of rain-
fall data using metrics such as bias, correlation coeffi-
cient, and standard deviation of “error.” Additional
measures, such as critical success index (CSI), Heidke
skill score (HSS; Heidke 1926), equitable threat score
(ETS), and false alarm ratio (FAR; Ebert et al. 2007)
have seen use in the meteorological community en-
gaged in forecasting (e.g., the National Weather Service
or the European Centre for Medium-Range Weather
Forecasts). These measures have proved useful in as-
sessing satellite rainfall algorithms at scales pertinent
for climate modeling, weather prediction, or even large-
scale water management studies. However, with the
planned Global Precipitation Measurement (GPM)
mission (Smith et al. 2007) and the continued shift to-
ward hydrologically more relevant scales (5–10 km and
hourly), there is an urgent need to investigate metrics
that can more effectively advance the use of satellite
algorithms for hydrology over land, among other uses
(Huffman et al. 2004; Lee and Anagnostou 2004). Hos-
sain and Lettenmaier (2006) have argued that a shift in
paradigm is needed to properly assess estimates of rain-
fall from satellite sensors for modeling of dynamic hy-
drologic phenomenon such as flood prediction. Among
the many issues that require the exercise of caution, one
that bears critical importance is the uncertainties in sat-
ellite-estimated rainfall that cascade nonlinearly
through the simulation of the terrestrial hydrologic pro-
cesses (Nijssen and Lettenmaier 2004). This nonlinear
effect is difficult to model because of the prominent
discontinuities of the rainfall process in space and time
that are observed as scales become smaller.

Recognizing the need for assessment of uncertainty
for the new generation of high-resolution precipitation
products (HRPP), several recent studies have com-
pared the accuracy of various satellite rainfall products
over land. For example, Ebert et al. (2007), as a con-
tribution to the International Precipitation Working
Group (IPWG), assessed six widely available HRPP
using an array of error metrics currently used by the
community. Hong et al. (2006) have evaluated an infra-
red satellite-estimation technique for hydrologic appli-
cations using error conceptualizations initiated by
North and Nakamoto (1989) and subsequently formal-
ized by Steiner et al. (2003). Other examples of evalu-
ating satellite rainfall uncertainty include McCollum et
al. (2002) on the assessment of bias, Gebremichael and
Krajewski (2005, 2004) on sampling errors, and Ali et

al. (2005) on satellite error functions for the Sahel re-
gion.

While these and other studies of satellite rainfall un-
certainty have advanced the application of HRPP in
terrestrial hydrology to some extent, some issues con-
tinue to remain open. For example, many studies treat
error as a unidimensional measure and use power-law-
type relationships or models for estimating this aggre-
gate error as a function of spatial and temporal sam-
pling parameters (Moradkhani et al. 2006; Hong et al.
2006; Steiner et al. 2003). Such frameworks are accept-
able for estimating the average error over an areal do-
main, but they do not have explicit representation of
the space–time covariance structure of the estimation
error, which can have significant implications in the
simulation of the terrestrial hydrologic processes (Hos-
sain and Anagnostou 2005). Also, most studies, such as
that of Ebert et al. (2007), have typically addressed
uncertainty at daily or larger time scales, which are
somewhat coarse for resolving the evolution of the dy-
namic hydrologic state over land (e.g., for floods and
soil moisture).

In this paper, we address the following open ques-
tion: What set of error metrics for satellite rainfall data
can advance the hydrologic application of new-
generation HRPP over land? The satellite rainfall data
producing community have long recognized that infor-
mation on the reliability of satellite rainfall estimates is
valuable to a wide range of users. Yet the definition of
acceptable skill in the satellite data is relative to the
nature of the application. Ebert et al. (2007, p. 49) pro-
vide a lucid perspective on the diverse accuracy re-
quirements. Our initial question leads us to pose a set of
additional questions: What should be the characteristics
of error metrics at hydrologically relevant scales? How
should they be designed so that they are conveniently
interpretable by both data producing and hydrologic
communities? How should these metrics be packaged
into standard satellite data products for best use in hy-
drologic modeling and decision making?

Clearly, these questions require error expressions
that capture mean behavior accounting for space–time
correlations and intermittency in the estimated rainfall
fields. Hence, for the hydrologist, error should be de-
fined in terms of the rainfall and tagged to a given space
and time scale. We therefore conceptualize that the
error metrics should be associated, at a minimum, with
three general dimensions: 1) spatial (how does the error
vary in space?); 2) retrieval (how “off” is the rainfall
estimate from the true value over rainy areas?); and 3)
temporal (how does the error vary in time?).

As with any modeling exercise, there is probably no
unique way of representing error completely. But, we
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note that studies of uncertainty in hydrologic prediction
have usually evolved independently of efforts to char-
acterize uncertainty in remote sensing estimates of rain-
fall. In this study, our aim is therefore to initiate a com-
mon framework for building error metrics. In particu-
lar, we are motivated to build such a framework
comprising multidimensional metrics that can be math-
ematically transformed into a model for simulating sto-
chastic realizations of satellite rainfall data for a given
satellite rainfall algorithm. There are several math-
ematical error models today (e.g., Steiner 1996; Steiner
et al. 2003; Hong et al. 2006) that can yield such sto-
chastic realizations of simulated rainfall. However,
there seems to be none, to the best of our knowledge,
that remain conceptually flexible enough to investigate
inclusion of additional, or modification of, error metrics
for a given application.

We also emphasize that our framework is intended to
augment the commonly used metrics (e.g., correlation,
bias, RMSE, etc.) in order to provide a better assess-
ment of algorithms at hydrologically relevant scales. In
section 2, we introduce a set of error metrics that was
first formalized by Hossain and Anagnostou (2006).
Overviews of the study region and rainfall datasets (ref-
erence and satellite) are provided in section 3. In sec-
tion 4, we present our error assessment across hydro-
logically relevant spatial scales ranging from 0.04° to
1.0° of latitude/longitude for a particular satellite-based
set of rainfall estimates. The implications of these re-
sults on data use are discussed, along with the chal-
lenges ahead in developing more robust metrics for op-
erational data products. Finally, in section 5, we sum-
marize the major findings and recommend future work.
While rainfall is our primary focus, the techniques that
are described here are general enough to be applied to
the broader spectrum comprising precipitation.

2. Error metrics for satellite rainfall

In section 1 we hypothesized that error metrics
should quantify, at a minimum, three specific dimen-
sions related to rainfall intermittency. We address this
concept using the error-modeling approach first out-
lined by Hossain and Anagnostou (2006, hereafter
HA06). First, we note that the error structure necessary
to capture the rainfall intermittency at hydrologically
relevant scales arises from the physical issues associated
with satellite rainfall estimation. Satellite-derived esti-
mates are typically instantaneous, area-averaged rain-
fall. Since rainfall is an intermittent process, each sat-
ellite gridbox value will be classified by a rainfall algo-
rithm as rainy or nonrainy (as discussed above, “rain” is
used here as a shorthand for “precipitation”). When

compared to the corresponding ground validation rain-
fall data (hereafter referred to as “reference”), a satel-
lite estimate may fall into one of four possible outcomes:

1) Satellite successfully detects rain (successful rain de-
tection, or “hit”).

2) Satellite fails to detect rain (unsuccessful rain detec-
tion, or “miss”).

3) Satellite successfully detects the no-rain case (suc-
cessful no-rain detection).

4) Satellite fails to detect the no-rain case (unsuccessful
no-rain detection, or “false alarm”).

For the data-producing community, there are already
accepted metrics in use that can quantify these notions
of hits, misses, and false alarms. Some examples are,
frequency bias (FB), FAR, and ETS. Ebert et al. (2007,
p. 52) provides an introductory background on the for-
mulation of these metrics that are often tagged with the
satellite estimates by the data producers during algo-
rithm comparisons (see also appendix B). Each of these
conventional metrics typically refers to a particular as-
pect of rain estimation considered important for evalu-
ating algorithms at large space–time scales. For ex-
ample, the metric FB indicates the tendency of an al-
gorithm to overestimate or underestimate the aerial
extent of rainy areas (�1 for overestimation; �1 for
underestimation). However, an issue that has remained
unclear is the use of these metrics to generate stochastic
realizations of satellite rainfall for assessing their hy-
drologic implications. It is not clear how one would use
the FB measure in an error model to simulate satellite-
like rainy areas with coherent space–time structures.
Hence, an inherent limitation associated with some of
these conventional metrics is the difficulty in math-
ematically modeling the property they represent for
simulation of stochastic realizations of satellite rainfall
data. Many of the currently accepted metrics therefore
have diagnostic power (i.e., they tell us the level of
error for an actual algorithm). But most lack prognostic
qualities for hydrologic error propagation experiments
(i.e., they do not tell us how to use it a step further to
generate stochastic realizations of satellite rainfall
data). This fact motivates our proposed framework on
additional and hydrologically more relevant metrics.

In Fig. 1, we outline the layout of the HA06 error
metrics and describe the logic behind formulation of
the metrics hereafter. For satellite grid boxes that are
correctly detected as rainy (e.g., a rainy area HIT), the
probability of successful detection likely depends on
the magnitude of the rainfall rate. This comes from our
experience that satellites are less likely to miss areas
that are raining more heavily than others. Our first met-
ric numbered 1 in Fig. 1, probability of detection of rain
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(PODRAIN), is used to quantify this property. Here the
PODRAIN for a given threshold rain rate � is defined
statistically as follows:

PODRAIN � Prob�RSAT � 0 |RREF � ��, �1�

where subscripts SAT and REF refer to satellite and
reference values for rain rate, respectively.

The functional form of PODRAIN may be based on
either the reference [ground validation (GV)] or the
estimated rain rate. For example, the traditional hy-
drologist users would likely be interested in the prob-
ability of rain detection benchmarked with respect to
ground data. On the other, the data producers may find
it almost impossible to tag the probability of detection
of the satellite estimates to the GV data on an opera-

tional basis due to lack of global-scale ground valida-
tion data, so they would choose to index errors on sat-
ellite estimates instead.

To maintain consistency with the HA06 metric for-
mulation, the � value is varied from the lowest thresh-
old (�0 mm h	1) to an arbitrarily high � value (�15
mm h	1). The PODRAIN is then regressed against the �
value to identify the functional form for PODRAIN �
f(�). From our experience, the functional form has most
often been a logistic equation. As an example, if the
PODRAIN value is 0.72 for � � 5 mm h	1, then this
means that the satellite algorithm has a 72% chance of
successfully detecting rainy grid boxes with reference
value exceeding 5 mm h	1. Note that “detection” is
defined as any nonzero rain value. Such an error con-

FIG. 1. The logic of the conceptual framework for hydrologically relevant error metrics.
Numbers in parentheses denote the metrics as discussed in section 2.
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ceptualization for rain detection makes the PODRAIN

relatively easy to simulate using the concept of Ber-
noulli trials in a stochastic error model (HA06).

Next, for grid boxes that are detected correctly as
nonrainy (a nonrainy HIT), the algorithm can be
characterized by a marginal probability of no rain as
PODNORAIN. This measure is the ratio of the number of
satellite grid boxes correctly classified as nonrainy to
the total number of grid boxes that are actually non-
rainy according to reference data (metric number 2 in
Fig. 1). Grid boxes that are unsuccessfully detected as
nonrainy—that is, the satellite detecting rain when
there is none (rainy MISS)—can be classified as “false
alarm” grid boxes. For these grid boxes, it is more con-
venient for us to quantify and simulate the observed
probability distribution of the false alarm rain rates.
Hence, the first and second moments of the distribution
can account for an algorithm’s tendency to produce
false alarms (in Fig. 1, these two metrics are collectively
numbered 3), which can then be easily simulated in a
stochastic error model.

For satellite grid boxes that are detected correctly as
rainy or nonrainy (all HITs in Fig. 1), the detection’s
spatial pattern may exhibit a clear covariance struc-
ture—the probability of successful detection of a satel-
lite grid box as rainy or nonrainy may be a function of
its proximity to another successfully detected grid box
in the neighborhood. One measure to quantify this spa-
tial structure is the correlation length, which can be
used in a stochastic error model for the generation of
correlated random fields (Deutsch and Journel 1998).
Accordingly, we quantify the spatial structure of suc-
cessful detection of rainy and nonrainy area with two
metrics—CLRAIN and CLNORAIN, respectively (the
metrics numbered 4 and 5 in Fig. 1; CL stands for cor-
relation length). The metrics CLNORAIN and CLRAIN

specifically refer to the spatial dimension of error when
considered in combination with the POD metrics.

Finally, when compared to the reference value, the
grid boxes that are successfully detected as rainy may
exhibit three additional properties: (i) they will have a
spatial structure; (ii) they may be “off” from the true
value; and (iii) they will have temporal persistence.
These three properties pertain to the three dimensions
of error metrics highlighted in section 1. The first and
second moments of retrieval error (bias and standard
deviation) can collectively quantify the error property
for the retrieval dimension; in Fig. 1, these two metrics
are numbered 6 and 7. To account for the spatial struc-
ture of the retrieval error, we introduce a metric
CLRET—correlation length of retrieval—that can be
used to simulate correlated random fields. This metric
is numbered 8 in Fig. 1.

We address the temporal dimension of the satellite-
estimation error with a relatively simple representation:
We assume that only the mean-field bias (systematic
error) of retrieval error is correlated in time in an Eu-
lerian (surface based) frame of reference. Hence, the
lag 1 correlation of the mean-field bias is used as the
metric to quantify the temporal dimension of error
(metric number 8 in Fig. 1). The temporal persistence
of satellite-estimated rainfall probably arises from a
mixture of the true spatial and temporal correlations of
the rain system in its Lagrangian (system following)
frame of reference, and the advection speed of that
frame of reference. The temporal persistence of satel-
lite-estimation error will therefore arise from the above
combination of correlations of the rain system. At this
stage, an Eulerian simplification makes our framework
tractable for generating stochastic ensembles of satel-
lite rainfall data, although a more sophisticated ap-
proach may be needed in the future.

Collecting all these components, it appears that one
possible set of error metrics is as follows: 1) Probability
of rain detection (and as a function of rainfall magni-
tude), PODRAIN; 2) Probability of no-rain detection,
PODNORAIN; 3) First- and second-order moments of
the probability distribution during false alarms; 4) Cor-
relation lengths for the detection of rain, CLRAIN, and
5) no rain, CLNORAIN; 6) Conditional systematic re-
trieval error or mean-field bias (when reference rain �
0); 7) Conditional random retrieval error or error vari-
ance; 8) Correlation length for the retrieval error (con-
ditional, when rain � 0.0), CLRET; and 9) Lag 1 auto-
correlation of the mean-field bias. The mathematical
formulations of these nine error metrics are reasonably
straightforward and are provided in appendix A. Read-
ers should refer to HA06 for a more complete descrip-
tion on how these nine error metrics can be used in a
stochastic error model to simulate realizations of satel-
lite rainfall data.

It is not clear whether these nine metrics completely
describe the error structure of satellite rainfall estima-
tion at hydrologically relevant scales. The needs of par-
ticular users and applications will necessarily drive the
evolution to the best representation of these error
structure parameters.

3. Data and study region

We choose the U.S. National Weather Service
(NWS) stage II rainfall data as the ground validation
rainfall dataset for illustrating the nine error metrics.
This dataset uses the NWS Weather Surveillance Ra-
dar-1988 Doppler (WSR-88D) estimates with real-time
adjustments based on mean-field radar–rain gauge
hourly accumulation comparisons (Fulton et al. 1998;
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Seo et al. 1999, 2000). The original resolution is 4 km,
hourly.

For a representative satellite rainfall algorithm, we
use data from a recent version of the Precipitation Es-
timation from Remotely Sensed Information Using
Artificial Neural Networks (PERSIANN; Sorooshian
et al. 2000). The original PERSIANN is a satellite IR-
based algorithm with calibration by passive microwave
rainfall estimates in a neural net framework that pro-
duces global estimates of rainfall at 0.25° 
 0.25°,
half-hourly resolution (Hong et al. 2005a). The revised
version used in this study includes a self-organizing
nonlinear output (SONO) neural network for cloud-
patch-based rainfall estimation. The revised PERSIANN
algorithm estimates 0.04°, half-hourly rainfall and is
available over the Internet (http://hydis8.eng.uci.edu/
GCCS/) (Hong et al. 2005b). The fine submicrowave
footprint scale is achieved by using the Climate Predic-
tion Center Merged IR Dataset (Janowiak et al. 2001)
at full resolution to guide disaggregating the microwave
estimates from the original PERSIANN grid of 0.12°
before use in training the neural network scheme.

To minimize effects due to complex terrain and radar
range, the error computation exercise is performed
over the region of Oklahoma bounded by 37°–34°N,
100°–95°W (Fig. 2), which is relatively flat and well
covered by radars and the PERSIANN data. We se-
lected a one-month period for this study, 1 May 2002 to
30 May 2002, which contains 720 hourly time steps rep-
resenting the set of grids closest to each nominal hour.

4. Methodology and results

We assessed the nine error metrics at seven spatial
scales: (i) 0.04° (original); (ii) 0.08°; (iii) 0.12°; (iv) 0.16°;
(v) 0.24°; (vi) 0.48°; and (vii) 1.0°. The lower end of this
range is considered more relevant to hydrologic mod-
eling, while the higher end is typical of many long-term
satellite rainfall products (i.e., the GPCP products;

Huffman et al. 2001) and evaluations (Ebert et al.
2007). Note, however, that a statistically significant
sample for spatial correlation lengths is not possible at
the two largest scales due to the size of the study region
(5.0° 
 3.0°), and hence, these values have not been
reported. In addition, three other commonly used diag-
nostic metrics were also evaluated: FB, FAR, and ETS.
See appendix B for their mathematical formulation.

Using a very simple cropping technique, the stage II
data are remapped to the 0.04° PERSIANN grid to
allow consistent comparisons. We verified that the
cropping-based interpolation had no effect on the sta-
tistics of the stage II data in this study. The temporal
resolution was kept fixed at hourly. The spatial scales of
aggregation are chosen to be integer multiples of the
original 0.04° grid to avoid spatial interpolation errors,
which were found to be problematic in our preliminary
investigation. This choice allows us to focus on the scal-
ing behavior of error parameters purely as a function of
aggregation. We seek to identify how each of the nine
error metrics responds to spatial scaling and whether
there exists some minimum scale at which some or most
of the error parameters remain “acceptable” for the
hydrologist user.

Ordinarily, one would expect the data producer to
use error metrics that are robust to changes in scale for
the sake of consistency. However, such an approach
may not provide the best insight into applying satellite
rainfall data at hydrologically relevant scales. As an
example, consider the case when the spatial scale for a
data product decreases from 0.24° to 0.16° or 0.12° as a
result of, say, spatial downscaling. The correlation co-
efficient or systematic bias metrics may register a
change with scale that is considerably more modest
than changes in the algorithm’s ability to correctly de-
lineate the rainy or nonrainy areas, given the intermit-
tency of the rainfall process. This is because marginal
measures such as correlation coefficient are parameters
that reflect essentially the aggregate effect of the algo-
rithm’s ability to retrieve rainfall over the study area
(discussed later). But the intermittency has important
implications for hydrologic simulation of the terrestrial
water cycle and must be considered in evaluating the
use of satellite data.

In Table 1, we summarize results for the correlation
coefficient, RMSE, FB, FAR, and ETS metrics. The
conditional correlation refers to the cases when both
reference and satellite rain is nonzero. In general, we
observe that the response to spatial scale is similar for
all these conventional metrics, often appearing insensi-
tive to scales smaller than 0.24°. For example, Fig. 3
shows the correlation coefficient as a function of scale.
The sensitivity of correlation coefficient appears mod-

FIG. 2. Study region over Oklahoma bounded by 37°–34°N,
100°–95°W. The light dots show the location of the Oklahoma
Mesonet meteorological stations with gauge rainfall data for
WSR-88D radar calibration. Dark dots indicate the location of
WSR-88Ds inside Oklahoma; circles approximately indicate cov-
erage with 100-km radius.
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est and it remains difficult to use this metric in a sto-
chastic error model.

An interesting pattern emerges in Fig. 4 for our
proposed metric on probability of rain detection
(PODRAIN) as a function of reference threshold rain
rate. With spatial aggregation, both the maximum
PODRAIN (at reference rain rates greater than 15 mm
h	1) and the gradient of probability detection as a func-
tion of reference threshold rainfall rate increase notice-
ably, as expected (the highest being for 1.0°). As ex-
plained in section 2, this means that the algorithm is
highly unlikely to have zero rain in areas raining at a
rate greater than 15 mm h	1, although the satellite-
estimated rain rate may not necessarily match closely
with the ground validation data. The PODNORAIN ex-
hibits even stronger scale dependence (Fig. 5). The
probabilities for both rain and no-rain detection re-
spond definitively as spatial scales decrease below
0.48°. Hence, these two metrics that account for rainfall
intermittency add information to the traditional list of
metrics for exploring satellite rainfall data application
in hydrologic models.

In Fig. 6, we show the spatiotemporal structure for
metrics on conditional retrieval error (random; upper
left panel), mean-field bias (temporal autocorrelation
function; upper right panel), and the spatial correlation
functions for rain detection (lower left panel) and no-
rain detection (lower right panel). Even though the dis-
tinction in spatial scaling for these spatiotemporal error
parameters is weak at the scales considered, HA06
show that these metrics can be used coherently in an
error model to simulate realistic space–time covariance
structure of satellite rainfall data. If correlation lengths
in space and time are computed (assuming that an ex-
ponential model is appropriate; see appendix A), a
more informative picture emerges (Fig. 7). We observe
a clear sensitivity of the correlation length to spatial
scales, with the correlation length for rain detection
being the most sensitive. The lag 1 (hourly) temporal
correlation of mean-field bias however remains insen-
sitive to scale as would be expected since the domain’s
area is the same for all grid sizes. These results dem-
onstrate that the suggested error metrics on rain detec-

tion/delineation correlation lengths can offer insight
into the useful spatial scales for applying satellite-based
rainfall in hydrologic models. While the assessment of
the direct implications of these metrics on hydrologic
modeling is beyond the scope of this study, Hossain and
Anagnostou (2004) have shown that an improvement in
the probability of rain detection can yield substantial
improvements in flood prediction at the 0.1° scale for
saturation-excess watersheds in the Alps. Intuitively,
the same can be expected of Hortonian watersheds
where spatial pattern of the rainy areas along with the
rain rate and soil’s infiltration capacity dictate the pro-
pensity of a region to produce direct runoff.

Finally, in order to demonstrate the value of our pro-
posed error framework in distinguishing the strengths
and weaknesses of existing HRPP algorithms, we look
at four global satellite rainfall products. These are 1)
Tropical Rainfall Measuring Mission (TRMM) Multi-
satellite Precipitation Analysis (TMPA) microwave-
calibrated infrared (IR) rainfall product 3B41RT
(Huffman et al. 2007); 2) TMPA merged microwave-IR
rainfall product 3B42RT (Huffman et al. 2007); 3)
NOAA CPC morphed passive microwave rainfall prod-
uct (CMORPH; Joyce et al. 2004), and 4) PERSIANN.
The error analysis is performed at the native scale of
algorithms for the year 2004 over two regions in the

FIG. 3. Correlation coefficient of satellite rainfall data with
stage II rainfall as a function of spatial scale.

TABLE 1. Some commonly used error metrics as a function of spatial scales (degrees of lat/lon).

0.04° 0.08° 0.12° 0.16° 0.24° 0.48° 1.0°

Correlation (unconditional) 0.386 0.383 0.393 0.401 0.418 0.469 0.569
Correlation (conditional) 0.272 0.298 0.319 0.334 0.361 0.437 0.547
Root-mean-square error (mm h	1) 4.708 3.933 3.530 3.230 2.776 1.98 1.25
FB 1.524 1.405 1.423 1.419 1.460 1.548 1.677
FAR 0.686 0.634 0.619 0.601 0.5804 0.5370 0.5066
ETS 0.205 0.235 0.245 0.255 0.271 0.302 0.306
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United States known to have a distinct hydroclimatol-
ogy: (i) the Midwest (a semiarid zone) and (ii) Florida
(subtropical zone modulated by coastal effects). WSR-
88D stage-II rainfall data are used as a reference for
ground validation data. The main purpose of this exer-
cise is to assess whether our proposed framework of

metrics can clarify regional and seasonal differences for
a given algorithm when used in combination with con-
ventional metrics, without undertaking a comparative
assessment of the various algorithms.

Table 2 shows a summary of conventional metrics
(correlation and standard deviation of error) and the

FIG. 4. Probability of rain detection as a function of reference
(stage II) rainfall rate and spatial scales.

FIG. 5. Comparison of scaling behavior of maximum probability
for rain (at rain rates � 15 mm h	1) and marginal probability of
no-rain detection.

FIG. 6. Spatiotemporal metrics as a function of spatial scales. (top left) Spatial correlation function for conditional
retrieval error (rain � 0); (top right) temporal correlation function for mean-field bias; (bottom left) spatial
correlation function for rain detection; and (bottom right) spatial correlation function for no-rain detection. Note
that spatial correlation functions are not reported at scales 0.48° and 1.0° due to the small spatial sample available
over the study region. The separating distance (km) is reported by approximating 1° of latitude or longitude as
100 km.
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metric of the lag 1 autocorrelation of mean-field bias. In
Figs. 8 and 9, the variation of two other proposed met-
rics—PODRAIN and PODNORAIN—during the winter
(January and February) and summer (June, July, and
August) are also shown. It is clear from Table 2 that the
correlation metric fails to highlight any major differ-
ences in each algorithm as a function of region and
season. For example, the seasonal variation of condi-
tional correlation (i.e., when reference rainfall � 0 mm
h	1) for CMORPH ranges between 0.226 and 0.251 and
0.195 and 0.153 for Oklahoma and Florida, respectively.
Similarly, the standard deviation of conditional re-
trieval error varies between the 2.1 and 2.5 mm h	1

range. Normally, such differences may be considered
statistically insignificant to elucidate any seasonal or
regional sensitivity of an algorithm at hydrologically
relevant scales (i.e., subdaily and � 25 km2). On the
other hand, the lag 1 autocorrelation and the PODRAIN

and PODNORAIN show higher sensitivity within an al-
gorithm across regions and seasons. CMORPH regis-
ters highest seasonal sensitivity for PODNORAIN. When
used with conventional metrics, these proposed metrics
can enhance our search for the physical implications
behind the use of an algorithm for a particular hydro-
logic application. For example, the consistently high
values of PODNORAIN for TMPA algorithms (3B41RT
and 3B42RT; Fig. 9) would indicate, as a first cut to a
hydrologist, that TMPA data could be more ideally
suited for drought and agricultural applications, while

CMORPH could be more appropriate for forecasting
of floods caused by short-duration storm events.

5. Conclusions and future needs

Representing the error structure of satellite rainfall
as a function of scale against quality-controlled ground

TABLE 2. Summary of some error metrics over Oklahoma and
Florida during winter and summer of 2004.

HRPP
Correlation

(conditional)

Error std dev
(conditional)

(mm h	1)
Lag 1

correlation

Oklahoma winter
CMORPH 0.226 2.19 0.540
3B41RT 0.106 1.89 0.855
3B42RT 0.180 1.95 0.467
PERSIANN 0.268 3.16 0.710

Oklahoma summer
CMORPH 0.251 2.47 0.642
3B41RT 0.274 2.31 0.911
3B42RT 0.121 2.18 0.564
PERSIANN 0.303 3.44 0.689

Florida winter
CMORPH 0.195 2.41 0.628
3B41RT 0.102 2.18 0.960
3B42RT 0.121 2.18 0.564
PERSIANN 0.159 3.59 0.721

Florida summer
CMORPH 0.153 2.52 0.428
3B41RT 0.219 2.38 0.896
3B42RT 0.220 2.29 0.371
PERSIANN 0.248 3.68 0.711

FIG. 7. Correlation lengths and lag 1 autocorrelation as a function of scale (assuming an exponential
model is appropriate to describe the correlation function in space). (Note that spatial correlation lengths
are not reported at scales 0.48° and 1.0° due to the small spatial sample available for the study region.)
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validation datasets remains a critical research problem.
Hydrologists and other users, to varying degrees, need
to know the errors of the satellite rainfall datasets
across the range of time–space scales over the whole
domain of the dataset. In this study, we investigated the
behavior of a suggested set of error metrics that were
linked primarily to rainfall intermittency for a micro-
wave-calibrated geostationary infrared-based algo-
rithm. In general, the conventional error metrics such

as correlation coefficient, frequency bias, false alarm
ratio, and equitable threat score appeared to have simi-
lar levels of sensitivity to scale. However, the use of
these common metrics for simulating stochastic realiza-
tions of satellite rainfall with realistic space–time co-
variance structures does not seem feasible. In our opin-
ion, this limits the value of the metrics to the hydrolo-
gist who may choose to probabilistically quantify the
implications of each metric for overland hydrologic

FIG. 9. PODNORAIN for algorithms across regions and seasons. (left) Oklahoma and (right) Florida.

FIG. 8. PODRAIN as a function of season, region, algorithm, and reference (GV) rain rate at the native scales. (left)
Oklahoma (semiarid hydrology) and (right) Florida (coastal hydrology).
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simulations. The probability of detection of rain and its
functional relationship to ground validation rainfall
were found to be the most sensitive to scale followed by
the correlation length for detection of rain. These spe-
cific error metrics appear informative for identifying
the useful scales for data integration over land and can
also be used in a stochastic error model.

The new-generation HRPP datasets pose significant
opportunities for hydrologists, but with associated chal-
lenges. Specifically, effective assessment frameworks
and metrics for satellite rainfall data must be developed
that enhance the HRPPs’ utility for land surface hydrol-
ogy and are jointly defined by the hydrologic and data-
producing communities. While we have shown some
tangible examples of error metrics and their potential
value in gauging utility, more work is needed to define
hydrologically relevant metrics that can connect more
directly to the physics and geometries of satellite rain-
fall estimation.

The practicality of the approach presented in this
paper can be questioned because the details likely vary
by region and season, and because many regions lack
the necessary ground validation data to develop region-
specific error representations. However, it appears con-
ceptually feasible to build on work already accom-
plished on global classification of rainfall systems (Pe-
tersen and Rutledge 2002). In addition, it is possible to
use the TRMM Precipitation Radar (PR) as the refer-
ence for the spatial domain (e.g., Hossain and Anag-
nostou 2004) and apply a recent approach suggested by

Bellerby and Sun (2005) based on transfer of probabil-
ity distribution functions for the temporal domain. An-
other approach could be the use of geostatistical simu-
lation techniques such as ordinary or indicator kriging
(Deutsch and Journel 1998) to transfer error metrics
from a ground validation site to ungauged regions un-
der the assumption of stationarity of the metric values.

A challenge that remains is to choose a small set of
error parameters that enable practical use of the uncer-
tainty information and capture the time–space structure
of the uncertainties. At this level of complexity it might
be best to establish functional forms for the error met-
rics and supply coefficients for large regions and sea-
sons. In some cases, average or “climatological” coef-
ficients might suffice, while in other cases routine up-
dates as a function of time might be required. Given
this information a user could easily estimate the errors
that correspond to the time–space scale of their appli-
cation. In particular, a hydrologist could identify the
necessary scale of aggregation of satellite rainfall data
to achieve a specified level of accuracy that would mini-
mize error propagation in a hydrologic model for his/
her intended application.

APPENDIX A

Formulation of Error Metrics

Consider first, the following 2 
 2 validation (con-
tingency) matrix shown in Table A1 for hits and misses
associated with satellite rainfall estimates:

Probability of detection for rain �PODRAIN�:
NA

NA � NB
, �A1�

Probability of detection for no rain �PODNORAIN�:
ND

ND � NC
. �A2�

We also define the (successful) rain detection probabil-
ity, PODRAIN, as a function of rainfall magnitude of
either the reference rainfall or satellite estimate. The
functional form is usually identified through calibration
with actual data (HA06) The PODNORAIN, is the uni-
tary probability that satellite retrieval is zero when ref-
erence rainfall is zero, which is also determined on the
basis of actual data.

A probability density function (Dfalse) is defined to
characterize the probability distribution of the satellite
estimates when there are misses over nonrainy areas.
This function is also identified through calibration on
the basis of actual sensor data. HA06 have reported
that this Dfalse probability density function typically

tends to appear exponential. Hence, both the moments
(first and second) can be defined using only one param-
eter of the distribution, �. This can be computed using
the chi-squared or maximum likelihood method.

To identify the correlation lengths of error (i.e., how
does the error vary in space) a simple exponential-type

TABLE A1. Validation (contingency) matrix for hits and misses
of satellite rainfall data.

Satellite estimates

Truth/reference

Rainy grid boxes Nonrainy grid boxes

Rainy grid boxes NA (HIT) NB (MISS)
Nonrainy grid boxes NC (MISS) ND (HIT)
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autocovariance function is assumed. The correlation
length (the separation distance at which correlation �
1/e � 0.3678) is then determined on the basis of cali-
bration with actual data over a large domain (the size of
Oklahoma in this study). For identifying the spatial cor-
relation length of rain detection, CLRAIN (or, no-rain
detection–CLNORAIN) from data, all successfully de-
tected rainy (nonrainy) pixels are assigned a value of
1.0 while the rest has a value of 0.0. The empirical
semivariogram is then computed as follows:

��h� �
1

2n�h� i�1

n�h�

�z�xi� 	 z�xi � h��2, �A3�

where z(xi) and z(xi � h) are the binary pixel values (0
or 1) at distance xi and xi � h, respectively, and h is the
lag in kilometers; n represents the number of data
points at a separation distance of h. The term �(h) is the
semivariance at separation distance h. Assuming that
the empirical variogram is best represented by an ex-
ponential model, the functional parameters describing
the spatial variability can be fitted as follows:

��h� � c0 � c �1 	 e	h�CL�, �A4�

where c0 represents the nugget variance, c is the sill
variance, and CL is the distance parameter known as
correlation length. Conversely, the correlation function
is modeled as C � exp(	h/CL), where C is the corre-
lation.

For identifying the correlation length for retrieval
error, CLRET, a similar set of steps are adopted as
above for rain/no-rain detection, with the exception
that the binary values (0–1) are no longer pertinent.
Instead, one computes the correlation length in terms
of retrieval error defined as the difference between ref-
erence and satellite estimate as described below.

The conditional (i.e., reference rainfall � 0 unit) non-
zero satellite rain rates, RSAT, can be statistically re-
lated to corresponding conditional reference rain rates,
RREF, as

RSAT � RREF�S, �A5�

where the satellite retrieval error parameter, �s, is as-
sumed to be lognormally distributed. It is up to the data
producers to verify the assumption of lognormality.
The advantage of such an assumption is that a log trans-
formation [log(RSAT) 	 log(RREF)] of Eq. (A5) trans-
forms the �s to a Gaussian N(�, �) deviate, �, where �
and � are the mean and standard deviation of retrieval
error, respectively.

The retrieval error parameter � is both spatially and
temporally autocorrelated. The spatial aspect has al-
ready been discussed earlier in this appendix. For tem-

poral correlation, a lag 1 autocorrelation function is
used to identify the temporal variability of � (i.e., con-
ditional satellite rainfall bias).

APPENDIX B

Formulation of Some Common Error Metrics

Using the terminology adopted by Ebert et al. (2007),
a grid box can be classified as a hit (H, observed rain is
correctly detected), miss (M, observed rain is not de-
tected), false alarm (F, rain detected but not observed),
or null (no rain observed or detected).

The frequency bias is defined as

FB �
�H � F �

�H � M�
. �B1�

The false alarm ratio is defined as

FAR �
F

�H � F �
. �B2�

The equitable threat score is defined as

ETS �
H 	 He

�H � M � F 	 He�
, �B3�

where, He � (H � M)(H � F)/N and N � the total
number of grid boxes.
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