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Abstract Some of the world’s largest and flood-prone river basins experience a seasonal flood regime
driven by the monsoon weather system. Highly populated river basins with extensive rain-fed agricultural
productivity such as the Ganges, Indus, Brahmaputra, Irrawaddy, and Mekong are examples of
monsoon-driven river basins. It is therefore appropriate to investigate how precipitation forecasts from
numerical models can advance flood forecasting in these basins. In this study, the Weather Research and
Forecasting model was used to evaluate downscaling of coarse-resolution global precipitation forecasts
from a numerical weather prediction model. Sensitivity studies were conducted using the TOPSIS analysis
to identify the likely best set of microphysics and cumulus parameterization schemes, and spatial resolution
from a total set of 15 combinations. This identified best set can pinpoint specific parameterizations needing
further development to advance flood forecasting in monsoon-dominated regimes. It was found that the
Betts-Miller-Janjic cumulus parameterization scheme with WRF Single-Moment 5-class, WRF Single-Moment
6-class, and Thompson microphysics schemes exhibited the most skill in the Ganges-Brahmaputra-Meghna
basins. Finer spatial resolution (3 km) without cumulus parameterization schemes did not yield significant
improvements. The short-listed set of the likely best microphysics-cumulus parameterization configurations
was found to also hold true for the Indus basin. The lesson learned from this study is that a common set of
model parameterization and spatial resolution exists for monsoon-driven seasonal flood regimes at least in
South Asian river basins.

1. Introduction

Perhaps the most challenging part of flood forecasting is the lack of meteorological observations, particular-
ly precipitation [Liu et al., 2012]. The problem is critical in the transboundary or international river basins
where it is almost impossible to obtain reliable precipitation data from the upstream regions in near real-
time due to hydropolitical issues [Hopson and Webster, 2010; Hossain et al., 2007; Hossain and Katiyar, 2006].
A report by UN-Water [2008] shows that 40% of the global population resides in the 263 transboundary or
International River basins. Moreover, if the real-time (i.e., nowcast) observed data (e.g., rain gauge data,
satellite-observed precipitation) are available, these allow forecasting of floods limited by the time taken for
runoff once generated in the river, to flow from the most upstream location to the downstream sink of an
ocean or lake. In order to extend this forecast lead time beyond the maximum bounded by a basin’s time of
concentration, precipitation forecasts are needed. Thus, the use of model-based precipitation forecasts in
flood forecasting has recently become a trend among many flood forecasting agencies and flood manage-
ment communities [e.g., Jasper et al., 2002; Verbunt et al., 2006; Liguori et al., 2012; Liu et al., 2015]. For exam-
ple, the Flood Forecasting and Warning Center of Bangladesh now takes advantage of 5 day precipitation
forecasts in the Ganges-Brahmaputra basins to improve skill of its 5 day river level forecast product during
the monsoon season [FFWC, 2014].

Precipitation forecasts using Numerical Weather Prediction (NWP) models still face difficulties at scales rele-
vant for flood forecasting [e.g., Ebert, 2001; Nam et al., 2014; Yucel et al., 2015]. For example, for convective
precipitation processes, this is more challenging due to the lack of better representation of convective pro-
cesses through appropriate parameterizations [Lowrey and Yang, 2008; Yucel and Onen, 2014]. Therefore,
investigations are required to understand the physical properties of small scale meteorological processes.
Assessment of the small-scale meteorological processes (e.g., thunderstorm) can be performed by finer
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scale NWP models. Many studies suggest that higher spatial resolution models perform better when the
precipitation is intense [e.g., Roberts et al., 2009; Givati et al., 2012; Jang and Hong, 2014]. Due to the compu-
tational limitations of global modeling, most global NWP model-based precipitation forecasts are available
at large spatial scales. For example, the Global Forecast System (GFS) of the National Oceanic and Atmo-
spheric Administration (NOAA) produces nowcast and 10 day forecasts of meteorological conditions and
precipitation at 0.258 resolution every 6 h. Naturally, there is therefore a need to explore downscaling
options available with finer resolution numerical models such as the Weather, Research and Forecasting
(WRF) model [Skamarock et al., 2008]. A recent study by Kumar et al. [2016] showed that the quality of global
NWP model-forecasted precipitation over the Indian continent can be improved by downscaling using the
WRF.

In many cases, it is not computationally feasible to operate a regional numerical weather prediction model
(e.g., WRF) routinely using a very fine resolution grid over a large domain for flood forecasting operations.
For such issues, subgrid-scale parameterization schemes, nesting, and data assimilation techniques have
been introduced in numerical models to improve downscaled output. Thus, the simulated precipitation can
be sensitive to spatial resolution, parameterization schemes, nesting ratios, and domain size of the model.
Many studies evaluated the sensitivity of these features. Liu et al. [2012] studied the downscaling ratio
between the nests in the modeling domain. They showed that the performance of the model to predict pre-
cipitation decreased with high downscaling ratios (e.g., 1:10). In addition, they noted that model perfor-
mance is also sensitive to domain size. Model parameterization schemes are likely the most studied feature
to optimize model performance. For example, Efstathiou et al. [2013] evaluated WRF model performance for
a heavy precipitation event in northern Greece using different planetary boundary layer options and micro-
physics schemes. Mannan et al. [2013] tested the WRF model using different microphysics for an intense
rainfall event in Bangladesh. Rao et al. [2007] assessed the model for several Indian heavy precipitation
events using different microphysics and cumulus parameterization schemes. Pennelly et al. [2014] evaluated
five different cumulus parameterization schemes for heavy rainfall in Alberta with different grid spacing
and reported that at 6 km resolution or higher, the model performance is independent of cumulus physics
parameterization schemes.

Another critical issue of downscaling forecasted precipitation from global NWP models is the skill
dependence on forecast lead time. Usually, precipitation forecast deteriorates with increasing lead time
[Georgakakos et al., 2014]. Accuracy of the forecasted precipitation also depends on the model parameteri-
zation and spatial resolution. Therefore, evaluation of different sets of parameterization schemes and spatial
resolution as a function of precipitation estimation accuracy and forecast lead time is important for advanc-
ing numerical model-based downscaling of global NWP forecasts for operational flood forecasting. Such an
evaluation can pinpoint a more manageable set of parameterizations that may need further refinement
through atmospheric field studies before operationalization in flood forecasting applications.

In this study, we investigate the performance of the WRF model to predict (nowcast and forecast) precipita-
tion for monsoon-affected flood-prone river basins. We apply a numerical model (e.g., WRF) for spatial
downscaling of global NWP model output on precipitation for flood forecasting applications. The definition
of monsoon weather systems and its spatial domain as outlined by Ramage [1971] was used and is shown
in Figure 1. This monsoon boundary covers almost 20% of the world’s surface, and incorporates some of
the largest and most populous transboundary river basins (e.g., Ganges, Brahmaputra, Indus, Mekong, Sal-
ween, Upper Nile). The prevalence of transboundary flooding in such monsoon regions is critical as it nega-
tively impacts downstream nations due to the lack of shared hydrometeorological observations in near real-
time [Hossain and Katiyar, 2006].

This study explores the sensitivity of WRF physics parameterizations and spatial scale to identify a more
optimal configuration for downscaling global NWP forecasts that is more likely to ‘‘work’’ in monsoon-
dominated regions. The goal is to derive a configuration that is computationally efficient and yet skillful
enough for a large international river basin for eventual use in operational applications. The question we try
to answer in this study is as follows: Is it possible to identify the likely best set of parameterization schemes for
cloud and cumulus processes and spatial resolution for WRF downscaling of global NWP forecasts that will hold
true for most monsoon-affected river basins? As mentioned earlier, such a set can make further refinement of
model parameterizations (or proposal of new ones) through targeted field campaigns practically feasible
due to a smaller working sample.
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2. Numerical Models for Precipitation Forecasting

The GFS is a global-scale NWP model developed by the NOAA. The model is run four times per day by the
US National Weather Service to generate detailed and global output of atmospheric variables. At each run,
the model generates a forecast up to 16 days. The model simulation is divided into two steps. In the first
step, the GFS generates forecast every 3 h from 000 to 240 h (i.e., 10 days). In the next step, the model gen-
erates forecast every 12 h from 240 to 384 h (i.e., next 6 days). The model resolution is different in both
steps. However, the 16 day forecast data are available at 0.258, 0.58, 18, and 2.58 resolution through the
National Center for Environmental Prediction (NCEP). NCEP uses the same GFS model to run with more
observational data and generate a more accurate daily output. The product is known as NCEP final analysis.
The NCEP final analysis (FNL from GFS) data are available at 18 resolution every 6 h.

In this study, we used the WRF-ARW V3.7.1 to dynamically downscale the global NWP model outputs. The
WRF is a new generation numerical weather prediction model with advanced dynamics, physics, and
numerical schemes, and was developed from its predecessor, the MM5 model. It is a mesoscale meteorolog-
ical model that uses fully compressible, nonhydrostatic Euler equations. For horizontal discretization, it uses
Arakawa-C grid staggering and a third-order Runge-Kutta integration scheme for time separation. The mod-
el is capable of dealing with both one-way and two-way nesting. Details of the dynamics and physics of the
WRF model are described in Skamarock et al. [2008].

In a numerical model like WRF, the Microphysics (MP) and Cumulus Parameterization (CP) schemes are
mainly responsible for precipitation generation. Water vapor, cloud, and precipitation process are explicitly
resolved by the microphysics. The subgrid-scale convective process and shallow clouds are managed by the
cumulus parameterization. The Indian summer monsoon rainfall prediction using the WRF model has been
found to be sensitive to the choice of convective parameterization scheme [Srinivas et al., 2015]. Many stud-
ies on the Indian summer monsoon rainfall reported that the Betts-Miller-Janjic CP scheme performs better
in that region [e.g., Mukhopadhyay et al., 2010; Kumar et al., 2010; Vaidya, 2006; Srinivas et al., 2013].

The cloud microphysics scheme is mainly responsible for nonconductive rainfall in the coarse resolution
(>10 km) WRF model. Rajeevan et al. [2010] conducted a sensitivity test of four different WRF microphysics
schemes on a severe thunderstorm over southeast India. They found that the Thompson scheme performed
well out of the four microphysics options, although the Morrison scheme was the most sophisticated
among them. At high spatial resolution (less than 5 km), numerical models are expected to capture the con-
vective processes and therefore the use of a convective scheme is optional [Hsiao et al., 2013]. Thus, the
sensitivity of different microphysics schemes over the Indian monsoon rainfall needs to be evaluated, partic-
ularly for very high-resolution models (<10 km). More recently, Zheng et al. [2016] identified that cloud
microphysics alone was not sufficient to resolve convective processes at higher resolution in the WRF mod-
el. They compared high-resolution model simulations (grid increments of 9 km and 3 km) over the U.S.

Figure 1. The area inside the box is the Monsoon climate regime, according to Ramage [1971]. The monsoonal areas defined by Khromov
[1957] are shown by the hatched polygon [after Ramage, 1971].
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southern Great Plains with no convective scheme runs, and reported that the updated Kain–Fritsch schemes
showed better result in both resolutions.

Precipitation is also sensitive to the planetary boundary layer (PBL). Ulate et al. [2014] studied the sensitivity
of CP-PBL parameterization schemes for the Indian Ocean and Maritime Continent water cycle, and
reported that the water cycle was more sensitive to the PBL than CP. However, a dry bias was found with
the Mellor-Yamada-Janjic PBL scheme, while the Yonsei University Scheme performed relatively better. A
similar observation was reported by Efstathiou et al. [2013] for the heavy rain rate over the eastern Chalkidiki
peninsula in northern Greece. Therefore, the Yonsei University PBL scheme was used in this study. Table 1
provides the list of microphysics and cumulus parameterization schemes along with other parameterization
schemes used in this study.

3. Study Approach and Methodology

The main objective of this study is to identify the likely best set of parameterization schemes and spatial res-
olution that can hold true for most river basins in monsoon-driven flood-prone regions. Due to the compu-
tationally prohibitive nature of running WRF, a 1 month period during the monsoon season was selected.
This period had short dry spells that allowed for assessment of false rain simulation. We selected the
monsoon-driven Ganges-Brahmaputra-Meghna (GBM) basins as the test river basin to explore the various
combinations of parameterization and scale (Figure 2). GBM basins have the characteristic of incorporating
three river basins of contrasting size, precipitation intensity, times of concentration, and flood regime [Mirza
et al., 1998]. Here, Meghna is the smallest in size and response time while Ganges is the largest. Brahmapu-
tra has steep terrain with high flow rate flood regime, often exceeding 70,000 m3/s during the Monsoon
season.

We set up the WRF model for the entire GBM river basin system (Figure 2). The model setup consisted of
three one-way nested domains, where the smallest-scale domain was divided further into two subdomains
(D03 and D04) for computational efficiency (Figure 2). The smallest domains span different climatic regions
of the GBM basin, where there is strong variability in precipitation climatology. Domain 3 covers the heavy
rainy region which is a mainly humid subtropical zone and Domain 4 covers the semiarid area (less rainy) of
Western India. The outermost domain (D01) has 27 km grid resolution and covers the entire Indian subcon-
tinent, northern Indian Ocean, southern part of central Asia, northern part of Southeast Asia, and a part of
China (spanning 548E-1068E and 28N-408N). The smallest domains (i.e., D03 and D04) have grids with 3 km
resolution. Domains 3 and 4 were configured without any CP parameterization, assuming that the MP is
capable of explicitly solving the convective process in 3 km resolution. The second domain (D02) is the child
of the outermost domain (D01) and parent of the smallest domains (D03 and D04). The default two-way
nesting in WRF updates the parent domain using the results of the child domain. Here, we used one-way
nesting to keep the parent domain output ‘‘as is’’ for further analysis. A 1 month time period of the Indian
summer monsoon from 5 August 2015 to 4 September 2015 was chosen as the simulation period. During
this period several heavy rainfall events occurred in the region. The simulation time step of the outer

Table 1. Selected MP-CP Parameterization Schemes for Evaluation Along With Other Parameterization Schemes

Physics Options Parameterization Schemes

Microphysics (MP) WRF Single Moment 3 Class Scheme (WSM3) [Hong et al., 2004]
WRF Single Moment 5 Class Scheme (WSM5) [Hong et al., 2004]
WRF Single Moment 6 Class Scheme (WSM6) [Hong and Lim, 2006]
Thompson Scheme (TS) [Thompson et al., 2008]
Morrison 2-Moment Scheme (MDM) [Morrison and Thompson, 2009]

Cumulus Parameterization (CP) Kain-Fritsch Scheme (KF) [Kain, 2004]
Betts-Miller-Janjic Scheme (BMJ) [Janjic, 1994]
Grell-Freitas Ensemble Scheme (GF) [Grell and Freitas, 2014]

Planetary Boundary Layer (PBL) Yonsei University Scheme (YSU) [Hong et al., 2006]
Radiation-Shortwave (Ra-SW) Dudhia Shortwave Scheme [Dudhia, 1989]
Radiation-Longwave (Ra-LW) RRTM Longwave Scheme [Mlawer et al., 1997]
Land Surface (SF_SURFACE) Unified Noah Land Surface Model [Tewari et al., 2004]
Surface Layer (SF_SFCLAY) MM5 Similarity Scheme [Zhang and Anthes, 1982]

Journal of Advances in Modeling Earth Systems 10.1002/2016MS000678

SIKDER AND HOSSAIN PRECIPITATION FORECASTING FOR MONSOON 4



domain (i.e., D01) was selected as 90 s. Model outputs were saved every 3 h, although output of every 24 h
interval was used.

To test if the likely best configuration of parameterizations identified for GBM basins is applicable to other
regions, a similar WRF setup was prepared for the Indus river basin (Figure 3) with two one-way nested
domains. The outermost domain (D01) has 27 km resolution and innermost domain (D02) has 9 km resolu-
tion. The analysis extent (Figure 3) covers almost entire Indus river basin. The outer domain covers nearly

Figure 3. Same as Figure 2 but for the Indus basin to test if the likely best configuration identified using GBM basins hold true for Indus.
Here, the GSOD stations and their respective Thiessen polygons are shown over the entire domain of analysis.

Figure 2. WRF model domains for the GBM basin. Here, Domain 3 and 4 are for the heavy rainy and less rainy areas, respectively. The
weather stations (obtained from NCDC Global Summary of the Day-GSOD) are shown along with the Thiessen polygons inside the 3 km
domains. Data from these stations were used to calculate the areal-averaged observed precipitation.
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the same area as domain 1 of the GBM basin (478N-998N and 28N-428N). Given limitations of CPU resources,
a one week time period (25–31 July 2010) was selected for testing the efficacy of GBM-derived configura-
tion. We consider this an appropriate period as it includes a severe flood event with basin-wide precipita-
tion peaking on 29 July 2010 and leading to large-scale floods in most parts of Pakistan. All other
parameters and model configurations remained the same.

As seen from Table 1, five MP schemes and three CP schemes were chosen at three different spatial resolu-
tions (27, 9, and 3 km) to evaluate the sensitivity to precipitation simulations. Parameterization schemes
beyond CP and MP were selected based on compatibility with the monsoon-driven climate [e.g., Ahasan
and Khan, 2013; Kumar et al., 2012; Rao et al., 2007] and are also shown in Table 1. However, these parame-
terizations were not part of the sensitivity study. A total of 15 MP-CP combinations (5 MP 3 3 CP) were eval-
uated in GBM basins over a one month time period to identify the existence of the likely best MP-CP
combination and spatial scale. Each combination is denoted hereafter by their MP-CP abbreviation shown
in Table 1. For example, WSM5-KF means the combination of the WRF Single Moment 5 class microphysics
and Kain-Fritch cumulus parameterization. The 6 hourly 18 resolution NCEP GFS final analysis data were
used as the boundary data and initial condition for a continuous 1 month simulation of the GBM basins.
From the sensitivity study, the three best MP-CP combinations and spatial scales were chosen according to
their performance in simulating precipitation in nowcast mode. Thereafter, we applied these MP-CP combi-
nations and spatial resolution to the Indus river basin. The initial and boundary data source remained the
same as in the GBM nowcast mode for the Indus river basin. For assessment of the MP-CP combination in
the forecast mode, two storm events in the GBM basin were selected and simulated using the GFS forecast
data as the model boundary up to 10 days lead time. To generate the forecast for 10 different lead times of
a storm event, a total of 10 simulations were carried out for a particular MP-CP combination, starting 10
days before the storm event followed by 9 days, 8 days and so on. The 3 hourly 0.58 resolution GFS forecast
data were used as the boundary condition for the forecast simulation, while the initial condition of each
simulation was taken from the previous day’s model output. For example, initial conditions for the 9 day
lead simulation (i.e., starting 9 days before the storm event) were taken from the 1st date output of the 10
day lead simulation thereby minimizing the effect of the model spin-up time error to generate more accu-
rate output at smaller lead times.

4. Data

In our parameterization and spatial resolution sensitivity experiments, the 6 hourly 18 3 18 resolution NCEP
GFS final analyses data were used as the boundary in the WRF model [e.g., Rao et al., 2007]. These boundary
data were available through the University Cooperation for Atmospheric Research-Research Data Archive
(http://rda.ucar.edu/datasets/ds083.2/). Data from the same source were used as the boundary to evaluate
the performance of the likely best MP-CP combinations over the Indus basin for the July 2010 storm event.
To evaluate the performance of the MP-CP schemes in forecast mode with different lead times, forecasted
boundary data were used. In the case of a forecasted boundary, we used 3 hourly 0.58 3 0.58 resolution
archived GFS forecast up to 10 days (http://www.nco.ncep.noaa.gov/pmb/products/gfs/).

Simulated precipitation was compared against satellite-estimated precipitation from the Global Precipita-
tion Measurement (GPM)-Integrated Multi-satellitE Retrievals for GPM (IMERG) final run data (30 min precipi-
tation with 0.18 resolution). This global precipitation data set was prepared using satellite-estimated
precipitation (from microwave and microwave-calibrated infrared), precipitation gauges analysis [Huffman
et al., 2015]. GPM is the core satellite of this data set. WRF-simulated precipitation over the Indus basin pre-
cipitation is compared against the daily 0.258 3 0.258 Climate Hazards Group InfraRed Precipitation with
Station data-CHIRPS [Funk et al., 2015], as GPM-IMERG data record begins from 2014. This historical data set
(since 1981) was prepared using satellite imagery and gauged station data. The mean daily precipitation of
CHIRPS data shows consistency with GPM-IMERG over the GBM basin for peak one month of the 2015 mon-
soon (Figure 4). Therefore, the comparison between the simulated precipitation performance of GBM basin
(with respect to GPM-IMERG) and Indus basin (with respect to CHIRPS) is fair. Finally, the amount of pre-
dicted precipitation (areal-averaged precipitation) was evaluated against in situ ground station data avail-
able from the World Meteorological Organization though NCDC (National Climatic Data Center) GSOD
(Global Surface Summary of the Day). The heavy rainy area of the GBM basin (D03) covers 43 GSOD stations
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while the less rainy area of the GBM basin (D04) covers 13. Sixty GSOD stations located in the Indus basin
were used and the point precipitation values were converted to areal averages using the Thiessen polygon
method (see Figures 2 and 3).

5. Performance Criteria

We used error metrics proposed by Liu et al. [2012] to evaluate model output performance with respect to
observed data. Four categorical metrics were used. These included probability of detection (POD), the fre-
quency bias index (FBI), the false alarm ratio (FAR), and critical success index (CSI). The POD indicates the
probability of detection of rainfall, while FAR is the probability of the false rain (alarm) produced by the sim-
ulation. The CSI also indicates the probability of the detection, but with respect to the total rainfall predicted
by model and observation. The FBI evaluates the tendency to over or underestimate simulated rainfall with
respect to observed data. The ideal scores for POD, FBI, FAR, and CSI are 1, 1, 0, and 1, respectively. Three
continuous metrics, including the root mean square error (RMSE), the mean bias error (MBE), and the stan-
dard deviation (SD) were used in this study. Both RMSE and SD indicate the amount of error in predicted
precipitation without showing the bias. The MBE shows the bias of the simulated precipitation with respect
to the observed.

The categorical metrics were calculated with respect to the gridded satellite final (gauge-calibrated) prod-
ucts (i.e., GPM-IMERG for GBM and CHIRPS for Indus), while the other three error metrics were calculated
with respect to the areal-averaged observed precipitation determined from NCDC-GSOD station data. Here,
each error metric represents different characteristics of the performance of simulated precipitation. It is diffi-
cult to choose the best options based on these seven different error metrics. Therefore, a multicriteria deci-
sion analysis was carried out to find the likely best MP-CP combination over the GBM basin. Furthermore,
two unified performance scores were used to compare the results from different model configurations. The
description of the multicriteria decision analysis technique and the unified performance scores are given in
the next sections.

5.1. Multicriteria Decision Analysis
We used a multicriteria decision analysis technique named TOPSIS (Technique for Order of Preference by
Similarity to Ideal Solution) to find the likely best MP-CP combinations. TOPSIS was first developed by
Hwang and Yoon [1981] and later modified and used in numerous studies [e.g., Milani et al., 2005; Upad-
hyaya and Ramsankaran, 2014]. This multicriteria decision analysis technique determines the best alterna-
tive using the shortest and longest geometric distance from the positive and negative ideal solution,
respectively [Assari et al., 2012].

TOPSIS consists of six steps, starting with a decision matrix with different alternatives and criteria. In this
study, we used 15 different MP-CP combinations to find the likely best combination for monsoon-driven
weather. These 15 MP-CP combinations along with three different spatial resolutions provided 45 different
alternatives in this case. Therefore, the decision matrix in this study had 45 alternatives and 7 criteria (i.e., 4
categorical and 3 continuous error metrics). The value of each criterion indicates the performance of differ-
ent alternatives. In TOPSIS, each criterion should have the evaluation as ‘‘more is better’’ or ‘‘less is better.’’
To meet the requirements, the FBI and MBE were rescaled. Both rescaled metrics were ranging from 0 to1,
where 0 is the perfect score. Therefore, the POD and CSI are ‘‘more is better’’ and FAR, rescaled FBI, RMSE,
SD, and rescaled MBE are ‘‘less is better’’ criteria in this study. We used equal weight for all criteria. Finally,
the relative closeness to the ideal solution was computed. Hereafter, this computed value is denoted as
TOPSIS RCV (Relative Closeness Value). The higher TOPSIS RCV means closer to the observed data or more
accurate alternative.

5.2. Unified Performance Scores
The TOPSIS RCV is a relative value to identify the best alternative based on the given criteria. Which means
that the value is not absolute and may change with different sets of alternatives. Therefore, two unified per-
formance scores were used to compare overall model performance across different configurations, where
the score of each alternative is not relative to others. At first, the values of all error metrics were rescaled to
calculate the performance scores.
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Table 2 shows the relationship between the
original error metric and rescaled metric
(where subscript ‘‘r’’ denotes ‘‘rescaled’’).
Here, the thresholds were selected based
on the highest and lowest metric values. All
rescaled values range from 0 to 1, where 0
represents the worst case and 1 is for an
ideal case. Thereafter, a unified score was
calculated by assigning equal weights to all
rescaled error metrics (i.e., by averaging all
rescaled values). The point of deriving a uni-
fied score was to allow a convenient and
multidimensional assessment of precipita-

tion simulation quality for various WRF configurations. Here, a higher unified score means better model per-
formance or closer to the observed data.

Unified Score5
PODr1FBIr1FARr1CSIr1MBEr1RMSEr1SDr

7

� �
(1)

Another performance score was calculated to evaluate model performance in forecast mode using only the
rescaled categorical metrics denoted here as the spatial extent score. Like the unified score, the spatial
extent score ranges from 0 to 1 with 1 being the ideal value. This score shows the overall model perfor-
mance in terms of spatial distribution of precipitation.

Spatial Extent Score5
PODr1FBIr1FARr1CSIr

4

� �
(2)

6. Results and Discussion

6.1. Identifying the Likely Best Set of MP-CP Configurations
The model was simulated for 31 days over the GBM domain in nowcast mode to identify the likely best MP-
CP combinations. Figure 4 shows a sample comparison between the mean daily precipitations of the study
area from two MP-CP combinations with 9 km resolution (i.e., domain 2) and GPM-IMERG. The black boxes
in Figure 4 are the analysis extent for heavy rainy areas and less rainy areas, and are equivalent to the area
of Domains 3 and 4 of the GBM setup (Figure 2), respectively.

Figure 5 shows a sample comparison between the areal-averaged precipitation from two MP-CP combina-
tions with 9 km resolution and NCDC-GSOD. For the combined case, both heavy rainy areas and less rainy
areas were considered.

The spatial distribution of simulated precipitation was assessed using categorical metrics (i.e., POD, FBI, FAR,
and CSI), which were calculated against the GPM-IMERG data for the heavy rainy area, less rainy area, and
for the combined area. Figure 6 shows the comparison between the performance of WRF-modeled nowcast
precipitation against GPM-IMERG for different MP-CP combinations and spatial resolutions according to dif-
ferent categorical metrics.

In the heavy rainy area, the POD of the simulated precipitation is relatively better with the BMJ and GF CP
schemes. The performance of the GF-CP scheme is marginally better than BMJ in the humid subtropical
zone (Figure 6a). In the less rainy or semiarid zone, performance of the BMJ scheme is significantly superior
to the other two CP schemes (Figure 6b). In the combined case (Figure 6c), the performance of the BMJ and
GF are almost similar, except for a few cases where the GF shows better performance (e.g., WSM3-GF).
Across all conditions, the KF CP scheme shows poor performance. An almost similar pattern is visible in CSI
(Figures 6d–6f). Both POD and CSI indicate that the BMJ and GF are adequate to detect rainfall. However,
the GF exhibits better rain detection performance over wet regions (Figures 6a and 6d), while BMJ appears
acceptable across all climatic conditions (Figures 6a, 6b, 6d, and 6e).

The FBI indicates that the BMJ and GF parameterization schemes have a tendency to overestimate precipi-
tation, particularly when the resolution is coarse (Figures 6g–6i). In general, the KF scheme shows better

Table 2. Relationship Between Original and Rescaled Error Metricsa

Rescaled Error Metrics Threshold Value

PODr 5 POD N/A
If FBI>1: FBIr 5 (2-FBI)
If FBI<51: FBIr 5 FBI

12 max

FARr 5 1-FAR N/A
CSIr 5 CSI N/A
If MBE>0: MBEr 5 MBE/6
If MBE<0: MBEr 5 MBE/-6

26 to 16

RMSEr 5 (1-RMSE/12) 112 max
SDr 5 (1-SD/12) 112 max

aValues of the rescaled error metrics range from 0 to 1, and were used
to calculate the ‘‘Unified Score’’ and ‘‘Spatial Extent Score.’’
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performance (closer to 1) in
coarse resolution (Figure 6i). The
overall performance of the BMJ
scheme is slightly better than
the GF scheme in terms of FBI.
One of the reasons of selecting
continuous 1 month period in
the monsoon including few dry
spell was evaluating the false
alarm of the simulated precipita-
tion. However, the FAR in the
heavy rainy area do not appear
sensitive to a specific MP-CP
combination (Figure 6j). This
may be due to the fact that the
wet region experiences rainfall
almost every day and thus there
is no opportunity for the WRF
model to produce a false rain
simulation. In the dry area, the
performance of the GF scheme
is noticeably poor in terms of
FAR, while the KF scheme shows
better results (Figure 6k). From
Figure 6k, it is clear that the per-
formance of the MDM MP
scheme is worse than others and
ultimately, it reduces the overall
performance of the MDM MP
scheme in combined conditions
(Figure 6l). The above analysis of
FAR reveals that the selection of
the analysis area and period
have an impact on the evalua-
tion of model simulated precipi-
tation performance. Similarly
POD and CSI are not sensitive in
case of dry period, when less or
no rain occurs. Therefore, selec-
tion of multiple area with differ-
ent characteristics and longer-
time period is necessary to cor-
rectly evaluate the performance
of simulated precipitation. From
the analysis of the categorical
metrics, we can see that the
accuracy of simulating the spa-
tial distribution of precipitation
is quite sensitive to the CP
schemes, and the overall perfor-
mance of the BMJ scheme is bet-
ter than the other two studied.

Daily areal-averaged precipita-
tion for both simulated and

Figure 4. Mean daily precipitation (mm/day) from the WSM3-KF– 9 km simulation, WSM3-
GF– 9 km simulation, GPM-IMERG (0.18 resolution), and CHIRPS (0.258 resolution) of the
GBM basins for peak 1 month of the 2015 monsoon season. The boxes show the analysis
extent of the heavy rainy area (same as Domain 3) and less rainy area (same as Domain 4).
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observed data were calculated to
evaluate the metrics of MBE,
RMSE, and SD. The NCDC-GSOD
station data were used as refer-
ence Figure 7 depicts compari-
sons of the continuous error
metrics or RMSE, SD, and MBE.
From the MBE plot, it is clear that
the WSM3 MP scheme has a ten-
dency to yield negative bias
(underestimation), while the GF-
CP scheme has an opposite ten-
dency of positive bias in all con-
ditions (Figures 7a–7c). Patterns
of the RMSE and SD are almost
similar and show sensitivity of
the CP schemes to the accuracy
of the precipitation amount (Fig-
ures 7d–7i). The performance of
the KF-CP scheme is worse for
most cases of the wet climate
region (Figures 7d and 7g). In dry
conditions, the performance of
the GF-CP scheme is relatively
inferior to others (Figures 7e and
7h). In general, the BMJ scheme
is better in all conditions in terms
of areal-averaged precipitation.

Finally, the calculated TOPSIS
RCV indicated that in wet area
the BMJ and GF CP schemes per-
form relatively better than KF
(Figure 8a). In the dry area, the
BMJ is clearly superior (Figure
8b). Overall, performance of the
BMJ is better in all conditions
(Figure 8c). Similar results were
found by other studies for the
same region [e.g., Srinivas et al.,

2013; Kumar et al., 2010; Mukhopadhyay et al., 2010]. The MP schemes are not as sensitive as the CP
schemes. The combination of the WSM3, WSM5, and WSM6 microphysics schemes with the BMJ cumulus
parameterization scheme shows promising results in the GBM basins. The WSM3-GF with 27 and 9 km reso-
lution and TF-GF, MDM-BMJ, MDM-GF with 3 km resolution also provide favorable results in combined
cases. Considering the relatively poor performance of the GF-CP and MDM-MP scheme in the less rainy
(semiarid) region and the difference between the TOPSIS RCV at different resolutions with the WSM3-GF,
TF-GF, MDM-BMJ, MDM-GF combinations, we discarded combinations in further investigations (over Indus
basin). Based on the sensitivity analyses shown in Figures 6–8, the likely best set of configurations selected
for further investigation were: WSM5-BMJ, WSM6-BMJ, and TS-BMJ.

6.2. The Likely Ideal Spatial Resolution
In this study, we also evaluated the performance of three different spatial resolutions of the WRF model
over the GBM basin domain. From the POD and CSI (Figures 6a–6f), it is clear that the probability of detect-
ing precipitation is lower at finer resolutions (i.e., 3 km). Moreover, in most cases, the finer resolution model
underestimates precipitation (Figures 6g–6i). In terms of FAR, the difference between the model resolutions

Figure 5. Areal-averaged precipitation from WSM3-GF– 9 km simulation, TS-GF– 9 km
simulation, and GSOD station data (i.e., using the Thiessen polygon method). The areas
covered in the analysis (i.e., D03, D04) are shown in Figure 4.
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is insignificant. For the semiarid region, the finer resolution model shows slightly better performance in FAR
(Figure 6k). The 27 km resolution performs better than others in terms of POD and CSI when the KF CP
scheme is used. The 9 km resolution model performs reasonably well with BMJ and GF CP schemes showing
a modest improvement over the 27 km resolution.

In terms of MBE, the finer resolution model shows a mostly negative bias, while the coarser resolutions are
positive (Figures 7a–7c). In the heavy rainy area, the performance of the 3 km resolution is better in terms

Figure 6. Comparison between different combinations of parameterizations (MP-CP and spatial resolution) in terms of spatial distribution accuracy in GBM basins for the 2015 monsoon
season. Different spatial resolutions are represented by different lines in each subplot. In the case of POD, CSI, and FBI, the combination closer to 1 is more accurate, while for FAR, the
value closer to 0 is better with respect to the GMP-IMERG.
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of areal-averaged precipitation according to RMSE and SD metrics (Figures 7d and 7g). In the less rainy
(semiarid) area, the sensitivity to spatial resolution is insignificant in terms of RMSE and SD metrics (Figures
7e and 7h). In TOPSIS RCV plots (Figure 8), the overall performance of the finer resolution model is not sig-
nificantly higher than with coarser resolution, except for the case of TS and MDM MP schemes in the com-
bined case (Figure 8c). The MDM is the most sophisticated MP scheme used in this study with a total of 10
variables [Rajeevan et al., 2010]. The TS is the second most complex MP scheme used here. In general, the
higher resolution model demands a complex microphysics scheme (i.e., with more variable) to resolve finer-
scale processes explicitly [Stensrud, 2007]. This indicates the necessity of a complex MP scheme in high reso-
lution to resolve convective process explicitly when no cumulus physics are used. This may explain why the
performance of the 3 km resolution is remarkably better than the coarse resolution model with the TS and
MDM MP schemes.

The CP scheme was not used with 3 km resolution in this study. The WSM3-GF combination was chosen to
assess the performance of the 3 km resolution model using the CP scheme, as this combination shows
good performance for 27 km and 9 km resolutions, but remarkably poor performance at 3 km resolutions
(Figure 8c). We used the unified score (equation (1)) to compare the results before and after using the CP
scheme in the 3 km resolution. The simulation of 3 km resolution with the CP scheme significantly improves
model performance in finer resolution in terms of unified score (Figure 9). A possible reason could be that
the relatively simple WSM3-MP scheme (with only three variables) is unable to capture the convective

Figure 7. Same as Figure 6 but in terms of accuracy in areal-averaged precipitation with respect to the NCDC-GSOD data.
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process in the finer resolution grids. Use of the CP scheme appears to overcome this limitation. Therefore,
additional care may be required for the higher-resolution WRF model simulations, where convective precipi-
tation is common. The higher-resolution model performance can be improved by using the CP scheme with
it or by using any sophisticated MP scheme with many variables when no CP scheme is used.

Figure 10 shows areal-averaged precipitation for all three likely best MP-CP combinations in conjunction
with the observed data (GSOD) at different spatial resolutions for all domains (wet, dry, and combined). In
the heavy rainy area, the WRF model is able to capture the 20 and 30 August storm events that took place
in GBM (GSOD in Figures 10a/10d/10g). All model combinations are found to overestimate the first storm
event and underestimate the second storm event. The 27 km resolution shows relatively better perfor-
mance in the first storm event using the WSM6 scheme (Figure 10a), while the 9 km resolution with WSM5
is best for the second event (Figure 10d). In the less rainy (semiarid) area, all model combinations show
poor performance and fail to capture the storm events on 11 August, but are able to capture the 17 August
storm event (Figure 10b, 10e, and 10h). In general, the use of 3 km resolution does not yield superior skill in
terms of areal-averaged precipitation. Finally, the difference between the TOPSIS RCV of the 27 km and
9 km resolutions is less than the difference with the 3 km resolution in the combined case (Figure 8c).
Therefore, both 27 km and 9 km resolutions can be considered to be part of the likely ideal set of
combinations.

6.3. Reproducibility Over Indus
Basin
The WRF model was set up over
the Indus river basin using a set
of three likely ideal MP-CP com-
binations and two resolutions
identified over the GBM domain.
The simulation period spanned
a week time period when a
severe storm event in late July
2010 took place and flooded
large parts of Pakistan [Ahasan
and Khan, 2013]. The peak of
the storm occurred on 29 July
2010. Similar to the GBM basin,
the accuracy of simulated pre-
cipitation was calculated using a

Figure 8. TOPSIS RCV of different combinations (MP-CP and spatial resolution) in GBM basins for the 2015 monsoon season. Higher TOPSIS RCV means it is more optimal. The selected
combinations (i.e., with better and consistent performance) are shown by dashed border.

Figure 9. Comparison between the unified scores of the WSM3-GF combination in higher
resolution (3 km) using CP and without CP in GBM basins for the 2015 monsoon season.
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similar set of metrics (Figure 11). The CHIRPS data set was used as the reference data set to calculate the
categorical metrics, as the GPM-IMERG data record only starts in 2014.

From Figure 11, it is visible that the difference among the three likely best sets of combinations (derived
from GBM) in the Indus basin is marginal. Only the MBE shows that the TS-BMJ combination overestimates
precipitation slightly more than the others. The unified score was calculated using equation (1) and com-
pared with the unified score of GBM basins (Figure 12). The comparison shows that in both cases, the uni-
fied score yielded by the WSM5-BMJ is superior followed by the WSM6-BMJ and TS-BMJ combinations. In
both basins, the 27 km resolution with WSM5-BMJ and WSM6-BMJ show slightly improved performance
over the 9 km resolution. This indicates that the likely best combination of parameterizations hold true for
the Indus basin and the yield skill is consistent to that observed for GBM basins (Figure 12).

The areal-averaged precipitation calculated for different likely best MP-CP combinations and resolutions are
shown in Figure 13 along with the observed data. The storm was captured by all combinations, but
appeared to have an offset in the time to peak. WRF estimated the timing when rainfall peaked by about a
day. The peak achieved by the TS-BMJ combination was somewhat closer to the observed (Figure 13). Per-
formance of the other combinations is similar as reflected in the unified score values (Figure 12).

Overall, our sensitivity analyses indicate that the WSM5-BMJ at 27 km resolution shows the ideal perfor-
mance for both GBM and Indus river basins. This therefore serves as a tremendously useful guide and start-
ing platform for various flood forecasting agencies around the world that deal with monsoon-driven
seasonal flooding. The validation and reproducibility of performance on an independent and neighboring
basin (Indus) to GBM indicates that findings are representative of the broader South Asian Monsoon cli-
mate. For assessing robustness beyond South Asia, further analyses in farther away Monsoon-affected
basins such as the Mekong or Upper Nile are required.

Figure 10. Comparison between areal-averaged precipitation for the three likely best MP-CP combinations and observed precipitation (GSOD) in GBM basins for the 2015 monsoon sea-
son. The extent of the heavy rainy areas and less rainy areas are shown in Figure 5. Combined areas consider both heavy and less rainy areas.
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6.4. Assessment of Forecast Skill
The previous analyses used WRF nowcast (or in other words—retrospective simulation based on boundary
conditions from the NCEP GFS final analysis). In this section, we show the performance of the likely best set
of combinations in forecast mode using GFS forecast boundary condition data (GFS real-time forecast from
NCEP). For computational efficiency, two storm events were selected that occurred on 20 and 30 August
2015 in the heavy rainy area of the GBM basins. The areal-averaged precipitation of two storms at lead
times up to 10 days along with the observed data (GSOD) are shown in the top plot of Figure 14. The com-
parison shows that the WRF model configuration is able to downscale and maintain skill of the GFS forecast

Figure 11. Comparison between the performance of the likely best MP-CP and spatial resolution combinations in the Indus basin for a
one week time period for the late July 2010 storm event. The most optimized value for POD, CSI, and FBI is 1 and is 0 for FAR, RMSE, SD,
and MBE.

Figure 12. Comparison between the performances of the likely best MP-CP combinations in GBM basins for the 2015 monsoon season
(one month) and Indus basin for the storm event of late July 2010 (1 week) in terms of unified score.
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well enough to capture the first
storm event (20 August). The
9 km resolution shows better per-
formance than 27 km resolution
across all combinations after the
5 day lead time. We believe, the
‘‘rising trend’’ in skill between lead
times ranging from 5 to 7 days
should not be given too much
consideration at this stage given
that only two events were studied
in a limited manner. Rather, what
is more telling from Figure 14 is

that the 30 August 2015 storm could not be forecast well using any of the WRF combinations. Another point to
note is that for the 20 August storm, the WSM6-BMJ combination performs similar to the WSM5-BMJ combina-
tion (Figure 14 bottom plot).

We should note here that the time period selected, especially for assessment of forecast skill, is quite short
(a week) compared to what would have been normally desirable. Our main limitation was CPU resources
because running WRF in 45 different configurations and scales for an extended period was a logistic chal-
lenge. Nevertheless, readers should note the 1 week assessment as a potential limitation to making broad-
based conclusions for the global Monsoon system. For example, we were not able to study how forecasting
performs during El Nino or La Nina years or other types of oscillations with such a short period. Rather, the
findings should be considered strictly limited to an ‘‘average’’ South Asian monsoon wherein the precipita-
tion characteristics are assumed to be relatively steady in time during the months of July–October.

Figure 13. Same as Figure 10 but in the Indus basin domain for the storm event of late
July 2010.

Figure 14. (top) Comparison of areal-averaged precipitation in forecast mode using the likely best MP-CP combinations along with the observed (GSOD in black line) as a function of
lead times. (bottom) The skill of forecasted precipitation in terms of spatial distribution.
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7. Conclusions

In this study, we explored the likely ideal set of WRF physics combination for simulating (downscaling) pre-
cipitation from a global NWP model over the monsoon-dominated region of the Ganges-Brahmaputra-
Meghna river basins. The likely ideal combination was validated in a neighboring basin. Such an evaluation
helped pinpoint a more manageable set of parameterizations for atmospheric modelers that may need fur-
ther refinement through field campaigns for operational readiness in flood forecasting operations.

It was found that the Indian monsoon rainfall regime is more sensitive to the cumulus physics scheme than
the cloud microphysics scheme. Our study showed that the performance of the MP and CP scheme in dry
and wet areas of the GBM basins are considerably different. Model sensitivity to the CP scheme was differ-
ent in both areas, but overall the Betts-Miller-Janjic scheme performed better. The performance of the most
complex MP scheme of our study was better in the heavy rainy areas, while the same scheme showed poor
results in the less rainy areas of the region. We also found that the finest resolution without using any
cumulus physics option underestimated precipitation when a simple cloud microphysics scheme was used
with far less variables. On the other hand, a more complex microphysics scheme with more variables
yielded better performance at the finest resolution without the use of cumulus physics parameterization.
From a set of 15 combinations of WRF parameterizations and three spatial resolutions, the sensitivity study
converged to a set of three likely best MP-CP combinations and two spatial resolutions. Using a multicriteria
decision analysis, it was found that the WRF Single Moment 3 Class, WRF Single Moment 6 Class, and
Thompson microphysics schemes with Betts-Miller-Janjic cumulus parameterization scheme works well
with 27 and 9 km spatial resolution for all conditions in the GBM basin.

The study found that the likely ideal configurations derived using the GBM domain also held true for the
Indus domain. In both regions, the WSM5-BMJ yielded the best result, followed by WSM6-BMJ and TS-BMJ
combinations. The difference in performance between 27 and 9 km was marginal, indicating that computa-
tional efficiency could be achieved at 27 km without compromising accuracy. Additionally, the study tested
the WRF precipitation simulation in forecast mode using GFS forecast boundary data for two storm events
in the GBM basin. The results of this skill assessment yielded a mixed bag of results, where skill was found
to be storm event sensitive. Although good forecast skill was achieved for a storm event on 20 August
2015, our study points to the need for more investigation in the forecast mode as a function of storm phys-
ics characteristics and quality of boundary condition data.

There is no doubt that flood forecasting with longer lead times along with sufficient accuracy can reduce
the flood hazard in flood-prone countries. The only way to increase the lead time of a flood forecasting sys-
tem beyond the hydrologic time of concentration is to produce accurate precipitation forecasts. We believe
the freely available global NWP products and regional NWP model packages (like WRF) are the best tools to
forecast precipitation in ungauged river basins by flood management agencies constrained by limited
financial resources. Therefore, further development of modeling systems that downscale NWP model fore-
cast should be explored for eventual use by operational flood forecasting agencies. Additional numerical
models should also be considered, such as Regional Atmospheric Modeling System (RAMS) [e.g., Freitas
et al., 2016]. Use of additional numerical models allows a more robust assessment of forecast skill through
multimodel ensembles. Future studies should include the following topics: (1) exploring further refinements
to our proposed likely best set of parameterization configurations; (2) evaluation of model performance
using forecasted boundary data from NWP models other than NOAA models; (3) exploration of multiple
storm events of contrasting characteristics in different regions; (4) assimilation of satellite observations of
the atmosphere to improve skill in precipitation forecasts; and (5) exploration of multimodel ensembles.
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