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7Abstract The objective of this study is to compare the effectiveness of three algorithms that estimate
8discharge from remotely sensed observables (river width, water surface height, and water surface slope) in
9anticipation of the forthcoming NASA/CNES Surface Water and Ocean Topography (SWOT) mission. SWOT

10promises to provide these measurements simultaneously, and the river discharge algorithms included here
11are designed to work with these data. Two algorithms were built around Manning’s equation, the Metropo-
12lis Manning (MetroMan) method, and the Mean Flow and Geomorphology (MFG) method, and one
13approach uses hydraulic geometry to estimate discharge, the at-many-stations hydraulic geometry (AMHG)
14method. A well-calibrated and ground-truthed hydrodynamic model of the Ganges river system (HEC-RAS)
15was used as reference for three rivers from the Ganges River Delta: the main stem of Ganges, the Arial-
16Khan, and the Mohananda Rivers. The high seasonal variability of these rivers due to the Monsoon pre-
17sented a unique opportunity to thoroughly assess the discharge algorithms in light of typical monsoon
18regime rivers. It was found that the MFG method provides the most accurate discharge estimations in most
19cases, with an average relative root-mean-squared error (RRMSE) across all three reaches of 35.5%. It is fol-
20lowed closely by the Metropolis Manning algorithm, with an average RRMSE of 51.5%. However, the MFG
21method’s reliance on knowledge of prior river discharge limits its application on ungauged rivers. In terms
22of input data requirement at ungauged regions with no prior records, the Metropolis Manning algorithm
23provides a more practical alternative over a region that is lacking in historical observations as the algorithm
24requires less ancillary data. The AMHG algorithm, while requiring the least prior river data, provided the
25least accurate discharge measurements with an average wet and dry season RRMSE of 79.8% and 119.1%,
26respectively, across all rivers studied. This poor performance is directly traced to poor estimation of AMHG
27via a remotely sensed proxy, and results improve commensurate with MFG and MetroMan when prior
28AMHG information is given to the method. Therefore, we cannot recommend use of AMHG without inclu-
29sion of this prior information, at least for the studied rivers. The dry season discharge (within-bank flow) was
30captured well by all methods, while the wet season (floodplain flow) appeared more challenging. The pic-
31ture that emerges from this study is that a multialgorithm approach may be appropriate during flood inun-

32

dation periods in Ganges Delta.

33

34

351. Introduction

36Rivers are among our world’s most important natural resources. Nearly every large river on earth is modified
37by human interactions necessary to sustain society and these modifications have wide reaching impacts on
38the global water cycle [Biemans et al., 2011; Pokhrel et al., 2012a; Pokhrel et al., 2012b; V€or€osmarty et al.,
392011] AQ2. Rivers provide water for drinking and irrigation to millions of people. The nutrient-rich fertile flood-
40plains that get periodically replenished during floods are essential for round the year crop production.
41Hydropower generation in run-on-river barrages supplies a significant portion of the world’s electricity, and
42hydropower dam construction is increasing, especially in developing nations [Zarfl et al., 2014].

43Despite their significance, most of the world’s rivers are largely ungauged. Where rivers are gauged, records
44are available as point-based measurements that do not paint a complete picture of a river system’s interac-
45tion with the water cycle. Furthermore, the availability of gauged data may be hindered by hydropolitics. In
46the case of rivers that cross national boundaries, upstream nations can be reluctant to share river gauge
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47data with downstream nations [Hossain and Katiyar, 2006]. AQ3In situations such as these, remote sensing via
48satellites is the only available method for obtaining meaningful data from these ungauged rivers [Alsdorf
49et al., 2007; Schumann et al., 2009; Bates, 2004; Durand et al., 2010; Birkett, 1998; Calmant and Seyler, 2006].
50An important parameter for the understanding of surface water dynamics is river discharge. The standard
51approach to remotely measuring discharge is to extract it from remote sensing observables such as river
52width, water surface elevation, and water surface slope and apply discharge algorithms that are tailored for
53such inputs [Alsdorf et al., 2007].

54Three such algorithms with global applicability are the at-many-stations hydraulic geometry (AMHG)
55algorithm, the Mean Flow and Geomorphology (MFG) algorithm, and the Metropolis Manning (Metro-
56Man) algorithm. The mechanics of each algorithm are presented in section 3. Gleason et al. [2015]
57recently tested the AMHG algorithm on 34 rivers around the world. They found that under most circum-
58stances, the algorithm discharges had 26%–41% relative root-mean-squared error (RRMSE) agreement
59with gauged flow rates. However, for braided river conditions and situations where changes in river dis-
60charge have a very small effect on river width, the algorithm performs considerably less skillfully with
61median RRMSE greater than 70% [Gleason et al., 2015]. Gleason and Hamdan [2016] applied AMHG to
62the Ganges using Landsat images, and found a dry season RRMSE of 28%, suggesting that the AMHG
63method could be well suited to the river. Durand et al. [2014] has reported 19% RRMSE from the Metro-
64Man algorithm on the River Severn in the UK. Another study found that the Metropolis Manning algo-
65rithm overestimates the discharge of the Garonne River [Berthon et al., 2014]. There has been no formal
66test of the MFG algorithm at the time of writing.

67The discharge of rivers with high seasonal variability, meandering and braided nature and a tendency to
68change course, may be more difficult to extract than more stable rivers seen in most places. Such challeng-
69ing set of river characteristics are often seen in deltas located at the downstream end of large river systems,
70such as Ganges-Brahmaputra, Nile, Zambesi, Niger, Indus, Salween, and Mekong Rivers. Given the economic
71and societal importance of most deltas for supporting the food and water needs of large populations, it is
72important to assess discharge estimation approaches in these locations [V€or€osmarty et al., 2007, 2009].

73Assessment of different discharge estimation methods takes particular importance in this decade as satellite
74observations on river width and heights are expected to become more widely available. There are currently
75several concurrently flying nadir altimeters that can measure river heights, such as JASON-1, JASON-2, ENVI-
76SAT (this mission ended in May 2012), CryoSat-2, and SARAL/AltiKa. With JASON-2 nearing its phasing out,
77JASON-3 was launched January 2016. In addition, the first satellite in European Space Agency’s (ESA)
78Sentinel-3 two-satellite constellation launched in February 2016 (Sentinel-3A) and Sentinel-3B will be
79launched in 2017. The planned Surface Water and Ocean Topography (SWOT) wide swath radar interfero-
80metric altimetry mission [Alsdorf et al., 2011; Pavelsky and Durand, 2012; Fu et al., 2012] is scheduled for
81launch in 2020. Of these planned missions, JASON-3 and Sentinel-3 are actually designated operational mis-
82sions, dedicated to providing near-real-time data to the general public. Thus, there is an anticipated abun-
83dance of satellite water missions that measure height well into the foreseeable future. With such data
84continuity and declining latency, it is worthwhile to assess discharge algorithms that are amenable to han-
85dling remotely sensed inputs of heights, widths, and slope. The first step to this assessment, which is the
86primary motivation of this study, is to assess the algorithmic (or model-based) uncertainty of each approach.
87Such a study allows us to understand the various error interactions and provide further guidance on devel-
88opment of discharge estimation methods in preparation of future satellite missions.

89Unlike traditional satellite altimeters, which measure elevation at a single point (resulting in a line of eleva-
90tions measurements as the satellite orbits the earth), the SWOT Mission will provide elevation measure-
91ments in wide swaths that allow for the simultaneous measurement of surface water extent and elevation
92with an observation frequency of 2–3 times within a 21 day period. This unprecedented level of surface
93water observations will facilitate more robust river discharge estimation algorithms. This study aims to pro-
94vide a performance comparison of three existing SWOT-based discharge algorithms on the Ganges River
95delta. It is organized as follows. Section 2 describes the study region and provides a background on the
96model used to obtain input data for discharge algorithms. Section 3 describes the three algorithms. Section
974 presents a performance comparison between the algorithms. Finally, section 5 summarizes the findings
98and states the need for future studies to advance satellite-based discharge estimation.
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992. Study Region, Models, and Data

1002.1. Study Region
101The region of interest for this study is the Ganges River delta. The massive difference in river flow rates
102between the wet (Monsoon) and dry seasons makes this region unique for testing the ability of the algo-
103rithms to handle large seasonal variability. It is also a water-sensitive delta hosting two mega cities (Kolkata
104and Dhaka) and the water and food needs of over 200 million people in a changing climate. A majority of
105the non-Monsoonal flow originates from the Himalayan glaciers and snowpack that sustains the dry season
106(base) flow and groundwater stocks for water supply and crop production [Dyurgerov and Meier, 2005].

107Three rivers from the delta region were selected for the study, the Arial-Khan River, Mohananda River, and
108main stem of the Ganges River. Figure F11 shows the locations of these three rivers within the river system of
109Bangladesh. The Ganges River was selected for study because it is the major river in this system. The Moha-
110nanda and Arial Khan Rivers were selected because they are a tributary and distributary of the Ganges,
111respectively, and are representative of the many smaller rivers in the delta. These reaches of the Arial Khan
112and the Mohananda Rivers are single channel, while the Ganges River reach has a few braided sections.

113There are some significant differences in the hydraulic characteristics of the selected river reaches. The
114Ganges River is an order of magnitude wider than the other two rivers studied here. The Arial-Khan River
115experiences tidal effects which during the dry season causes the river flow direction to reverse during high
116tides. This behavior is characteristic of delta rivers emptying into an ocean. In spite of their differences, all
117three rivers experience the sharp change in river flow characteristics during the Monsoon season which is
118characteristic of most rivers of humid deltas.

1192.2. SWOT Mission
120The three discharge algorithms tested here (described in section 3) were designed to operate using obser-
121vations provided by the SWOT mission, scheduled to launch in 2020. This mission will utilize wide swath
122altimetry to provide spatially distributed water surface elevations. SWOT is expected to provide global
123observations of rivers larger than 50–100 m, producing significant benefits for global river hydrology [Pavel-
124sky et al., 2014; Biancamaria et al., 2015]. River top width, river surface elevation, and river surface slope, the
125important variables regarding river discharge, can be derived from these water surface data provided by
126SWOT. The SWOT mission will produce such observations in 120 km wide swaths, with a 20 km nadir gap
127(i.e., two 50 km wide swaths on either side of the orbital track, both extending from 10 to 60 km away from
128nadir). The SWOT satellite will be a polar orbiting satellite with an inclination of 77.68 and a repeat cycle of
12921 days (i.e., the satellite will pass over the same location on earth every 21 days). However, because the sat-
130ellite will observe in a wide swath, most locations on earth will be observed multiple times in one cycle,
131with higher observational frequency in high latitudes and lower frequency near the equator. The rivers stud-
132ied here would be observed 2–3 times in one 21 day cycle of the planned SWOT orbit.

1332.3. Hydrodynamic Model
134Because the SWOT mission will not fly until 2020, a hydrodynamic model of the Ganges delta created with
135the Hydrologic Engineering Center River Analysis Software (HEC-RAS) was used to simulate the three rivers
136studied here and to provide the proxy remote sensing variables. This model has been previously calibrated
137and used for studying satellite river observations of the Ganges delta system [Sikder and Hossain, 2014; Sid-
138dique-E-Akbor et al., 2014; Maswood and Hossain, 2014]. The Manning’s roughness parameter at each cross
139section in the HEC-RAS model (located approximately every 10 km) was previously calibrated based on
140direct measurements of river height from gauge stations within the delta with boundary conditions speci-
141fied by upstream gauged discharge and downstream water level. River bathymetry at each cross section
142was obtained from surveys of the river bed. All modeled cross sections of the Ganges are in locations where
143the river is single channel. Because of this, the model treats the entire river as single channel. The gauging
144stations along the selected river reaches are shown as red squares in Figure F22, while the performance of the
145HEC RAS model on each of these rivers is shown in Figure F33.

146Each study reach was subdivided into two or more reaches due to changes in river conditions resulting in
147significant differences in river hydrodynamics or discharge marked by specific locations. This was done so
148that the discharge algorithms could be applied to reaches with consistent discharge (i.e., reaches without
149abrupt changes in discharge or hydrodynamics). For the Ganges and Arial-Khan Rivers, this subdivision was
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150determined using the location of tributaries and distributaries along the channel. A sharp change in the
151slope of the Mohananda River marks the location of its subdivision. These subdivision locations are shown
152in Figure F44. The length of the resulting reaches ranges from 10 to 100 km. Slope was calculated for each
153reach segment using the least squares method. These calculated slopes are also depicted in Figure 4.

1542.4. SWOT Simulator
155To gain a better sense of how the algorithms will perform in practical applications with SWOT observations,
156the SWOT simulator provided by the Jet Propulsion Laboratory (JPL) was used. The required inputs for the

Figure 1. The Ganges Delta showing the selected river reaches that were studied.
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157simulator are a water surface elevation layer (typically taken as the ‘‘true’’ water surface) and a DEM (digital
158elevation model) of the surrounding land surface with river bathymetry. The simulator then applies errors
159to the water surface elevation according to expected instrument error of the mission, providing a simulation
160of a SWOT observed water surface. At the time of writing, the SWOT simulator was only equipped to pro-
161vide errors in river water surface elevation and not river width. The errors included in the simulator were
162random errors (e.g., instrument inaccuracies), errors caused by signal blockage due to rough topography,
163and tropospheric errors associated with precipitation.

164The SWOT simulator utilizes orbit specifications representative of the mission’s planned orbit with a 77.68

165inclination, 890 km altitude, and a 21 day repeat cycle. The SWOT mission’s planned swath width is 120 km.
166Here the swath width of the simulator was kept at its default value of 140 km. However, all three river
167reaches studied here were completely enclosed by the 120 km swath (i.e., no part of the rivers were seen
168by the additional 20 km provided by the 140 km swath) so for the purposes of this study, the observations
169generated using the 140 km swath are functionally identical to those that would have been generated
170using a 120 km swath.

1713. Methodology

1723.1. Overview
173The general methodology behind this study was to first generate river width and water surface elevation
174data as well as discharge for the three study rivers using the HEC-RAS model of the Ganges delta. Then, use
175this river width and water surface elevation data as input into each algorithm in a consistent framework
176and compare the estimated daily discharges with the discharges generated by HEC-RAS model. The 5th,
17715th, and 25th of each month from the year 2001 for a total of 36 days were used to assess the performance
178of each algorithm. This is similar to the sampling frequency expected from the SWOT mission. Daily river
179data of the entire year 2000 were treated as a priori knowledge and used to calibrate the MFG algorithm
180parameters (see section 3.5) and provide the prior parameter estimates for the Metropolis Manning algo-
181rithm (see section 3.6).

182Next, SWOT mission observations were simulated by passing the HEC-RAS model output through the SWOT
183simulator and use these river observations as inputs into the algorithms to understand how SWOT

Figure 2. HEC-RAS river hydrodynamic model setup on the Ganges Delta and the calibration station locations within the selected study reaches. The highlighted rivers are study reaches
used to delineate reach segments, and the box in the left figure indicates the boundaries of the right figure.
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184uncertainties affect discharge estimation. To help understand how each algorithm works, Figure F55 shows a
185depiction of an arbitrary river cross section (left) and profile (right) with remote sensing observables of
186width, depth (above a minimum or reference water depth), and slope.

1873.2. Data Processing
188In order to derive the river width, water surface elevation, and water slope for use in each algorithm, 10 m
189resolution water depth rasters were created for the 2000–2001 period using HEC-Geo-RAS [U.S. Army Corps
190of Engineers; Ackerman, 2009]. To generate these rasters, first the HEC-RAS model was used to produce river
191cross sections at 100 m increments using a built in HEC-RAS interpolation tool. These cross sections were
192imported into GIS from HEC-RAS with the help of HEC-GeoRAS, resulting in 10 m resolution river bathymetry
193rasters. The generated river bathymetry was merged with 300 m resolution dry land DEMs of the study
194reaches provided by the Bangladesh Water Development Board (BWDB) and resampled to 10 m. These dry
195land DEMs were used because their elevations are based off the same local datum, mPWD (meter Public
196Work Datum), as the HEC-RAS model. Figure F66 shows the 300 m BWDB DEM and the HEC-RAS generated
197bathymetry (left), as well as the resulting 10 m merged DEM with river bathymetry (right) for the Moha-
198nanda River. Next, river depth data output taken from the HEC-RAS model of the study reaches were
199imported into GIS using HEC-Geo-RAS, resulting in 10 m resolution water depth rasters. These water depth

Figure 3. Time series of observed and HEC-RAS simulated water level at gauging stations. Herein RMSE is Root-Mean-Squared Error while RRMSE is the RMSE relative to the average
water level and expressed as a %.
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200rasters were then merged with the dry land DEMs with river bathymetry to convert them into water surface
201elevation layers.

202River width and height were extracted from the water surface raster by first dividing the raster into 100 m lengths
203(along river centerline) according to each cells proximity to points on the river centerline corresponding to 100 m
204increments (i.e., pixels were grouped with their nearest centerline point). River height in each 100 m increment
205was taken as the average height of all pixels within the 100 m length. River width in each 100 m increment was
206calculated by dividing the surface area of each increment (number of pixels multiplied by pixel area) by 100 m (the
207length of the increment). Figure F77 illustrates this data extraction process, from the combination of dry land DEMs
208with water surface DEMs, to averaging in 100 m increments to generate width, elevation, and slope along the
209entire reach. River heights and widths
210were averaged across each increment for
211each of the selected 36 days of the study
212period in 2001 for the comparison
213between algorithms. These reach aver-
214aged observations are shown in Figure F88.
215In this study, it was assumed that the
216water slope, width, and height data
217extracted from the water surface DEMs
218are a perfect representation of actual
219river conditions.

220Preliminary tests of the AMHG method
221showed that it exhibited inadequate
222skill when applied over the entire year
223of the study period in 2001. Because of
224the high variability of both river width
225and discharge between the dry and
226wet seasons and a change in flow
227regime (within-bank flow versus flood-
228plain flow), we separated the test into
229two periods: dry season and wet sea-
230son. To properly compare the perform-
231ance of the AMHG method to the other
232two approaches, similar time-period-
233specific error statistics for the MFG and
234Metropolis Manning algorithm were
235calculated. The dry season of 2001 was
236defined as 5 January through 15 May
237and the wet season was defined as 25
238May through 25 December. Fifteenth
239May was chosen because in all three
240rivers, it marks the beginning of sharp
241increases in flow rate as well as height
242and width. Shifting this date earlier or
243later by a few days did not have a sig-
244nificant impact on the results.

2453.3. Application of the SWOT
246Simulator
247In order to better understand how the
248algorithms will perform with real
249observations, the SWOT simulator was
250applied in a manner that allowed the
251exploration of SWOT uncertainty on
252discharge estimation for Mohananda

Figure 4. Water level of the Study Reaches on 15 August 2001. This illustrates the
slope of each reach and the locations of the reach boundaries.
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253River. Here river elevation measure-
254ments were simulated for each of the
25536 days from 2001 using the HEC-RAS
256generated water depth files. These
257water heights were averaged within
258each 100 m long increment and used
259to determine the slope. The width was
260taken from the raster file generated
261from HEC-RAS output, because at the
262time of writing, estimating river width
263among SWOT location error had not been well established. No uncertainty was considered for width obser-
264vations in this study.

265The 10 m dry land DEMs with river bathymetry described earlier provided the floodplain topography and river
266bathymetry needed for the simulator. Additionally, the water surface elevation layers generated from HEC-
267GeoRAS were used as inputs in to the simulator. The simulator applied random and topographical errors to
268these water surface elevation layers and created new water surface layers representative of expected SWOT
269measurements (Figure F99). Since river surface extent could not be extracted from the simulator output, only
270height errors occurring within the original water surface were considered. Simulated elevation measurements
271with high vertical error also exhibit high geolocation error, causing them to be located outside the water sur-
272face mask. Thus, excluding these points lead to an underestimation of the overall SWOT error. Additionally, it
273was assumed that no rainfall occurred during SWOT observations and tropospheric errors were neglected.

274The SWOT simulator typically runs for a complete cycle of 21 days (i.e., the simulated satellite flies over the
275same location on the earth every 21 days). Within this cycle, a river reach is expected to be covered at least
276once by the wide swath of the SWOT orbit. In higher latitudes, the frequency of the coverage will be higher.
277The Mohananda River reach is entirely covered twice within a cycle by two orbits, once by the right swath
278of orbit-0261 and again by the left swath of orbit-0498 (Figure F1010). The reach is passed by the orbit-0261
279and orbit-0498 9.3 and 17.8 days, respectively, from the cycle’s starting date. Note that these different orbits
280result in slightly different simulated water surfaces due to differences in the location of the reach relative to
281the satellite (e.g., errors at the outer edges of the swath are different than errors at the inner edges of the
282swath). Here discharge was estimated for both overpasses and averaged.

283Sections 3.4–3.6 provide a brief description of each of the discharge estimation approaches.

Figure 5. Representation of remote sensing observables of hydraulic features:
width, depth, cross-sectional area, and reach averaged slope on a generic cross
section.

Figure 6. Three hundred meter dry land DEM from the Bangladesh Water Development Board and river bathymetry from HEC-RAS model
(left) before merging and (right) 10 m merged dry land DEM with river bathymetry.
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2843.4. At-Many-Stations Hydraulic Geometry (AMHG)
285The AMHG algorithm proposed by Gleason and Smith [2014] and Gleason et al. [2015] is based on the
286hydraulic geometry relationship between river width (w) and flow rate (Q) given by equation (1), or at-a-
287station hydraulic geometry (AHG) [Leopold and Maddock, 1953]. Gleason and Hamdan [2016] have also pre-
288viously applied this method to the Ganges River using Landsat imagery in a proof-of-concept experiment,
289finding 28% RRMSE between esti-
290mated and observed dry season flows.

w5aQb (1)

291where

292w 5 width of river surface at any cross
293section at any point in time;

294Q 5 river discharge;

295a and b 5 hydraulic geometry
296parameters.

297The a and b terms are hydraulic geo-
298metry parameters which are unique to
299each cross section along a river. Glea-
300son and Smith [2014] first showed that
301a previously unknown relationship
302between a and b parameters existed,
303and termed this relationship as
304AMHG, equation (2).

b52AMHG3log ðaÞ1AMHG3log ðwglobÞ
(2)

305where

306wglob 5 mean of all observed widths in
307a study reach over space and time;

308AMHG 5 slope of the b 2 log(a)
309relationship;

310a and b 5 hydraulic geometry
311parameters.

312AMHG thus relates cross-sectional
313AHG parameters in space. A proxy for
314the slope of a river’s AMHG which
315only requires repeated width meas-
316urements of the river reach, given by
317equation (3), has been used to deter-
318mine AMHG in the past.

log ðmax ðwx1;x2;...xnÞÞ

5
1

AMHG
log ðmax ðwx1;x2;...xnÞ2

2min ðwx1;x2;...xnÞ2Þ1p

(3)

319

320where

321AMHG 5 slope of the b 2 log(a)
322relationship;

Figure 7. Data processing technique to determine slope of a reach and river width.
The ‘‘DEM’’ in the top right figure represents the dry land (without water) elevation
model. (top left) This DEM was merged with the water depth layer to generate the
(middle) water elevation layer. (bottom) From the water surface elevation layer,
width, elevation, and slope were extracted. The black vertical lines in the bottom
figure show the location along the reach of the data shown in the top and middle
figures. Elevation of water surface is relative to a local datum called meter Public
Water Datum (mPWD) which is about 0.45 m above local mean sea level.
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323wx1,x2,. . .xn 5 width of river corresponding to each cross section of the reach;

324p 5 empirical regression parameter.

325This relationship is not guaranteed to perfectly predict a river’s AMHG. Gleason and Wang [2015] found this
326relationship to be unreliable, however, it is assumed to apply to the rivers studied here. An exploration of
327the impact of using this proxy on discharge estimation is presented in section 4.4.

328Using equation (3), the AMHG can be calculated for a given reach via linear regression, allowing the rela-
329tionship between a cross section’s a and b to be known. The p term represents the intercept of the linear
330regression and is not used in determining the AMHG. Next, an optimization routine (in this case, a genetic
331algorithm [Gleason and Smith, 2014]) is used to determine the a and b parameters for each cross section in
332the river reach by minimizing the difference in flow rates between each cross section. The optimization rou-
333tine is constrained in its search by AMHG and by discharge constraints proposed by Gleason and Smith

Figure 8. Reach averaged water surface height, width, and slope (slope is positive at downward direction) of study reaches for 36 days of the independent validation period in 2001.
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334[2014]. The genetic algorithm is here
335run 50 times for 50 generations each,
336with random start points and an aver-
337age of all the resulting flow rates is
338output as the river reach’s discharge.
339The results were insensitive to the
340number of genetic algorithm runs (this
341is consistent with the sensitivity analy-
342sis performed in Gleason et al. [2015])
343and 50 runs of 50 generations were
344used, because this matched the proce-
345dure used in Gleason and Smith [2014].
346Figure F1111 shows a flowchart break-
347down of the implementation of the
348AMHG algorithm.

349A brief sensitivity analysis was per-
350formed to determine the sensitivity of
351the AMHG method to the number of
352cross sections used to calculate dis-
353charge. It was found that the method was insensitive to this parameter as long as more than 15 cross sec-
354tions were used. In this study, we used 25 equally spaced cross sections for each reach to balance the 15
355cross section limit found in the sensitivity analysis while maintaining fewer cross sections to achieve reason-
356able computation speed. The water surface widths at these cross sections were taken from the 10 m water
357surface DEM generated from HEC-GeoRAS.

3583.5. Mean Flow and Geomorphology Algorithm
359The MFG algorithm is developed from conceptual approaches discussed in Bjerklie et al. [2003, 2005] and
360Dingman and Bjerklie [2005]. The algorithm assumes a mean value for the Manning friction coefficient that
361is modified based on the change in cross-sectional flow area, assumes a regular geometric shape for the
362cross section such that the change in maximum depth measured by change in stage can be translated into

Figure 9. Application of the SWOT simulator. (left) Water surface elevation raster
generated by the SWOT simulator; (right) averaged SWOT simulator WL at each
100 m increment of the Mohananda River on 15 April 2001 (orbit-0261).

Figure 10. SWOT orbital pass and coverage over the Mohananda River reach. The lower right figure in the inset shows the SWOT coverage
with a 21 day repeat cycle at 77.68 inclination.
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363the change in the mean flow depth of the cross section, and assumes a minimum or zero flow stage. The
364general relation is given in equation (4).

Q5
1
n

H2Ho½ �Y�ð Þ
5
3WS

1
2 (4)

365where

366n 5 estimated Manning’s resistance coefficient;

367W 5 observed width;

368H 5 observed height;

369S 5 mean slope of the river (water surface assuming equivalent to energy slope);

370Y�5fraction to derive mean cross section depth; 12 1
11B, and B is the shape factor (2 for parabolic cross

371section and 10 for Rectangular cross section);

Figure 11. Flowchart of steps to calculate discharge using (top) the AMHG algorithm, (middle) the MFG algorithm, and (bottom) the
Metropolis Manning algorithm.

J_ID: WRCR Customer A_ID: WRCR21984 Cadmus Art: WRCR21984 Ed. Ref. No.: 2015WR017296 Date: 18-March-16 Stage: Page: 12

ID: padmavathym Time: 12:40 I Path: //10.18.11.53/Home$/padmavathym$/JW-WRCR160122

Water Resources Research 10.1002/2015WR017296

BONNEMA ET AL. SATELLITE DISCHARGE ESTIMATION 12



372Ho 5 the zero flow depth which is individually calibrated with mean annual flow.

373The mean water surface slope was derived from the HEC-RAS model output for the year 2000. A rectangular
374cross section was assumed in calculating Y* (with B equal to 10).

375The Manning’s n value is assumed to be associated with the mean value of channel width and stage. This
376Manning’s n value is varied according to the change in channel cross section as indexed by equation (5).

n5 c1
WH

WaHa

� �x1

na (5)

377where,

378Wa 5 long-term average of observed width;

379Ha 5 long-term average of observed height;

380na 5 input average Manning’s n.

381The long-term width and height observations were taken from the daily output from the HEC-RAS model
382for the year 2000. The input average Manning’s n used here was 0.025. Section 4.5 shows that this method
383is relatively insensitive to the Manning roughness input. The coefficients, c1 and x1, remain constant
384through time and were calibrated based on daily water surface elevation and mean annual discharge from
385the same HEC-RAS model output for the year 2000. While an entire year of daily data was used here, the cal-
386ibration of these coefficients can proceed using limited time series of stage or general relationships devel-
387oped on rivers in a similar setting and then further calibration can be performed as more satellite
388observations become available. For the three rivers studied here, the difference between annual average
389height, width, slope, and discharge calculated from daily values and calculated from a more limited time
390series (the 5th, 15th, and 25th of each month) were less than 0.1%, ultimately leading to no difference in
391discharge estimation. It is anticipated that initial empirically derived default values for B, na, c1, and x1 can
392be optimized over time based on validation time series, and improved understanding of the relation
393between the coefficient values and river characteristics.

394The value for the minimum flow depth H0 is optimized by calibrating the time series of observed width,
395stage, and slope to the mean discharge for the river, and as such is dependent on knowledge of the mean
396discharge. It is assumed that the mean discharge is available from various global databases, or from global
397circulation and hydrologic models, or from other sources.

398The parameterization of Manning’s n cannot address tidal flux, because in these environments, the relation
399between change in Manning’s n and change in cross section does not necessarily have any validity. This is
400because the flow resistance is dominated by backwater effects and varies substantially during periods of
401adverse (upstream) slope (incoming flood tide) and downstream slope (outgoing ebb tide). However, a
402modified relation between cross-sectional change and slope could be developed to account for this
403deficiency.

404The MFG algorithm relies on the prior estimation of average Manning’s n (na) and mean annual flow to
405calibrate the Ho. The sensitivity of the algorithm to prior estimations of these parameters is explored in
406section 4.5. This discharge estimation algorithm can be applied to calculate cross-sectional discharge as
407well as reach averaged discharge. In this study, reach averaged observations were used for this method
408resulting in reach averaged discharge. Figure 11 shows the algorithm structure for calibrating c1, x1; and H0

409and estimating discharge.

4103.6. Metropolis Manning Algorithm
411The Metropolis Manning algorithm also uses a form of Manning’s equation paired with mass conservation
412as a basis for determining discharge [Durand et al., 2014]. Equation (6) shows Manning’s equation as used
413by this algorithm. Note that the bar signifies reach averaged quantities.

�Qðr; tÞ5 1
nðrÞ

�A0ðrÞ1d�Aðr; tÞ½ �5=3wðr; tÞ22=3�Sðr; tÞ1=2 (6)

414where
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415r 5 denotes reach;

416t 5 denotes time step;

417n 5 Manning’s n;

418A0 5 base flow area;

419dA 5 deviation in flow area from base flow area;

420w 5 river top width;

421S 5 river slope;

422Q 5 discharge.

423Equation (7) gives the mass conservation of the river.

@�Q
@x
ðr; tÞ1 @�A

@t
ðr; tÞ5�qðr; tÞ (7)

424where

425@�Q
@x 5 partial derivative of flow rate with respect to the downstream direction;

426@�A
@t 5 partial derivative of flow area with respect to time;

427�q5 reach averaged lateral inflows.

428Discretizing equation (7) between two remote sensing overpasses gives equation (8). By minimizing equa-
429tion (8), the optimal Manning’s n and base flow area can be obtained.

Hðr; tÞ5dr;t
�Qr;t1

d�Aðr; tÞ2d�Aðr; t21Þ
Dt

2�qðr; tÞ (8)

430where

431H(r,t) 5 error for reach r at time t;

432dr,t 5 constant dependent on length of reach, see Durand et al. [2014] for more details.

433The error term in equation (8) is minimized using a stochastic sampling algorithm known as the Metropolis
434algorithm that uses a Bayesian probability updating scheme to create a Markov chain of the unknown
435parameters, n and A0. The Markov chain is run for 100,000 iterations and the end result is likely values for
436the Manning’s n and base flow area. With these parameters known, equation (6) is solved to provide
437discharge.

438In this study, lateral inflow (q) was assumed to be 0. This is valid for the synthetic experiment in this study,
439because the HEC-RAS model does not take into account smaller tributaries, distributaries, or groundwater
440effects. In application, this assumption would likely decrease the accuracy of this method. The prior base
441flow area (A0) was estimated using minimum river width and discharge from the year 2000 calibration data
442set and assuming a water depth of 1 m. The standard deviation of this base flow area estimate was set as
44320% of the base flow area estimate. The initial estimate of Manning’s n was taken as 0.025 with a standard
444deviation of 0.01. The standard deviation of slope, height, and width for all reaches were defined as 0.5 cm/
445km, 1 cm, and 1 m, respectively. These values represent the uncertainty in the observations. To test the
446algorithmic uncertainty of the Metropolis Manning algorithm, the observations are assumed to be perfect.
447However, this algorithm requires these values to be nonzero. For this reason, relatively small standard devia-
448tions of the observations were selected.

449This algorithm was designed to operate using more than three river reaches. Here the study reaches were
450discretized further, similar to the manner Durand et al. [2014] further discretized their study reach of the
451River Severn. In this past study, river subreaches ranged from 6.7 to 8.2 km. Here we partitioned each study
452reach in an attempt to match the reach length used in Durand et al. [2014]. However, this was balanced
453against the increasing computational expense caused by increasing the number of reaches. The Ganges
454was split into nine subreaches (each approximately 20 km in length), the Mohananda was split into six sub-
455reaches (each approximately 10 km in length), and the Arial-Khan was split into five subreaches (each
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456approximately 20 km in length). All subreaches maintained the 100 m spacing between width and height
457observations described in section 3.2. Since this algorithm provides reach averaged discharge, length
458weighted average discharges were calculated which correspond to the original study reaches defined in
459section 2 for comparison to the other two algorithms.

4604. Results

4614.1. Ganges River Results
462Figure F1212 shows the reach averaged discharge estimated by the discharge algorithms on the two sub-
463reaches of the Ganges River and Table T11 provides root-mean-squared error (RMSE), relative root-mean-
464squared error (RRMSE), bias, and percentage of error that is bias for each algorithm. The RRMSE is the RMSE
465relative to the average observed discharge (from HEC-RAS model) and expressed as a %. All three
466algorithms provided satisfactory results during the dry season (48%–54% RRMSE) for the first reach

Figure 12. Comparison of performance of each algorithm on the Ganges, Mohananda, and Arial-Khan Rivers during the independent
validation period of 2001.
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467(0.4–122.5 km). The Metropolis Manning algorithm showed much greater accuracy on the dry season of the
468second reach (17.9% RRMSE) with the other two algorithms showing performance similar to their first reach
469performance. The AMHG algorithm significantly reduces in skill during the wet season when compared to
470the other two algorithms. This is in contrast to previous application of AMHG in the basin, as Gleason and
471Hamdan [2016] used Landsat imagery to demonstrate AMHG for the Ganges near Hardinge Bridge, and
472they found an RRMSE of 28% for dry season flows when compared to discharge measured on the same day
473as the Landsat images. However, a difference is expected because Gleason and Hamdan [2016] used real
474observations and assumed an AMHG parameter that matched with observations. The Metropolis Manning
475algorithm also showed a decrease in accuracy during the wet season on both reaches which corresponds to
476an increase in error associated with bias. The MFG algorithm performed better in the wet season than the
477dry season with 10%–15% lower RRMSE. This increase in performance is accompanied by a large decrease
478in the error associated with bias. Overall, the MFG algorithm outperforms the Metropolis Manning and
479AMHG algorithms in the wet season, while each algorithm appears to perform well in the dry season.

4804.2. Mohananda River Results
481Figure 12 shows the results of the discharge algorithms on the two subreaches of the Mohananda River and
482Table T22 provides RMSE and RRMSE for each algorithm. The MFG algorithm showed skill in both seasons,
483with better performance in the wet season than the dry season. The Manning Metropolis algorithm also per-
484formed better in the wet season than the dry season, but the extracted discharge estimates were much
485worse than those of the MFG algorithm. A large percentage of the Metropolis Manning’s error during the
486dry season was associated with bias. The AMHG was unable to extract skillful discharge estimates during
487both dry and wet seasons for both river segments. A possible cause of this is the inability of the width proxy
488to accurately estimate the Mohananda River’s AMHG parameter for both dry and wet seasons. This idea is
489explored further later in this section. The MFG algorithm shows a clear performance advantage over the
490other two algorithms on the Mohananda River.

4914.3. Arial Khan River Results
492Figure 12 shows the results of the discharge algorithms on the three subreaches of the Arial Khan River and
493Table T33 provides RMSE and RRMSE for each algorithm. It is important to note that the AMHG and MFG

Table 1. Error Statistics of the Discharge Algorithms for Ganges River During the Study Period of 2001

MFG Metropolis Manning AMHG

Dry Wet Dry Wet Dry Wet

Ganges 0.4–122.5 km
RMSE (m3/s) 1,592 5,741 1,745 13,159 1,779 20,530
RRMSE (%) 48.4 34.4 53.1 78.8 54.1 122.9
Bias (m3/s) 1,542 2,191 1,110 9,387 812 15,244
% of error from bias 96.8 38.2 63.6 71.3 45.6 74.3
Ganges 122.6–186.8 km
RMSE (m3/s) 1,574 5,384 589 6,998 1,310 21,217
RRMSE (%) 47.8 32.2 17.9 42.0 39.8 126.8
Bias (m3/s) 1,594 1,961 137 4,890 1,307 15,566
% of error from bias 97.7 36.6 23.2 69.9 96.2 73.5

Table 2. Error Statistics of the Discharge Algorithms for Mohananda River During the Study Period of 2001

MFG Metropolis Manning AMHG

Dry Wet Dry Wet Dry Wet

Mohananda 0.1–38.0 km
RMSE (m3/s) 29 197 66 1049 90 2412
RRMSE (%) 35.9 10.5 81.7 55.9 110.8 128.5
Bias (m3/s) 19 6 58 644 80 1702
% of error from bias 66.5 3.1 88.2 61.4 89.2 74.0
Mohananda 38.1–63.7 km
RMSE (m3/s) 47 480 119 1034.7 90 2406
RRMSE (%) 58.0 25.6 146.0 55.2 109.7 128.4
Bias (m3/s) 19 192 116 570 80 1697
% of error from bias 39.7 39.9 97.0 55.1 89.6 74.0
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494algorithms are unable to vectorize flow as Metropolis Manning algorithm (positive flow is flow along the
495downstream direction; negative flow is flow in the upstream direction), but should still properly capture the
496magnitude of the flow when a river switches flow direction. The output of these two algorithms were there-
497fore compared with the absolute value of the observed discharge for a more accurate error analysis during
498the dry season with heavy tidal effects (i.e., during high tide). This is realistic because while the algorithms
499themselves have no method of determining flow direction, it can easily be determined form SWOT observa-
500tions of river slope. Figure 12 shows the absolute value of the observed discharge and the absolute value of
501the Manning Metropolis estimated discharge to show a fairer comparison between each algorithm output.

502For all three reaches of the Arial-Khan River, both the MFG and Metropolis Manning algorithms showed
503high skill during the wet season (6.9%–23.0% RRMSE). Dry season discharge estimation was more challeng-
504ing for all three approaches than wet season, possibly due to the high tidal effects on the river causing diur-
505nal change in flow regime from within bank to floodplain flow quite frequently. The Metropolis Manning
506algorithm was the only one to consistently provide accurate discharge estimations during the dry season.
507The Metropolis Manning algorithm showed high error associated with bias while the MFG algorithm’s error
508showed less bias. Once again, the AMHG algorithm failed to produce skillful discharge estimates, possibly
509caused by the method’s width proxy inaccurately estimating the AMHG parameter.

5104.4. Improving the AMHG Algorithm
511To better understand where the large errors from the AMHG may be originating from, estimation of the
512AMHG slope was examined via the width proxy. The AMHG for each river for the year 2001 for both dry and

Table 3. Error Statistics of the Discharge Algorithms for Arial Khan River During the Validation Period of 2001

MFG Metropolis Manning AMHG

Dry Wet Dry Wet Dry Wet

Arial-Khan 0.0–38.4 km
RMSE (m3/s) 64 64 75 408 187 957
RRMSE (%) 29.7 6.9 35.0 43.9 86.8 102.8
Bias (m3/s) 7 18 57 288 170 639
% of error from bias 10.4 27.8 75.2 70.7 90.7 66.8
Arial-Khan 38.51–48.9 km
RMSE (m3/s) 86 68 60 54 168 1072
RRMSE (%) 42.2 7.3 29.4 5.8 82.1 115.0
Bias (m3/s) 23 24 49 22 74 700
% of error from bias 26.1 35.4 81.1 41.2 43.8 68.5
Arial-Khan 49.0–105.7 km
RMSE (m3/s) 182 215 114 163 146 1023
RRMSE (%) 94.5 23.0 58.9 17.5 75.7 109.6
Bias (m3/s) 125 37 80 144 46 610
% of error from bias 68.4 17.2 70.6 88.3 31.6 62.5

Table 4. Comparison Between Proxy AMHG and Observed ‘‘True’’ AMHG

River Reach (km)
Directly Calculated

AMHG
Direct

AMHG R2
Proxy Estimated

AMHG
% Difference Between

Proxy and Direct

Ganges Dry 0.4–122.5 20.1189 0.99 20.0901 27.6
122.6–186.8 20.1208 0.97 20.4502 115.4

Ganges Wet 0.4–122.5 20.0965 0.99 20.4157 124.6
122.6–186.8 20.1052 0.93 20.2725 88.6

Arial-Khan Dry 0.0–38.4 20.1095 0.88 20.2793 87.3
38.5–48.9 20.0244 0.04 20.3141 171.2
48.9–105.7 20.0108 0.04 20.2377 182.6

Arial-Khan Wet 0.0–38.4 20.1540 0.96 20.3712 82.7
38.5–48.9 20.0449 0.30 20.0484 7.5
48.9–105.7 20.0665 0.56 20.2708 121.1

Mohananda Dry 0.1–38.0 20.0883 0.71 20.4958 139.5
38.1–63.7 20.1207 0.68 20.3741 102.4

Mohananda Wet 0.1–38.0 20.1048 0.83 20.4134 119.1
38.1–63.7 20.1302 0.89 20.4081 103.3
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513wet seasons was obtained from the river width proxy (equation (3)) and compared to the AMHG calculated
514directly from the HEC-RAS model widths and discharge that represent the river’s true AMHG. Table T44 shows
515these AMHG parameters, as well as the R2 statistic of the directly calculated AMHG as a measure for how
516tight the a-b relationship for the river is. The table also shows the percent difference between the proxy
517estimated AMHG and the directly calculated AMHG.

518As can be seen in Table 4, the proxy incorrectly estimated the actual river AMHG for almost all of the river
519reaches. Furthermore, one of the only AMHG slopes estimated correctly, that of the Arial-Khan Wet 38.5–
52048.9 km, exhibited a very loose AMHG (R2 5 0.3), which is indicative that the AMHG method may not per-
521form well. The other fairly closely estimated proxy, Ganges Dry 0.4–122.5 km, resulted in more skillful results
522(54% RRMSE). However, the inaccurately estimated proxy for Ganges Dry 122.6–186.8 km resulted in lower
523uncertainties (39.8% RRMSE), the cause of which is unclear at this time. Nevertheless, the fact that the only
524reasonably accurate proxy estimate of AMHG resulted in one instance of the AMHG method accurately esti-
525mating discharge indicate that more accurate estimations of AMHG could lead to more successful applica-
526tions of the AMHG method.

527Thus, we tested a ‘‘corrective’’ approach on the Ganges River data. The Ganges River daily discharge and
528river width data from HEC-RAS for the year 2000 were used to obtain estimates of the AMHG parameters.
529This width and discharge data were the same data provided to the MFG algorithm for calibration and the
530Metropolis Manning algorithm for prior parameter estimation. These were fed into the AMHG method with
531the same width data from the study period of 2001. Figure F1313 shows the results of this approach of relying
532on a priori model-based hydraulic parameters.

533It is clear from Figure 13 that the AMHG discharge estimation accuracy is greatly improved for the Ganges
534River by using prior knowledge of the river’s discharge. Table T55 shows the Ganges River error statistics using
535the corrective approach on AMHG values. This shows that the AMHG method can provide skillful discharge
536estimates with accuracies comparable to the MFG and Metropolis Manning algorithms, even during the wet

Figure 13. The AMHG algorithm performance using a priori AMHG knowledge from HEC RAS Model.

Table 5. Ganges River Error Statistics With Corrected AHMG Approach Relying on A Priori Information

MFG Metropolis Manning AMHG

Dry Wet Dry Wet Dry Wet

Ganges 0.4–122.5 km
RMSE (m3/s) 1592 5741 1361 6724 1703 6776
RRMSE (%) 48.4 34.4 41.4 40.3 51.8 40.5
Ganges 122.6–186.8 km
RMSE (m3/s) 1574 5384 1703 7082 1310 7869
RRMSE (%) 47.8 32.2 51.7 42.3 39.8 47.0
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537season. The dependence on the proxy is further confirmed with the good AMHG performance found by
538Gleason and Hamdan [2016] for the Ganges, where in their case they did not rely on the proxy but instead
539assumed an AMHG slope of 20.30, which agrees with observed data. Improving the performance of AMHG
540without use of a priori knowledge is a key challenge to the AMHG method and an area of active research:
541the AMHG method has limited utility for the rivers studied here without further refinement.

5424.5. Sensitivity to Algorithm Input Parameters
543The Metropolis Manning and MFG methods both require a priori information in order to estimate discharge.
544The Metropolis Manning method requires estimates for the Manning’s roughness parameter as well as an
545estimate of cross-sectional area under minimum flow conditions. The MFG method also requires an esti-
546mate of Manning’s roughness as well as the average discharge of the river. Here we tested the sensitivity of
547the estimated discharge from both algorithms to these input parameters. Each algorithm was run multiple
548times while varying these input parameters by modifying the original value (i.e., the parameter values used
549to generate the results in sections 4.1–4.3) by 65%, 610%, 625%, and 650%. Only one parameter was
550modified at a time and the sensitivities of the methods to changing more than one parameter at one time
551were not evaluated.

552The results of the sensitivity analysis are shown in Figure F1414. For clarity, only the results from the Ganges
553reach 0.4–122.5 km are shown. The trends shown here are representative of the algorithm sensitivities on
554all reaches. Figure 14 shows that the MFG method is not sensitive to changes in the input Manning’s rough-
555ness parameter, with RRMSE remaining at a constant 40% for all tested values. The MFG method was sensi-
556tive to the input mean discharge, with RRMSE ranging from 39% at 210% of the original input value to
55779% at 150% of the original input value. The Metropolis Manning method was also insensitive to changes
558in the input Manning’s roughness parameter, with RRMSE remaining constant at 66% for all tested parame-
559ter values. The Metropolis Manning was sensitive to changes in the minimum flow area input, with RRMSE
560ranging from 62% at 210% of the original input value to 85% at 150% of the original value. For this reach,
561both methods appear to have a minimum error around 210% of the input parameters. On other reaches,
562this minimum error occurred at different changes in parameter values ranging from 225% to 110% and
563were not always in the same location for both algorithms (e.g., the minimum error for the second Ganges
564reach occurred at 225% for the MFG method, and at 210% for the Metropolis Manning method).

565The sensitivity of both algorithms appears to be similar in magnitude. Both algorithms require a record of
566river observations in order to estimate the necessary input parameters. Repeated measurements of river
567cross-sectional area during a river’s dry season are needed to estimate minimum flow for the Metropolis
568Manning method. At least a 1 year record of discharge estimates is required to accurately estimate a river’s
569average discharge for the MFG method. This sensitivity analysis highlights the reliance of these two meth-
570ods on good estimates for their input parameters, minimum flow area for the Metropolis Manning method,
571and mean discharge for the MFG method.

Figure 14. Algorithm sensitivities to change in input parameters for the Ganges reach 0.4–122.5 km of (left) the MFG method and (right) the Metropolis Manning method.
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5724.6. Implications for the Planned SWOT Mission
573To gain a basic understanding of the implications of the above results for the SWOT mission, SWOT simu-
574lated river height observations of the 36 days in 2001 for the Mohananda River were run through the MFG
575and Metropolis Manning algorithms along with river widths obtained from the HEC-RAS model. As we had
576only considered the simulated height from the SWOT simulator (and not SWOT river widths) along with the
577true width (from HEC-RAS) of the river, the AMHG method’s response to SWOT observables could not be
578tested.

579The MFG and Metropolis Manning algorithms were applied using the river height and slope derived from
580SWOT simulator water level and the width data from the HEC-RAS simulation (the same data used in the
581previous section to test the algorithmic uncertainty) to calculate the discharge. Two sets of discharge were
582generated for each date, one by orbit-0261 output and another by orbit-0498 output. The average of these
583two sets is considered here as the discharge estimated from the SWOT simulator output. Figure F1515 shows
584the observed and SWOT simulated algorithm discharge for the MFG and Metropolis Manning algorithms
585and Table T66 shows the corresponding error statistics.

586Propagating remote sensing errors through the algorithms had two significant effects on discharge estima-
587tion accuracy. The MFG method in the second reach performed considerable less skillfully during the dry
588season (RRMSE increased by 15.3%). In contrast, the Metropolis Manning algorithm experienced a large
589increase in dry season accuracy in both reaches (RRMSE decreased by 19.4% and 83.2%). These accuracy
590increases could be the result
591of the SWOT simulated obser-
592vations forcing the algorithm
593to search a wider range of
594parameter values to find the
595minimum error than the refer-
596ence data. With the reference
597data, the Metropolis Manning
598algorithm could have con-
599verged to a local minimum
600and the introduction of SWOT
601errors could cause the algo-
602rithm to converge to a more
603optimal minimum. In all other
604cases, both algorithms per-
605formed only slightly worse

Figure 15. Mohananda River SWOT simulator-based algorithm results.

Table 6. Comparison of Algorithm Performance Between Discharge Estimations Using
Reference River Observations and Discharge Estimations Using SWOT Simulated River
Observations

RMSE (m3/s) RRMSE (%)

Reference
Observations

SWOT
Simulated

Observations
Reference

Observations

SWOT
Simulated

Observations

0.1–38.0 km
MFG Dry 29 25 35.9 31.4

Wet 197 205 10.5 10.9
MetroMan Dry 66 51 81.7 62.3

Wet 1049 1186 55.9 63.2
38.1–63.7 km
MFG Dry 47 60 58 73.3

Wet 480 487 25.6 26
MetroMan Dry 119 52 146.3 63.1

Wet 1035 1036 55.2 55.3
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606than with reference observations. These results indicate that the Metropolis Manning algorithm may be more
607sensitive to uncertainty in remotely sensed river surface elevation. This is most likely due to the unrealistic
608assumption of no observational uncertainty in river width, which at the time of writing this manuscript, a proper
609procedure to rationalize extraction of SWOT-river widths from the simulator was absent.

610It should be noted that the minimum or zero flow stage in the MFG algorithm is analogous to the minimum
611flow area in the Metropolis Manning algorithm. Thus, the convergence of the MFG and Metropolis algo-
612rithms might be used as an additional objective function for optimizing the discharge estimation. Addition-
613ally, the AMHG could be used to derive a mean discharge as a function of width based on general regime
614theory [Leopold et al., 1964] and used to calibrate the MFG zero flow depth and the Metropolis Manning
615minimum cross-section area. These considerations point to the advantage for synergistic application of mul-
616tiple algorithms as a ‘‘team.’’

617An important consideration for application of the algorithms is the reach length over which the slope
618should be derived, and which average values of width and stage should be assessed. In most cases, this
619length may be determined from observational data limitations, but in a best case scenario, should be
620related to a reach length that encompasses repeating geomorphic channel features such as a meander
621length, or a repeating braiding or multichannel pattern, or riffle pool sequence.

6225. Conclusion

623This first tier of assessment of three discharge algorithms designed to work with data from the upcoming
624SWOT mission showed that the MFG and Metropolis Manning algorithms generally outperformed the
625AMHG algorithm. Both the MFG and Metropolis Manning algorithms provided the better performance on
626different reaches and seasons, with at least one of the two typically producing discharge estimates with less
627than 50% RRMSE. Furthermore, the study found that the AMHG method can be improved during the wet
628season using a priori information of discharge, and such improvement is needed for operational application
629of AMHG. The impact of SWOT estimation uncertainty of river height on discharge accuracy appeared insig-
630nificant. In general, the MFG method was found to remain relatively more accurate while the Metropolis
631Manning algorithm appeared more sensitive to SWOT height observation errors. However, the SWOT eleva-
632tion errors estimated here were limited by excluding errors occurring outside the true water extent. Thus,
633the error simulated here is an underrepresentation of the overall errors expected from the SWOT mission.
634Future studies should further explore the effects of SWOT error on discharge estimation as more complete
635SWOT simulator packages become available.

636Overall, the MFG algorithm appeared to be the most stable of the three discharge algorithms in the Ganges
637river system. However, its dependence on knowledge of prior mean river discharge and various hydraulic
638flow parameters (width and height) suggests that it is not suited for a completely ungauged river system
639lacking in historical records. For the vast majority of cases in the developing world, the Metropolis Manning
640or AMHG method may be the more practical alternative for using satellite water elevation data to estimate
641discharge. Furthermore, the fact that the Metropolis Manning algorithm and the MFG algorithm seemed to
642excel in different cases and the region-specific correction improved AMHG performance, a multialgorithm
643ensemble approach of algorithms working as a ‘‘team’’ may be the future of spaceborne discharge
644estimation.

645Future studies need to look into how a multialgorithm ensemble can work under a given set of heuristics,
646in order to be assimilated or ‘‘merged’’ as a more robust estimate than the individual algorithms. The
647underlying heuristics of when to ‘‘switch’’ from one algorithm to another as a function of season or river
648reach may also be worth exploring. Going beyond an ensemble approach, the extent to which these
649methods can cooperate with each other should also be explored. Perhaps discharge derived from the
650AMHG method can serve as a basis for calibration of the MFG or Metropolis Manning methods. Finally,
651future studies should also explore how best to assimilate the satellite observations on height and width
652from nadir altimetry and SWOT mission in widely used hydrodynamic models such as HEC RAS (a 2-D ver-
653sion has been released in 2015). We hope to continue our work along this direction and report our find-
654ings in a future paper.
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