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7Abstract Growing population and increased demand for water is causing an increase in dam and reser-
8voir construction in developing nations. When rivers cross international boundaries, the downstream stake-
9holders often have little knowledge of upstream reservoir operation practices. Satellite remote sensing in

10the form of radar altimetry and multisensor precipitation products can be used as a practical way to provide
11downstream stakeholders with the fundamentally elusive upstream information on reservoir outflow
12needed to make important and proactive water management decisions. This study uses a mass balance
13approach of three hydrologic controls to estimate reservoir outflow from satellite data at monthly and
14annual time scales: precipitation-induced inflow, evaporation, and reservoir storage change. Furthermore,
15this study explores the importance of each of these hydrologic controls to the accuracy of outflow estima-
16tion. The hydrologic controls found to be unimportant could potentially be neglected from similar future
17studies. Two reservoirs were examined in contrasting regions of the world, the Hungry Horse Reservoir in a
18mountainous region in northwest U.S. and the Kaptai Reservoir in a low-lying, forested region of Bangla-
19desh. It was found that this mass balance method estimated the annual outflow of both reservoirs with rea-
20sonable skill. The estimation of monthly outflow from both reservoirs was however less accurate. The Kaptai
21basin exhibited a shift in basin behavior resulting in variable accuracy across the 9 year study period.
22Monthly outflow estimation from Hungry Horse Reservoir was compounded by snow accumulation and
23melt processes, reflected by relatively low accuracy in summer and fall, when snow processes control runoff.
24Furthermore, it was found that the important hydrologic controls for reservoir outflow estimation at the
25monthly time scale differs between the two reservoirs, with precipitation-induced inflow being the most
26important control for the Kaptai Reservoir and storage change being the most important for Hungry Horse

27

Reservoir.

28

29

301. Introduction

31With the global population climbing toward 8 billion, the demand for basic human needs, like food, water,
32and electricity, is also increasing, causing a strain on the world’s water resources. A changing climate also
33threatens the natural supply of water [V€or€osmarty and Sahagian, 2000] AQ1. When demand for water exceeds
34the natural supply, one of the more common human responses is to impose controls on a natural source of
35water in order to deliver the water where and when it is needed the most. A widely used form of water con-
36trol, which provides water in such a regulated manner, is damming a river to create an artificial reservoir.

37Dam construction in the developing world is currently on the rise. At least 3700 major dams are either
38under construction now or planned for construction in the future in the hydropower sector alone, with a
39majority of these located in developing nations [Zarfl et al., 2014]. The need for dams in these regions is
40driven by high population growth, need for rapid development, and an increase in urbanization, which in
41turn strains the local resources. Dams and reservoirs can provide water supply and electricity to help meet
42these needs. Unfortunately, for downstream stakeholders, upstream dams heavily modify river flows making
43prediction of flows difficult without knowing the operations of these dams. When these rivers cross interna-
44tional boundaries (referred to as Transboundary Rivers) this becomes an even bigger problem for down-
45stream stakeholders, because the dams represent transboundary reservoirs.

Key Points:
� Mass balance can be used to

estimate reservoir outflow
� Snowpack-dominated reservoirs

require process-based models
� Joint use of satellite precipitation and

water heights can provide outflow
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46Over 260 river systems worldwide
47have Transboundary Rivers crossing
48international borders, creating a large
49set of International River Basins (IRBs)
50involving 145 countries. IRBs account
51for more than 40% of the earth’s
52inhabitable surface [Wolf et al., 1999].
53Historically, water management in IRBs
54has been difficult, especially in devel-
55oping nations where ground-based
56measurement infrastructure is lacking
57and the ability of nations to jointly
58manage regional water resources is
59hindered by poor institutional capacity
60[Bakker, 2009]. This is particularly prob-
61lematic for downstream nations, as
62they depend on both upstream hydro-
63logic data and water management
64practices.

65Satellite remote sensing may be used
66to overcome the challenge of manag-
67ing water supply downstream of
68dammed reservoirs in IRBs in the
69absence of ground-based measure-
70ments. Remote sensing has been dem-
71onstrated to be useful for a range of water management applications. Recent studies have correlated
72upstream river height measurements from satellite altimeters with downstream river heights for improved
73transboundary flood forecasting [Biancamaria et al., 2011; Hossain et al., 2013, 2014]. Another study devel-
74oped a framework to incorporate observations from the forthcoming Surface Water and Ocean Topography
75Mission (SWOT) into the release operations of a dam in the Upper Niger River Basin [Munier et al., 2015].

76In this study, a combination of satellite altimetry and a satellite precipitation product was used to determine
77reservoir outflow (Figure F11) through the use of a simple mass balance between hydrologic controls (equa-
78tion (1)) where reservoir outflow (O) is balanced by changes in reservoir storage (DS), precipitation-induced
79runoff flowing into the reservoir (I), and evaporative losses (E). Due to the revisit period of the satellite
80observations being longer than a week, the mass balance was resolved on approximately monthly time
81scales.

O5I2E2DS (1)

82The total change in reservoir storage can be estimated by combining radar altimetry measurements of res-
83ervoir surface elevation with remotely sensed reservoir surface area [Gao, 2015]. Initially designed for oce-
84anic observations, radar altimetry has been used to accurately measure lake and reservoir elevations since
85the early 1980s [Brooks, 1982; Mason et al., 1990; Birkett, 1995; Zhang et al., 2006; Lee et al., 2011]. More
86recent efforts have combined altimetry with various methods of determining reservoir surface area. Birkett
87[2000] used TOPEX/POSEIDON altimetry measurements with NOAA/AVHRR radiometer images to develop a
88simultaneous time series of the elevation and water surface extent of Lake Chad. Additionally, Gao et al.
89[2012] used the Moderate Resolution Imaging Spectroradiometer (MODIS) along with satellite radar altime-
90try to estimate storage changes in 34 global reservoirs. Furthermore, Salami and Nnadi [2012] combined
91altimeter measurements from multiple sources with existing storage-elevation curves and validated their
92results with a mass balance similar to equation (1) (in their case, outflow was measured with a streamflow
93gauge and the equation was solved for storage change). A wide array of satellite altimeter missions, both
94current (JASON-2, AltiKa, Sentinel-1 & 2, Envisat) and future (JASON-3 and Sentinel-3) can be leveraged for
95the estimation of storage changes [Lambin et al., 2010; Verron et al., 2015; Malenovsky et al., 2012; Alsdorf
96et al., 2007]. Finally, the planned Surface Water and Ocean Topography (SWOT), which will be launched in

Figure 1. Schematic of mass balance between reservoir outflow (O), evaporation
(E), changes in reservoir storage (DS), and runoff-derived inflow (I) driven by pre-
cipitation (P).
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972020, will provide wide-swath altimetry water height measurements that can inform users on water extent
98and varying height of the water surface simultaneously.

99Precipitation-induced runoff flowing into a reservoir can also be estimated using satellite remote sensing of
100precipitation. This involves using a satellite precipitation product such as the Tropical Rainfall Measurement
101Mission (TRMM, now deactivated) or its successor, the Global Precipitation Mission (GPM), to provide an esti-
102mate of precipitation over the basin contributing to the reservoir [Huffman et al., 2007; Hou et al., 2014].
103This precipitation can then be fed into a runoff model of appropriate complexity to determine the runoff
104generated.

105As the studies mentioned earlier show, satellite remote sensing of reservoir storage changes is already well
106addressed. Far fewer studies have attempted to use satellite estimated volume changes to estimate reser-
107voir outflow, which is an important geophysical variable for a wide variety of scientific investigations and
108applications. Swenson and Wahr [2009] used satellite-derived storage changes of a small lake downstream
109of Lake Victoria to estimate the outflow of Lake Victoria. This approach had high success at the monthly
110and seasonal time scales, but is specific to Lake Victoria or other systems with a small lake directly down-
111stream of a large reservoir. Muala et al. [2014] used altimetry-derived storage changes and in situ inflow
112measurements to estimate the discharge from Lake Nasser and Rosaries Reservoir in the Nile Basin. They
113were able to estimate outflow from Rosaries Reservoir to within 18% of observed outflow, while outflow
114from Lake Nasser was more difficult to predict. It is clear that more investigation into satellite-based reser-
115voir discharge estimation is needed.

116Improved knowledge of reservoir outflow provides a greater understanding of the human impacts on the
117terrestrial water cycle, compared to only reservoir storage. Studies have shown that reservoirs and irrigation
118water supply withdrawals have decreased annual global discharge into oceans by 2.1% and reservoirs have
119increased the residence time of surface water by 3 months [V€or€osmarty and Sahagian, 2000; Biemans et al.,
1202011]. Both of these conclusions have huge implications for downstream ecosystem health, reservoir sedi-
121mentation, and water supply. However, a limitation of such global reservoir studies is the absence of obser-
122vations of reservoir outflow. Doll et al. [2009] cites high uncertainties in reservoir operations (which are
123incidental to reservoir discharges) as a limitation of their global river flow impacts study. Reservoir discharge
124estimates could be used to refine or localize such studies to more accurately assess regionally specific reser-
125voir impacts.

126Additionally, there is value in observing reservoir outflow, rather than reservoir storage change alone from a
127water management perspective. Knowledge of the amount of water flowing out of an upstream and trans-
128boundary reservoir provides downstream stakeholders with a more direct proxy of the amount of water
129flowing into their region, which has implications for downstream reservoir operations, flood forecasting,
130and water supply management.

131The goals of this study are twofold. First, this study presents a practical method tailored for operationaliza-
132tion of estimating reservoir outflow using the mass balance approach shown in equation (1) and Figure 1,
133and evaluates this method against observed outflow from two reservoirs in regions with different climates.
134Second, this study explores the sensitivity of the hydrologic controls included in the mass balance approach
135for each reservoir and determines which, if any, controls can be reasonably ignored at monthly time scales
136to enable practical operations.

137This study is laid out according to the following: section 2 provides an overview of the two reservoirs con-
138sidered in this study and the sources of all data used. Section 3 describes the mass balance and the meth-
139odology behind computing its various components. Section 4 presents the results for both reservoirs.
140Section 5 provides a discussion of the results and significant findings. Section 6 concludes with an overview
141and directions for further study.

1422. Study Regions and Data

143The interaction between hydrologic controls is a function of climate, geography, and size and function of
144the reservoir. Here the role of climate and geography was explored while keeping function and size rela-
145tively constant. As such, this study examined two similarly sized hydropower reservoirs in contrasting cli-
146mate and geographic settings, Hungry Horse Reservoir and Kaptai Reservoir. Hungry Horse is located in the
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147Rocky Mountains of western Montana. It captures water from a 6067 km2 drainage area primarily made up of
148mountainous forest and has a total water storage capacity of 4.28 km3 [United States Bureau of Reclamation,
1492013]. Figure F22 shows a map of the watershed draining into the reservoir. There are no dams or other flow regu-
150latory structures upstream of Hungry Horse Dam, but a significant portion of the basin builds up a snowpack in
151Winter that can act like a natural reservoir until spring snowmelt begins. Constructed from 1948 to 1953, the
152dam’s principal function has been hydroelectric generation with secondary utility as a flood control structure
153[United States Bureau of Reclamation, 2013]. In contrast, Kaptai Reservoir is located on the Karnaphuli River in the
154Rangamati District of Bangladesh. It should be noted that there are no regulatory structures upstream of Kaptai
155Reservoir. A map of this reservoir’s watershed is also shown in Figure 2. It has a maximum water storage capacity
156of 6.48 km3 and captures water from a 11,080 km2 area [Karmakar et al., 2009]. Construction of Kaptai Dam fin-
157ished in 1955 and its primary function to date has been hydropower generation [Karmakar et al., 2009]. It is the
158only hydropower dam in Bangladesh [United Nations Environment Programme, 2004].

159All altimeter measurements of both reservoirs were taken by the satellite altimeter Envisat from 21 October
1602002 to 4 October 2010 for Hungry Horse Reservoir and 29 October 2002 to 12 October 2010 for Kaptai Reser-
161voir on a 35 day repeat cycle. Envisat (Environmental Satellite) provided 18 Hz retracked data (�350 m along-
162track sampling) to estimate water elevation. Interested readers are referred to Benveniste [2002] for further
163details on remote sensing techniques and to Siddique-E-Akbor et al. [2011] for an application over inland
164waters. The locations where the satellite ground tracks cross the reservoirs are shown in Figure 2. Daily precip-
165itation estimates were provided by the 3B42v7 TRMM product [Huffman et al., 2007] for the same time period.
166This TRMM product has been calibrated against rain gauge observations. These precipitation estimates were
167conservatively regridded to 0.58 resolution for use in the VIC hydrologic model (section 3.1.2). Digital Elevation
168Models (DEMs) of each reservoir were obtained from the Shuttle Radar Topography Mission (SRTM), taken
169from when the reservoirs were at their lowest point observed by the mission [Farr et al., 2007]. Observed out-
170flow for the Hungry Horse Reservoir was measured at USGS streamflow station #12362500, located directly
171downstream of Hungry Horse Dam. Outflow and river level measurements were available at a gauge station
172located immediately downstream of the Kaptai Dam and maintained by Bangladesh Water Development
173Board (BWDB). These data were made available as part of a 5 year Memorandum of Understanding between
174the Institute of Water Modeling (IWM)-Bangladesh and University of Washington.

Figure 2. Map of the drainage area contributing runoff to the reservoirs as well as the ground track of the Envisat altimeter for (right) Hungry Horse Reservoir and (left) Kaptai Reservoir.
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1753. Methodology

1763.1. Mass Balance
177In this study, reservoir outflow was calculated as the mass balance of all the inflow and outflow fluxes from
178the reservoir system, represented by precipitation-induced reservoir inflow (I), changes in reservoir storage
179(DS), evaporation (E), and reservoir outflow (O) outlined in equation (1). It was assumed that groundwater
180seepage would not be a major factor contributing to reservoir outflow and was ignored.
1813.1.1. Reservoir Inflow
182Two different hydrologic characterizations of reservoir inflow were used here, the curve number (CN) method
183and the Variable Infiltration Capacity (VIC) model [Hawkins et al., 2002, Liang et al., 1994]. Although ease of
184operation was a key goal of this study, the comparative use of a simple approach like CN and a more complex
185approach, using a macroscale hydrologic model like VIC, allowed the sensitivity of hydrologic process controls
186on outflow estimation accuracy to be explored. This is elaborated further in the following sections.

187For the application of the CN method, the catchment of each reservoir was delineated from 30 m Digital
188Elevation Models (DEMs) obtained from the Shuttle Radar Topography Mission (SRTM). The resulting water-
189shed delineations are shown in Figure 2.

190Soil type for the Hungry Horse Watershed was obtained from the NRCS Web Soil Survey [United States
191Department of Agriculture, 2009]. Soil data for the Kaptai basin were obtained from the Food and Agriculture
192Organization of the United Nations Harmonized World Soil Database v 1.2 [Fischer et al., 2008]. Land cover
193of both basins at 1 km resolution was obtained from USGS Land Cover Characterization data [Loveland
194et al., 2000]. From the soil type and land cover data, AMCII (antecedent moisture condition II, referring to
195average soil moisture) curve numbers for each 1 km grid cell of data were estimated using curve number
196lookup tables provided by the NRCS Conservation Engineering Division [Ward and Trimble, 2004]. The com-
197posite curve number (CN) of each basin was calculated as an area weighted average of each curve number.
198A dynamic curve number approach was used, where the CN alternates among AMC I (dry), AMC II (moder-
199ate), and AMC III (wet) conditions, depending on the rainfall (in inches) over the previous 5 days (P5) AQ2:

CN 5

AMC I 0 < P5 � 0:5

AMC II 0:5 < P5 � 1:1

AMC III P5 > 1:1

8>><
>>:

9>>=
>>;

(2)

200A similar dynamic CN approach has been used in TRMM-based flood monitoring applications [Hong et al.,
2012007]. The conversion factors between AMC conditions were provided by Ward and Trimble [2004]. Once
202the curve number was known, the daily watershed runoff was estimated from TRMM precipitation data
203using standard curve number equations (Appendix A).

204The VIC hydrologic model is a gridded land surface model (LSM) that characterizes the land cover and soil
205types and solves energy and mass balance at each grid cell to determine evapotranspiration, interception, sur-
206face runoff, subsurface runoff, aerodynamic water fluxes, and snow. VIC models the land surface as flat grid
207cells. Subgrid heterogeneity in elevation and soil and surface parameters are characterized by statistical distri-
208butions. All fluxes and model states are updated at a daily or subdaily time step and each grid cell is simulated
209independently. Water is only allowed to flow between cells after it has been routed into a channel, and once
210in the channel, it is not allowed to reenter the soil. The ARNO recession curve is used to characterize the soil
211moisture balance and the base flow of the lowest soil layer [Todini, 1996]. The generation of runoff is deter-
212mined by the soil saturation excess, calculated by the Xinanjing variable infiltration curve [Zhao et al., 1980].
213The Penman-Monteith equation is employed to calculate the evapotranspiration [Shuttleworth, 1993]. Snow
214pack is modeled in a two-layer approach, with the upper layer solved separately in the energy balance
215[Andreadis et al., 2009]. The routing model is based on the model described in Lohmann et al. [1996, 1998].
216Interested readers are referred to Liang et al. [1994] for a more detailed description of VIC.

217The model has since been updated to model additional processes to improve its performance in a wide
218range of basins. Of particular importance to this study is the inclusion of frozen soil parameterizations
219[Cherkauer and Lettenmaier, 1999] and snow accumulation and ablation algorithms and updates to cold
220land processes [Cherkauer et al., 2003]. Haddeland et al. [2006] used VIC to study the effects of irrigation on
221the Colorado and Mekong River basins, demonstrating that VIC can be applied to both mountainous basins
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222in the central United States and tropical monsoon basins in Southeast Asia. Zhu and Lettenmaier [2007] uti-
223lized VIC to study long-term climate trends in the North American monsoon system AQ3. Hamlet and Lettenmaier
224[1999a,b] studied climate change and ENSO effects on the snow-dominated Columbia River Basin using a
225VIC hydrologic model. An important limitation of VIC is its inability to model groundwater. Wenger et al.
226[2010] reports high errors from VIC modeling in basins with strong groundwater influences.

227Here a modified 0.58 resolution VIC model with a daily time step, based on the one used in Zhou et al.
228[2015] to study reservoir contributions to global surface water storage variations, was used with the Shef-
229field global meteorological data set as forcing [Sheffield et al., 2006]. The Sheffield data were regridded to
2300.58 resolution for use in the model, using a first-order conservative remapping approach. This model was
231calibrated against streamflow observations around the world [Zhou et al., 2015]. The precipitation compo-
232nent of the Sheffield data set was replaced with TRMM 3B42v7 precipitation data for both the Hungry Horse
233and Kaptai basins. The routing model employed by this VIC model used 0.58 resolution river network data
234from Wu et al. [2011].
2353.1.2. Evaporation
236A standard energy balance method [Chow et al., 1988] was used to estimate evaporation from both reservoirs
237(see Appendix AQ4). The average evaporation of each calendar day of the year was used in the mass balance (i.e.,
238the evaporation values on 1 January for all years were averaged to find the typical evaporation on 1 January).
239The required climatological data for the evaporation estimates of Kaptai Reservoir were provided by the
240NCDC (National Climatic Data Center) station at Rangamati near Kaptai Lake. Daily evaporation was estimated
241for the time period of the study using climatological data available from 2011 to 2014. For the Hungry Horse
242Reservoir, daily evaporation was estimated using a historical record of climate data, from 1948 to 1972. This
243climatic approach was favored over a more localized weather-scale approach, because this study aimed to
244explore the feasibility for operational applications around the world, requiring minimal input data.
2453.1.3. Reservoir Storage Change
246The storage change of both reservoirs was estimated as follows. First, the relationship between reservoir
247water surface elevation and surface area was derived from 30 m resolution DEMs provided by SRTM. The
248SRTM observations used were those taken when the reservoirs were at their lowest (base water surface ele-
249vation), so that the largest portion of reservoir bathymetry was observed. Landsat images over the reser-
250voirs were used to get a better understanding of the minimum reservoir extent. This allowed for knowledge
251of the bathymetry of the reservoir above this base water surface elevation. From this bathymetry, a relation-
252ship between water surface elevation and surface area was determined by classifying the elevation data
253into 1 m elevation bands and calculating the surface area of each band. A power law function was fitted to
254the lower elevation-area data of each reservoir to provide an estimate of the elevation area relationship
255below the water surface elevation at the time the SRTM overpassed the region (during 11–21 February
2562000). These curves are shown in Figure F33. This allowed for the calculation of storage volume change using
257only one type of satellite measurement (elevation) instead of two (elevation and surface area).

258These storage-elevation curves were then used, along with radar altimeter measurements of water surface
259elevation, to derive a time series of water storage changes by approximating the volume of water between
260two elevations as the average area multiplied by the difference in elevation:

Figure 3. Area-Elevation curves for (left) the Kaptai Reservoir and the (right) Hungry Horse Reservoir. Note that the datums of both elevation measurements are the same and that
Hungry Horse Reservoir is approximately 1000 m higher in elevation than Kaptai Reservoir.
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DS 5 Aavg: � Dh 5
A21A1ð Þ

2
� h22h1ð Þ (3)

261where

262Aavg 5 average of surface area at two elevations;

263Dh 5 difference in elevation (between level 1 and 2);

264h1,2 5 elevation measurements at levels 1 and 2, respectively;

265A1,2 5 Surface areas corresponding to h1 and h2;

266DS 5 change in reservoir storage between the time when h1 and h2 were observed.

Figure 4. Precipitation and reservoir storage change for (top) Kaptai Reservoir and (bottom) Hungry Horse Reservoir. Precipitation is
summed over the 35 day period between satellite overpasses. Storage change is the difference between the total amounts of water in the
reservoir between two consecutive satellite overpasses, every 35 days.
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267These changes in reservoir storage provide the DS in the mass balance (equation (1)) for estimating reser-
268voir discharge. A time series of the estimated storage changes for both reservoirs is shown in Figure F44 along
269with the precipitation into each basin.

270This approach is similar to the approach used by Zhang et al. [2006] to measure water storage in Lake
271Dongting in China. They reported a correlation coefficient (R) of 0.96 between in situ observations and
272altimetry-based storage fluctuations. Salami and Nnadi [2012] applied a similar technique to Kainji Reservoir
273in Nigeria and found an R2 of 0.93 between in situ and altimetry-based storage changes.

2743.2. Hydrologic Controls
275The importance of the hydrologic controls (I, E, and DS) to the estimation of reservoir outflow was assessed
276based on the outflow accuracy from different combinations of controls in the mass balance. The combina-
277tions explored here were IES, IS, ES, and S. Near monthly (35 day), reservoir outflow was calculated using
278the mass balance described in section 3.1 for each of these combinations of hydrologic controls. By compar-
279ing the accuracy of estimated outflow between each combination, the relative impact each control had on
280the mass balance was estimated.

2813.3. Inflow Error Assessment
282Of the three hydrologic controls described in section 3.2, the method of estimating inflow into the reservoir
283using the VIC hydrologic model is considerably more complex than the estimation of evaporation, storage
284change, or inflow with the curve number method. This study explores how precipitation errors propagate
285through the VIC model in order to gain a better understanding of the sources of error in the resulting reser-
286voir outflow estimate. Because of the varying availability of precipitation data, the method for exploring
287inflow errors was different for each basin.
2883.3.1. Kaptai Inflow Error Assessment
289Daily precipitation from a rain gage in the Kaptai basin, located on Kaptai Reservoir, was compared to daily
290precipitation from the 0.258 TRMM grid cell containing the gage to understand how accurate TRMM precipi-
291tation estimates were, compared to trusted, ground-based precipitation measurements. TRMM precipitation
292over the Kaptai basin was also compared with the Sheffield global data set precipitation. Then, both TRMM
293and Sheffield precipitation were used as forcings in the VIC model of the basin. The resulting runoffs (which
294served as inflow into the reservoir) were also compared, to provide as sense of how error in precipitation
295propagates through the VIC model.
2963.3.2. Hungry Horse Inflow Error Assessment
297The TRMM precipitation data were compared to precipitation from the PRISM data set (PRISM Climate
298Group, Oregon State University, http://prism.oregonstate.edu, created 29 December 2015). The PRISM data
299were conservatively regridded to match the 0.258 resolution of the TRMM precipitation data. These two pre-
300cipitation data sets were then used to force the VIC model of the Hungry Horse Basin and the resulting run-
301offs (inflows into the reservoir) were compared. Because snow processes play an important role in the
302hydrology of this basin, the snow water equivalent (SWE) outputs from each VIC model run were compared.

3034. Results

304Hydrographs comparing the mass balance estimated outflow for various combinations of hydrologic con-
305trols with observed outflow for the Kaptai Reservoir are shown in Figure F55, for both the CN method and the
306VIC model. Similar comparison hydrographs for the Hungry Horse Reservoir are shown in Figure 5. Outflow
307is presented as the total volume of water that passed through the reservoir every 35 days between satellite
308overpasses. The corresponding error statistics are shown in Table T11 for Kaptai Reservoir and Table T22 for Hun-
309gry Horse. These statistics are the root-mean-squared error (RMSE), relative root-mean-squared error
310(RRMSE), relative bias, and the Nash-Sutcliffe model efficiency coefficient (NSE). It should be noted that Win-
311ter refers to December, January, and February; Spring refers to March, April, and May; Summer refers to
312June, July, and August; and Fall refers to September, October, and November. The annual discharge was
313also estimated for each reservoir for 2003–2009. The years 2002 and 2010 were excluded from this portion
314of the analysis because the period of study used at monthly time scales does not include the entirety of
3152002 or 2010. A comparison between this estimated annual outflow and observed annual outflow is given
316in Table T33 as a percent difference between estimated and observed outflow. Here negative percent differ-
317ence indicates that the estimate was an under prediction of the observed. Table 3 also provides RMSE,
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318RRMSE, relative bias, and NSE for the annual outflow estimates. The annual estimates were examined in con-
319junction with yearly precipitation totals, but no clear correlation between accuracy and bias of the estimates
320and precipitation amount was found.

3214.1. Kaptai Reservoir
322Using the CN method to provide inflow, the I, E,S estimated outflow had an overall RRMSE of 83.2% and an
323NSE of 21.50 at the monthly time scale across all seasons. Replacing the inflow estimation method with the
324VIC model, the I,E,S estimated outflow improved, with an overall RRMSE of 46.8% and an NSE of 0.22.
325Removing the evaporation component from these monthly estimates slightly increased the accuracy of out-
326flow estimates using CN-derived inflow and slightly decreased the accuracy of outflow estimates using VIC-
327derived inflow. The two estimates that exclude inflow showed considerably lower accuracy than both inflow
328methods and large negative biases. Monthly outflow predictions made using CN-derived inflow during the
329dry season (Winter and Spring) exhibited small gains in accuracy over predictions made without inflow. Pre-
330dictions utilizing VIC inflow showed larger gains in accuracy in the Winter months. The I,S outflow estimate
331using VIC was the most accurate dry season estimate, with the I,E,S estimate using VIC performing only

Figure 5. Hydrographs comparing Kaptai Reservoir discharge observations to discharge estimates using different components of the mass
balance, changes in storage (S), runoff inflow (I), and evaporation (E). The inflow in the top graph uses the CN method while the inflow in
the bottom graph uses the VIC model.
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Table 1. Error Statistics for Kaptai Reservoir Discharge Estimations Including Different Hydrologic Controls, Changes in Storage (S),
Runoff Inflow (I), and Evaporation (E)a

I,S,E (CN) I,S (CN) I,S,E (VIC) I,S (VIC) E,S S

Overall RMSE (km3) 1.39 1.32 0.78 0.80 1.72 1.70
RRMSE (%) 83.2 79.3 46.8 47.8 103.4 101.7
Relative Bias (%) 267.89 263.20 21.15 6.2 286.78 284.13
NSE 21.50 21.27 0.22 0.19 22.87 22.74

Winter RMSE (km3) 0.89 0.83 0.60 0.57 0.94 0.88
RRMSE (%) 82.2 76.9 54.4 52.0 86.8 81.4
Relative Bias (%) 268.31 262.23 220.55 214.60 272.96 266.98
NSE 21.29 21.01 0.03 0.09 21.56 21.25

Spring RMSE (km3) 0.90 0.85 0.82 0.80 0.98 0.93
RRMSE (%) 65.5 61.5 59.7 57.2 70.9 67.3
Relative Bias (%) 255.46 250.36 226.89 222.04 263.49 258.83
NSE 20.49 20.32 20.20 20.13 20.75 20.58

Summer RMSE (km3) 1.59 1.52 0.93 0.97 2.15 2.13
RRMSE (%) 80.6 77.0 46.5 49.0 108.6 107.6
Relative Bias (%) 266.37 261.86 8.21 14.29 298.46 297.46
NSE 22.10 21.83 20.05 20.14 24.63 24.53

Fall RMSE (km3) 1.91 1.85 0.72 0.85 2.52 2.50
RRMSE (%) 81.5 76.0 30.9 35.0 103.8 102.9
Relative Bias (%) 276.27 268.90 16.99 25.07 299.52 298.67
NSE 29.34 28.53 20.48 20.83 214.98 214.69

aStatistics are broken down by season (Spring: March-April-May, Summer: June-July-August, Fall: September-October-November,
Winter: December-January-February).

Table 2. Error Statistics for Hungry Horse Reservoir Discharge Estimations, Including Different Hydrologic Controls, Broken Down by
Seasona

I,S,E (CN) I,S (CN) I,S,E (VIC) I,S (VIC) E,S S

Overall RMSE (km3) 0.27 0.27 0.20 0.20 0.27 0.27
RRMSE (%) 86.0 86.4 62.7 64.3 86.4 86.8
Relative Bias (%) 228.07 224.43 15.23 17.68 228.58 224.69
NSE 21.02 21.04 20.08 20.13 21.05 21.06

Winter RMSE (km3) 0.10 0.10 0.09 0.09 0.11 0.11
RRMSE (%) 44.0 42.1 39.8 39.2 48.6 46.7
Relative Bias (%) 221.75 220.04 8.83 10.80 221.96 220.09
NSE 0.14 0.22 0.30 0.32 20.05 0.03

Spring RMSE (km3) 0.27 0.27 0.20 0.20 0.27 0.27
RRMSE (%) 88.7 88.6 67.9 66.8 88.6 88.5
Relative Bias (%) 240.87 238.98 27.47 23.74 242.61 240.72
NSE 20.30 20.30 0.24 0.26 20.30 20.29

Summer RMSE (km3) 0.42 0.42 0.23 0.23 0.42 0.42
RRMSE (%) 88.9 89.0 48.1 48.4 89.2 89.3
Relative Bias (%) 250.90 246.58 4.11 2.34 251.72 247.41
NSE 25.22 25.24 20.82 20.85 25.27 25.28

Fall RMSE (km3) 0.16 0.17 0.22 0.24 0.16 0.17
RRMSE (%) 66.5 70.4 92.1 99.7 66.1 70.0
Relative Bias (%) 26.20 32.22 69.17 78.72 27.50 34.65
NSE 21.67 21.99 24.12 25.00 21.64 21.96

aSpring: March-April-May, Summer: June-July-August, Fall: September-October-November, and Winter: December-January-February.

Table 3. Percent Difference Between Observed and Estimated Annual Total Flowsa

Percent Difference by Year (%) Overall Error

Year 2003 2004 2005 2006 2007 2008 2009 RMSE (km3) RRMSE (%) Rel. Bias (%) NSE

Kaptai (VIC) 217.8 225.9 213.9 213.5 28.0 15.8 16.0 3.66 20.4 25.98 0.30
Kaptai (CN) 268.5 267.1 279.1 268.1 251.2 263.0 274.4 12.73 71.1 268.01 27.47
Hungry Horse (VIC) 29.9 22.7 27.7 48.0 215.0 5.2 23.6 0.75 26.4 14.99 21.63
Hungry Horse (CN) 212.3 231.6 260.4 19.7 229.4 235.8 219.1 0.98 34.2 223.75 23.41

aA negative percent difference represents an underprediction in the estimate.
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332slightly worse. Including CN-based inflow in the mass balance resulted in larger increases in accuracy in the
333wet season than the dry season. Replacing CN-derived inflow with VIC modeled inflow provided another
334significant improvement in outflow estimation accuracy, with the lowest seasonal RRMSE occurring in the
335Fall. Similar to the dry season, the E,S and S outflow estimates were considerably less accurate compared to
336other estimates in the Fall. The NSE of the VIC I,E,S outflow estimation for each season ranged from 0.03 to
33720.48, while the NSE for the overall estimate was 0.22. This indicates that the mass balance estimate utiliz-
338ing VIC modeled inflow was a better predictor of monthly outflow than the average monthly outflow from
3392002 to 2010 would be, while seasonal average outflow would be a more accurate predictor of monthly
340outflow than the mass balance estimate.

341The difference between outflow estimate accuracy of the two inflow methods was smaller in the dry season
342(Winter and Spring), with less than 10% RRMSE differences in the spring. However, in the dry season, CN-
343driven outflow estimates more closely match outflow estimates derived from storage change only, with dif-
344ferences in RRMSE around 5%. This trend can be seen in the hydrograph in Figure 5. Conversely, wet season
345CN-driven outflow estimates showed a significant increase in accuracy over estimates excluding the inflow
346component, as shown by decreases in RRMSE between 28.0% and 20.6% during this period. VIC model-
347driven outflow estimates exhibit even higher accuracy improvements over the CN-driven estimate in the
348wet season than in the dry season, with RRMSE differences as high as 50.6%. CN-driven outflow estimates
349exhibited large negative relative biases across all seasons, which is reflected in the hydrograph (Figure 4).

350Comparison between observed and estimated total outflow using the VIC model at annual time scales reveals a shift
351from underestimation to overestimation of annual outflow between 2006 and 2007. Pre-2006 outflow estimates
352match the wet season peaks, but underestimate dry season low flows. In contrast, post-2006 outflow estimates over-
353predict peak wet season discharge, but better capture dry season low flows. Further exploration of this trend is pro-
354vided in section 5. This shift is reflected by the low overall relative bias, where the overestimates compensated for
355the underestimates. The percent difference between estimated and observed annual outflow ranged from 13.9% to
35628.0% in magnitude with no clear trend over time. With an RRMSE of 20.4% and NSE of 0.30, the mass balance per-
357formed with higher accuracy at the annual time scale than the monthly time scale at this reservoir.

358The CN-driven annual outflow estimates did not follow this pattern and the percent difference between
359observed and estimated outflow remained between 251.2% and 279.1%, with no clear trend over time. An
360RRMSE of 71.1% indicates that the mass balance using CN inflow estimated annual outflow with more skill
361than monthly outflow. However, it performed significantly worse than the mass balance using the VIC model
362inflow as illustrated by the drastic difference between RRMSE and NSE of the two annual outflow estimates.

3634.2. Hungry Horse Reservoir
364Estimations of outflow from the Hungry Horse Reservoir resulted in instances of outflow considerably lower
365than expected. These instances occurred fewer than once a year on average. It is clear that a hydrologic process
366was not properly represented, even by the VIC model, however the exact reason for these errors is unclear.
367Given the small number of these errors in estimates made using VIC model inflow, a minimum flow threshold
368was implemented here to correct for these errors. This threshold was provided by a State of Montana operation
369constraints report and set at 300 cfs AQ5(to meet environmental flow requirements downstream), which corre-
370sponds to 0.026 km3 in a 35 day period [State of Montana, 2011]. Outflow estimates that violated this limit were
371instead taken as the average of the previous and subsequent outflow estimates. Outflow estimates generated
372with CN-derived inflow or generated without considering inflow experienced more frequent errors of this
373nature, with multiple erroneous outflow estimates occurring in subsequent time steps. In these instances, the
374averaging correction could not be applied and the discharge values were set at 0.25 km3. This corrective
375approach requires reservoir-specific and river-specific data and thus might not be applicable to other reservoirs.
376However, a minimum threshold of no flow can be applied to all reservoirs if negative outflow becomes an issue.

377Outflow estimates that used CN-derived inflow were nearly identical to estimates that excluded the inflow
378component across all seasons. This is reflected by similar error statistics between estimates with and with-
379out the CN-derived inflow component, and can be clearly seen in Figure F66. From Table 2, the I,E,S estimated
380outflow with inflow derived from the VIC model was most accurate overall with an RRMSE of 62.7%, fol-
381lowed closely by the I,S estimates with 64.3%. Outflow estimates that utilized CN-derived inflow and those
382that excluded inflow were less accurate, ranging from 86.0% and 86.8% RRMSE. Estimates that included VIC
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383modeled inflow tended to overpredict discharge as shown by positive relative bias. Estimates utilizing CN-
384derived inflow or lacking the inflow component exhibited negative relative bias with higher magnitude.

385Winter outflow estimation was considerably more accurate. Outflow estimates using CN-derived inflow
386showed small gains in accuracy over estimates that excluded inflow. Outflow estimates utilizing VIC mod-
387eled inflow were the most accurate here with RRMSEs of 39.8% and 39.2% for I,E,S and I,E estimates, respec-
388tively. Spring discharge estimates provided RRMSE similar to the overall RRMSE for all mass balance
389component combinations, but with lower relative bias. The lowest relative bias (2.34%) occurred in the
390summer with VIC providing inflow. Summer RRMSE for this estimate was 48.1%. In contrast to the other sea-
391sons, fall estimates without inflow exhibited higher accuracy than estimates including inflow, with an
392RRMSE of 66.4% for the E,S estimate and a relative bias of 25.25%. Based on the overall NSE, the mass bal-
393ance estimates were not better predictors of monthly discharge than the 2002–2010 mean flow would be.
394Seasonally, the mass balance predicted flows more accurately than the seasonal mean outflow in the Winter
395and Spring, and less accurately in the Summer and Fall.

396With an RRMSE of 34.2%, the mass balance including CN inflow estimated annual reservoir outflow more
397skillfully than monthly inflow. Annual outflow estimates that used CN-derived inflow consistently

Figure 6. Hydrographs comparing Hungry Horse Reservoir discharge observations to discharge estimates using different components of
the mass balance, changes in storage (S), runoff inflow (I), and evaporation (E). The inflow in the top graph uses the CN method while the
inflow in the bottom graph uses the VIC model.
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398underestimated observed annual out-
399flow (represented by negative percent
400difference), with the exception of
4012006. In contrast, the mass balance
402consistently overestimated annual out-
403flow (represented by positive percent
404difference) when utilizing the VIC
405model inflow component, with under-
406prediction only occurring in 2005 and
4072007. Percent differences between
408observed and estimated annual out-
409flow utilizing VIC inflow ranged in
410magnitude from 5.2% in 2007 to 48%
411in 2006. There is no clear trend in the
412accuracy of the discharge estimates over time. An RRMSE of 26.4% suggests that the mass balance esti-
413mated discharge with higher skill at the annual time scale than the monthly time scale. However, an NSE of
41421.63 indicates that the mass balance is a worse predictor of annual outflow than the 2003–2009 average
415annual outflow.

4164.3. Inflow Error Assessment Results
417Table T44 shows the RMSE, hit bias, probability of missed precipitation, and probability of false precipitation for
418the comparison between TRMM precipitation and Sheffield precipitation and between TRMM and the rainfall
419gage station at Kaptai Reservoir. Interested readers are referred to Tian and Peters-Lidard [2010] for more infor-
420mation regarding hit bias, missed precipitation, and false precipitation, and to Gebregiorgis et al. [2012] for more
421information on how these errors propagate. These statistics are shown for the entire study period as well was
422for consecutive 3 month seasons (i.e., precipitation errors from every December, January, and February were
423considered for the statistics listed under ‘‘DJF’’). The pattern in RMSE is the same for both comparisons, with the
424lowest occurring in DJF and the highest in JJA. TRMM appears negatively biased when compared to the gage,
425but positively biased when compared to Sheffield. Additionally, the season distribution of missed precipitation
426is different, but the overall missed precipitation for both comparisons is similar. The rainfall gage comparison
427indicates that TRMM falsely identifies precipitation over twice as much as the Sheffield comparison. Some differ-
428ences between these two comparisons are expected however, because the comparison with the rainfall gage
429only takes into account one TRMM grid cell, while the Sheffield comparison examines the entire domain.

Table 4. Comparison Between TRMM Precipitation and the Kaptai Reservoir
Rainfall Gage as Well as Between TRMM and the Sheffield Global Data Set
Precipitation

Overall DJF MAM JJA SON

TRMM and Kaptai Reservoir Rainfall Gage
RMSE (mm/d) 15.39 1.93 6.65 25.4 15.87
Hit bias (mm/d) 23.39 20.11 20.46 28.55 24.28
Missed precipitation (%) 6.87 0.56 1.31 18.3 7.14
False precipitation (%) 15.94 3.33 22.88 23.08 15.93
TRMM and Sheffield
RMSE (mm/d) 9.78 4.26 8.53 13.13 10.87
Hit bias (mm/d) 1.86 20.51 0.70 3.78 0.86
Missed precipitation (%) 6.47 8.43 7.95 3.27 6.26
False precipitation (%) 35.87 12.40 30.41 62.45 37.74

Figure 7. Comparison between daily Kaptai Reservoir inflow generated by the VIC model forced by TRMM and Sheffield precipitation data.
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430The resulting daily inflow generated
431from the VIC model forced with TRMM
432precipitation is compared to the inflow
433generated from the VIC model forced
434with Sheffield precipitation in Figure F77.
435From this graph, it can be seen that
436inflow produced with TRMM and Shef-
437field precipitation follow similar sea-
438sonal patterns with similar magnitude in peak flows. However, the timing of these peak flows appears to be
439different in many cases. This leads to a high error between the two inflows, but a low bias. When these daily
440inflows are aggregated into monthly inflows, these timing errors are eliminated and result in an RRMSE between the
441two monthly inflows of less than 10%.

442Table T55 shows the RMSE, hit bias, probability of missed precipitation, and probability of false precipitation
443for the comparison between TRMM precipitation and PRISM precipitation over the Hungry Horse basin.
444TRMM has the highest RMSE, hit bias, and missed precipitation in the DJF when most of the precipitation is

Table 5. Comparison Between Daily TRMM and PRISM Precipitation From 2002
to 2010 Over the Hungry Horse Basin

Overall DJF MAM JJA SON

RMSE (mm/d) 4.25 4.67 4.15 3.85 4.30
Hit bias (mm/d) 21.58 22.17 21.65 20.97 21.55
Missed precipitation (%) 31.2 50.2 27.8 14.8 32.2
False precipitation (%) 11.6 3.0 19.0 16.5 7.8

Figure 8. Comparison between VIC model outputs generated using TRMM and PRISM precipitation as forcings, (top) average snow water
equivelent and (bottom) inflow into the Hungry Horse Reservoir.
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445snow. TRMM is also negatively biased across all seasons, indicating an underrepresentation of precipitation
446in this basin. Figure F88 shows the daily basin average snow water equivalent (SWE) in the basin generated
447using the VIC model with both sets of precipitation forcings (TRMM and PRISM). Figure 8 also shows the
448resulting inflow generated by the VIC model using both precipitation forcings. From the SWE comparison, it
449is clear that TRMM precipitation causes consistently lower SWE than PRISM. This leads to the consistently
450lower spring and summer peak inflows shown in the inflow comparison graph.

4515. Discussion

452The mass balance approach utilizing CN-derived inflow demonstrated small gains in monthly Kaptai Reser-
453voir outflow estimation over mass balance approaches that excluded inflow. Conversely, the mass balance
454approach utilizing VIC modeled inflow yielded fairly accurate monthly outflow estimates. The outflow esti-
455mation accuracy improvements achieved by utilizing the VIC model to derive inflow over the CN method
456suggest that improved modeling of the hydrologic inflow processes led to more accurate outflow estimates.
457Furthermore, examination of the seasonal differences in monthly outflow estimation revealed higher accu-
458racies in the wet season than the dry season. This indicates that the mass balance and VIC inflow model bet-
459ter represent the hydrological processes during the wet season. A seasonal shift in the relative bias from
460negative (underestimations) in the dry season to positive (overestimation) in the wet season is observed for
461VIC inflow-based estimations. However, the hydrograph in Figure 5 reveals that overestimation of wet sea-
462son outflow only occurred from 2007 to 2010. During 2002–2006, wet season outflow estimates appear to
463match observed outflow. Similarly, dry season underestimation occurred primarily in 2002–2006, while dry
464season estimates in 2007–2010 match observations more closely. This indicates a shift in the conditions of
465this basin that caused outflow estimates to increase in all seasons. One possible explanation is a change in
466basin characteristics through land cover or land use changes, such as an increase in vegetation, which
467would cause a larger portion of precipitation to be intercepted leading to less runoff flowing into the reser-
468voir than predicted. This highlights the vulnerability of this method to changing basin conditions, as any
469changes would have to be accounted for in the runoff model. Estimates that utilized CN inflow did not
470appear to follow this pattern, indicating that the process that caused this shift is poorly represented by the
471curve number method.

472Comparison between observed outflow and outflow estimated using different components of the mass bal-
473ance showed that the accuracy of the outflow estimate was highly variable and depended on which hydro-
474logic controls were considered. For the Kaptai Reservoir, the two most accurate combinations of controls
475were I,E,S (inflow, evaporation, and storage change) and I,S (inflow and storage change), when the VIC
476model was used to provide inflow. The difference in accuracy between these two cases was relatively small.
477This, in conjunction with the high error in estimated outflow in both cases where inflow was not included,
478indicated that precipitation-induced inflow is the most important hydrologic control to consider for this res-
479ervoir, which is consistent with the region’s high precipitation. This is reflected by the significant accuracy
480improvements achieved utilizing a more complex, process-based approach (VIC) over a simpler, more
481empirical approach (CN). This is further supported by the size of the reservoir relative to the inflow. The Kap-
482tai Reservoir has the capacity to store only 33% of the average annual runoff of this time period. This indi-
483cates that inflow and outflow should be considerably larger than storage change in this reservoir. However,
484storage change was also an important control to consider, particularly during periods of low precipitation.
485While including evaporation in the mass balance resulted in an overall lower relative bias, the effects on
486outflow estimation accuracy were minimal. At this time, it is unclear if evaporation is an insignificant control
487for this reservoir, or if the climatologic evaporation approach used here is insufficient and a more localized,
488weather-based approach is needed.

489As a source of error for the Kaptai Reservoir, the precipitation input likely had little effect. The error and bias
490present when comparing TRMM precipitation to Sheffield precipitation were reduced when these precipita-
491tion data sets were used as forcings in the VIC model, and were further reduced when the resulting runoff
492(inflow into the reservoir) was aggregated over monthly time scales.

493The mass balance approach for the Hungry Horse Reservoir provided less accurate monthly outflow overall.
494However, Winter outflows from Hungry Horse were estimated with a significant degree of accuracy and
495compelling NSE, when the VIC model provided the inflow component. Utilizing the CN method to provide
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496inflow did little to improve accuracy over simply excluding inflow. This suggests that the VIC model cap-
497tures one or more hydrological processes that control the runoff in this basin that are otherwise poorly rep-
498resented by the CN method. This important process is likely snow accumulation/melt, characteristic of high-
499elevation basins such as the Hungry Horse basin. The VIC model, through energy balance, can represent the
500timing and magnitude of snow accumulation/melt while the CN method has no capacity to represent snow
501processes. Winter is the only season where inflow is typically not effected by snowmelt, as a majority of the
502basin remains below freezing throughout the Winter. The relatively lower accuracy during the other seasons
503could be caused by difficulties in estimating the quantity and timing of snow accumulation/melt. This is
504supported by the findings of the inflow error analysis, where differences in Winter SWE (resulting from two
505different precipitation forcings) caused similar differences in spring and summer runoff. Including inflow in
506the mass balance provided an increase in outflow estimation accuracy, indicating that inflow is an impor-
507tant hydrologic control in this basin. However, the magnitude of the storage change was considerably
508larger relative to inflow. This is supported by the Hungry Horse Reservoir’s size relative to annual runoff. The
509reservoir has the capacity to store 144% of the average annual flow during the study period. This suggests
510storage change is the most important hydrologic control in this basin. Representing inflow properly was
511also important in generating accurate outflow estimates as demonstrated by the differences between the
512I,E,S (VIC) estimate, the E,S estimate, and the I,E,S (CN) estimate. However, excluding inflow improved the
513accuracy in the fall. A possible source of this anomaly is an overestimation of inflow and runoff during this
514time as suggested by the high relative bias associated with the I,E,S (VIC) estimate. The partition between
515the forms of precipitation (rain or snow) into the basin in the fall is highly sensitive to the climate. It is possi-
516ble that the model forcing does not accurately reflect the conditions at the higher elevation points in the
517basin, causing the VIC model to erroneously treat fall snow precipitation as rain. Furthermore, slight inaccur-
518acies in the VIC model’s partitioning between snow accumulation and melt would have high impacts on
519the resulting inflow. This could lead to the overestimated Fall outflows generated with inflow included in
520the mass balance.

521Unlike the Kaptai Reservoir, outflow estimation for the Hungry Horse Reservoir was significantly impacted
522by errors in the TRMM precipitation input. The negative bias of TRMM precipitation compared to PRISM pre-
523cipitation, particularly in the Winter, propagated through the VIC model and resulted in negatively biased
524inflow. A similar negative bias is seen in spring outflow estimation, when runoff is at a peak due to snow-
525melt. Additionally, groundwater effects in the basin, which are not modeled by VIC, could significantly affect
526inflow.

527Annual outflow totals of both reservoirs were estimated more accurately than monthly outflow, indicating
528that the mass balance approach for annual estimations has more value than for monthly estimations. These
529annual estimates once again illustrate which hydrologic controls were important for each basin. The differ-
530ence in accuracy between Kaptai Reservoir annual outflow estimated from VIC inflow and CN inflow was
531extreme, identifying inflow as a key component of outflow estimation in this basin. In contrast, the differ-
532ence in accuracy between Hungry Horse Reservoir annual outflow estimated from VIC inflow and CN inflow
533was less pronounced. This signifies that while inflow is a significant hydrologic control, it is not the domi-
534nant control. However, the low NSE for the annual Hungry Horse outflow indicates that even at yearly time
535scales, some source of error is hindering the mass balance’s effectiveness. This could be errors in TRMM pre-
536cipitation propagating through the VIC model, or high connectivity with the groundwater table.

5376. Conclusion

538What emerges from this study is that understanding the dominant hydrologic controls governing reservoir
539outflow is key to improving reservoir outflow estimations. The dramatic difference in hydrologic controls
540between the two reservoirs used in this study indicates that the results from these reservoirs are not trans-
541ferable to regions with differing climate and geography. For example, evaporation was found to have little
542effect on the two reservoirs studied here, but other regions such as the Middle East or a semiarid region
543(e.g., Lake Mead in U.S.) would have higher evaporation rates and the importance of this hydrologic control
544would need to be reassessed. Furthermore, reservoirs of varying sizes and functions may also behave differ-
545ently in terms of hydrologic controls. As seen here, reservoirs that can store a smaller percentage of their
546annual inflow tend to be more dynamically operated than larger reservoirs. In more extreme cases, these
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547reservoir dynamics may occur more often at time scales shorter than monthly. This influences which hydro-
548logic controls are important in estimating the reservoir outflow between satellite overpasses. Additionally,
549the purpose of the reservoir might dictate its response to different hydrologic controls. Further work needs
550to be conducted to determine how reservoir size and use affects the hydrologic controls of this mass bal-
551ance. This involves scaling up the method used here to multiple reservoirs of varying conditions, regulations
552and storage capacity. Additional studies should also examine reservoirs on a global scale to determine how
553well this method works in a wide variety of climates and geographies.

554The success of aggregating monthly discharge estimates to generate annual estimates suggests a similar
555approach may be viable at shorter time scales. For example, multiple submonthly discharge estimates
556aggregated to generate a monthly estimate could be more accurate than the monthly estimates made
557here. This could be done by leveraging the power of multiple altimeters to provide more frequent storage
558change observations. The near future looks quite promising in terms of satellite observations of reservoir
559levels at higher frequencies. The currently flying AltiKa altimeter (onboard the Indian French SARAL mission)
560and JASON-2, and recently launched JASON-3, will be joined by Sentinel 3A and 3B (European Space
561Agency missions), and ICESat 2 (a laser altimeter planned for launch in 2017). The Surface Water and Ocean
562Topography (SWOT) mission, scheduled to launch in 2020, will provide wide-swath altimetry measurements
563of both water surface area and elevation, allowing for the observation of storage change without the need
564to derive a relationship between storage and elevation [Pavelsky et al., 2014; Biancamaria et al., 2015]. Thus,
565several years from now, a suite of 5–6 altimeters can be leveraged to provide sampling of an unprece-
566dented number of reservoirs in large river systems.

567The ability to estimate reservoir outflow using satellite remote sensing has wide reaching implications in
568transboundary water management. Downstream stakeholders, armed with better remotely sensed observa-
569tion of upstream dam operations, can make more informed decisions about a wide array of water manage-
570ment issues. However, the results from this study highlight the inadequacies of this method in terms of its
571applicability a broader range of basins. The level of accuracy achieved here might be sufficient for some
572larger-scale management decisions based on the operations of a large transboundary dam, or seasonal
573water supply predictions, but other practices require more accurate flow predictions, such as for dynamic
574transboundary flood management or hydropower scheduling. From a practical standpoint, the use of more
575complex model to represent inflow requires more input or forcing data, which undermines the practicality
576and global scalability of a remote sensing approach for water management of large regulated river basins.
577Thus, the process complexity versus outflow accuracy becomes a decision that the water management
578agency has to weigh in on depending on decision making needs keeping in mind the current situation,
579where transboundary outflow cannot be fundamentally estimated using conventional approaches.

580Appendix A: Curve Number

581The SCS CN runoff equation is:

Q5

0 P � Ia

P2Iað Þ2

P2Ia1S
P > Ia

8><
>:

9>=
>;

582where

583Q 5 runoff, in. AQ6;

584P 5 rainfall, in.;

585S 5 potential maximum soil moisture retention after runoff begins, in.;

586Ia 5 initial abstraction, in.;

Ia50:2S

S5
1000

CN
210:
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587Appendix B: Evaporation

588Evaporation of water from a reservoir was estimated using an energy balance method [Chow et al., 1988],

Er5
1

lvqw
Rn2HS2Gð Þ

589where

590Er 5 evaporation;

591Rn 5 net radiation;

592Hs 5 sensible heat flux;

593G 5 ground heat flux;

594qw 5 density of water (997 kg/m3 at 258C);

595lv 5 the latent heat of vaporization.

596The latent heat of vaporization is a function of the mean temperature (T),

lv52:501310622370T

597Neglecting sensible heat flux and ground heat flux, equation (1) become,

Er5
Rn

lvqw

598The net radiation is calculated as the difference between the net solar radiation (Rns) and the net longwave
599radiation (Rnl) [Allen et al., 1998],

Rn5Rns2Rnl

600The extraterrestrial solar radiation or net solar radiation incident at the top of the atmosphere depends on
601the latitude and the season. This extraterrestrial radiation can be expressed as [Allen et al., 1998];

Ra5
Gscdr

p
xssin uð Þ:sin dð Þ1cos uð Þ:cos dð Þ:sin xsð Þ½ �

602where

603Ra 5 the extraterrestrial radiation;

604Gsc 5 the solar constant (1367 W/m2);

605u 5 the latitude in radian;

606xs 5 sunset hour angle, where xs5arccos 2tan uð Þ:tan dð Þ½ �;

607dr 5 the earth-sun inverse relative distance, where dr5110:033cos 2p
365 J
� �

;

608d 5 solar decimation, where d50:409sin 2p
365 J21:39
� �

J is the Julian day.

609Not all of the solar radiation incident over the atmosphere reaches the ground. A portion of this extraterres-
610trial radiation is obstructed by clouds. The solar radiation that reaches the ground is given by [Allen et al.,
6111998],

Rs5 as1bs
n
N

� �
Ra

612where

613N 5 daylight hours given by N5 24
p xs;

614n 5 actual duration of sunshine in hour;

615as and bs 5 regression constants.
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616If we assume the clear sky situation, then n5N and,

Rso5Rs5 as1bsð ÞRa

617When, calibrated regression constants are unavailable,

Rso5Rs5 0:751231025z
� �

Ra

where, z 5 station height above mean sea level in m (63 m at Kaptai).

618After the solar radiation reaches the ground, a portion of the radiation is reflected by the surface and the
619net solar radiation absorbed by the surface is,

Rns5 12að ÞRs

where, a 5 the surface albedo assumed to be 0.1 for the lake surface.

620The earth also emits energy in form of longwave. The net longwave radiation can be approximated by [Allen
621et al., 1998],

Rnl5r
Tmax

41Tmin
4

2

� �
0:3420:14

ffiffiffiffiffi
ea
p

ð Þ 1:35
Rs

Rso
20:35

	 


622Assuming the sky is clear (Rs5Rso),

Rnl5r
Tmax

41Tmin
4

2

� �
0:3420:14

ffiffiffiffiffi
ea
pð Þ

623where

624Tmax and Tmin5 daily maximum and minimum temperature in kelvin;

625ea 5 vapor pressure where ea5RH � es ;

626RH 5 the mean daily relative humidity (assumed 78% for Kaptai [Mortuza et al., 2014]);

627es 5 the mean daily saturated vapor pressure.

628The saturated vapor pressure is given by,

eo Tð Þ50:6108 exp
17:27 T

T1237:3

� �

629And the mean daily saturated vapor pressure is given by [Allen et al., 1998],

es5
e0 Tmaxð Þ1e0 Tminð Þ

2

630References
631Alsdorf, D. E., E. Rodriguez, and D. P. Lettenmaier (2007), Measuring surface water from space, Rev. Geophys., 45, RG2002, doi:10.1029/
6322006RG000197.
633Andreadis, K., P. Storck, and D. P. Lettenmaier (2009), Modeling snow accumulation and ablation processes in forested environments,
634Water Resour. Res., 45, W05429, doi:10.1029/2008WR007042.
635Bakker, M. H. N. (2009), Transboundary river floods and institutional capacity, J. Am. Water Resour. Assoc., 45(3), 553–566.
636Benveniste, J. (2002), ENVISAT RA-2/MWR product handbook, Issue 1.2, Rep. PO-TN-ESR-RA-0050, Eur. Space Agency, Frascati,
637Italy.
638Biancamaria, S., F. Hossain, and D. P. Lettenmaier (2011), Forecasting transboundary flood with satellites, Geophys. Res. Lett., 38, L11401,
639doi:10.1029/2011GL047290.
640Biancamaria, S., D. P. Lettenmaier, and T. M. Pavelsky (2015), The SWOT mission and its capabilities for land hydrology, Surv. Geophys., 37,
641307–337, doi:10.1007/s10712-015-9346-y.
642Biemans, H., I. Haddeland, P. Kabat, F. Ludwig, R. Hutjes, J. Heinke, W. Von Bloh, and D. Gerten (2011), Impact of reservoirs on river dis-
643charge and irrigation water supply during the 20th century, Water Resour. Res., 47, W03509, doi:10.1029/2009WR008929.
644Birkett, C. M. (1995), The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes, J. Geophys. Res., 100,
645179–204.
646Birkett, C. M. (2000), Synergistic remote sensing of Lake Chad: Variability of basin inundation, Remote Sens. Environ., 72, 218–236.
647Brooks, R. L. (1982), Lake elevations from satellite radar altimetry AQ7from a validation area in Canada, report, Geosci. Res. Corp.
648Cherkauer, K. A., and D. P. Lettenmaier (1999), Hydrologic effects of frozen soils in the upper Mississippi River basin, J. Geophys. Res., 104,
64919,599–19,610.

Acknowledgments
This work was mainly supported by
NASA WATER (NNX15AC63G). In
addition, the authors acknowledge the
NASA Physical Oceanography program
(NN13AD97G), NASA SERVIR program
(NNX12AM85AG), and NASA New
Investigator Program (NNX14AI01G)
for supporting this work. The Institute
of Water Modeling (Bangladesh) is
gratefully acknowledged for their
generous support with data
acquisition as well accurately
conveying the real-world needs of the
agency, as part of a 5 year
memorandum of understanding with
the University of Washington’s
Department of Civil and Environmental
Engineering. Data pertaining to
reservoir heights from radar altimeter
were obtained from the AVISO ftp site
maintained by CNES (French Space
Agency) at ftp://avisoftp.cnes.fr. Data
on discharge downstream of Hungry
Horse Reservoir were obtained from
USGS site at http://waterdata.usgs.gov.
Discharge data downstream from
Kaptai Reservoir were obtained from
IWM and are available upon request
by emailing Ismat Ara Pervin
(iap@iwmbd.org). Meteorological data
for evaporation calculation were
obtained from National Climatic Data
Center (NCDC) at ftp://ftp.ncdc.noaa.
gov/pub/data/gsod/. Finally, all data
used in this study are also available
upon request by emailing
fhossain@uw.edu.

J_ID: WRCR Customer A_ID: WRCR22028 Cadmus Art: WRCR22028 Ed. Ref. No.: 2015WR017830 Date: 11-April-16 Stage: Page: 19

ID: vedhanarayanan.m Time: 13:45 I Path: {MyPath}JW-WRCR160160

Water Resources Research 10.1002/2015WR017830

BONNEMA ET AL. SATELLITE-BASED RESERVOIR OUTFLOW 19

http://dx.doi.org/10.1029/2006RG000197
http://dx.doi.org/10.1029/2006RG000197
http://dx.doi.org/10.1029/2008WR007042
http://dx.doi.org/10.1029/2011GL047290
http://dx.doi.org/10.1007/s10712-015-9346-y
http://dx.doi.org/10.1029/2009WR008929
http://ftp://avisoftp.cnes.fr
http://waterdata.usgs.gov
http://ftp://ftp.ncdc.noaa.gov/pub/data/gsod/
http://ftp://ftp.ncdc.noaa.gov/pub/data/gsod/


650Cherkauer, K. A., L. C. Bowling, and D. P. Lettenmaier (2003), Variable infiltration capacity cold land process model updates, Global Planet.
651Change, 38, 151–159.
652Chow, V. T., D. R. Maidment, and L. W. Mays (1988), ‘‘Atmospheric Water’’, in Applied Hydrology, chap. 3, pp. 53–98, International ed.,
653McGraw-Hill, New York.
654Doll, P., K. Fiedler, and J. Zhang (2009), Global-scale analysis of river flow alterations due to water withdrawals and reservoirs, Hydrol. Earth
655Syst. Sci., 13, 2432–2432.
656Farr, T. G., et al. (2007), The shuttle radar topography mission, Rev. Geophys., 45, RG2004, doi:10.1029/2005RG000183.
657Fischer, G., F. Nachtergaele, S. Prieler, H. T. van Velthuizen, L. Verelst, and D. Wiberg (2008), Global Agro-Ecological Zones Assessment for
658Agriculture (GAEZ 2008), Int. Inst. for Appl. Syst. Anal., Laxenburg, Austria.
659Gao, H. (2015), Satellite remote sensing of large lakes and reservoirs: From elevation and area to storage, WIREs Water, 2, 147–157, doi:
66010.1002/wat2.1065.
661Gao, H., C. Birkett, and D. P. Lettenmaier (2012), Global monitoring of large reservoir storage from satellite remote sensing, Water Resour.
662Res., 48, W09504, doi:10.1029/2012WR012063.
663Gebregiorgis, A. S., Y. Tian, C. D. Peters-Lidard, and F. Hossain (2012), Tracing hydrologic model simulation error as a function of satellite
664rainfall estimation bias components and land use and land cover conditions, Water Resour. Res., 48, W11509, doi:10.1029/
6652011WR011643.
666Haddeland, I., D. P. Lettenmaier, and T. Skaugen (2006), Effects of irrigation on the water and energy balances of the Colorado and Mekong
667river basins, J. Hydrol., 324(1-4), 210–223, doi:10.1016/j.jhydrol.2005.09.028.
668Hamlet, A. F., and D. P. Lettenmaier (1999a), Effects of climate change on hydrology and water resources in the Columbia River basin, Am.
669Water Res. Assoc., 35(6), 1597–1623.
670Hamlet, A. F., and D. P. Lettenmaier (1999b), Columbia River streamflow forecasting based on ENSO and PDO climate signals, J. Water
671Resour. Plann. Manage., 125(6), 333–341.
672Hawkins, R. H., R. Jiang, D. E. Woodward, A. T. Hjelmfelt, and J. A. Van Mullem (2002), Runoff curve number method: Examination of the ini-
673tial abstraction ratio, in Proceedings of the Second Federal Interagency AQ8Hydrologic Modeling Conference, U.S. Geol. Surv.
674Hong, Y., B. Adler, F. Hossain, and S. Curtis (2007), Global runoff simulation using satellite rainfall estimation and SCS-CN method, Water
675Resour. Res., 43, W08502, doi:10.1029/2006WR005739.
676Hossain, F., A. H. M. Siddique-E-Akbor, L. Mazumder, S. M. ShahNewaz, S. Biancamaria, H. Lee, and C. K. Shum (2013), Proof of concept of an
677operational altimeter-based forecasting system for transboundary flow, IEEE J. Selec. Top. Appl. Remote Sens., 7(2), 587–601, doi:10.1109/
678JSTARS.2013.2283402.
679Hossain, F., et al. (2014), A promising radar altimetry satellite system for operational flood forecasting in flood-prone Bangladesh, IEEE Mag.
680Geosci. Remote Sens., 2, 27–36, doi:10.1109/MGRS.2014.2345414.
681Hou, Y., R. K. Kakar, S. Neeck, A. A. Azarbarzin, C. D. Kummerow, M. Kojima, R. Oki, K. Nakamura, and T. Iguchi (2014), The global precipita-
682tion measurement mission, Bull. Am. Meteorol. Soc., 95, 701–722, doi:10.1175/BAMS-D-13-00164.1.
683Huffman, G. J., R. F. Adler, D. T. Bolvin, G. J. Gu, E. J. Nelkin, K. P. Bowman, Y. Hong, E. F. Stocker, and D. B. Wolff (2007), The TRMM
684Multisatellite AQ9Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales, J. Hydrome-
685teorol., 8, 38–55.
686Karmakar, S., S. M. S. Haque, and M. M. Hossain (2009), Siltation in Kaptai Reservoir of Chittagong Hill Tracts Bangladesh, J. Indian Water
687Works Assoc., 41(4), 275–284.
688Lambin, J., et al. (2010), The OSTM/Jason-2 Mission, Mar. Geod., 33(1), doi:10.1080/01490419.2010.491030. AQ10
689Lee, H., C. Shum, K.-H. Tseng, J.-Y. Guo, and C.-Y. Kuo (2011), Present-day lake level variation from Envisat altimetry over the northeastern
690Qinghai-Tibetan Plateau: Links with precipitation and temperature, Terr. Atmos. Oceanic Sci., 22, 169–175.
691Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges (1994), A simple hydrologically based model of land surface water and energy
692fluxes for GSMs, J. Geophys. Res., 99, 14,415-14,428.
693Lohmann, D., R. Nolte-Holube, and E. Raschke (1996), A large-scale horizontal routing model to be coupled to land surface parametrization
694schemes, Tellus, Ser. A, 48, 708–721.
695Lohmann, D., E. Raschke, B. Nijssen, and D. P. Lettenmaier (1998), Regional scale hydrology: I. Formulation of the VIC-2L model coupled to
696a routing model, Hydrol. Sci. J., 43(1), 131–141.
697Loveland, T. R., B. C. Reed, J. F. Brown, D. O. Ohlen, Z. Zhu, L. Yang, and J. W. Merchant (2000), Development of a global land cover charac-
698teristics database and IGBP DISCover from 1 km AVHRR data, Int. J. Remote Sens., 21(6-7), 1303–1330, doi:10.1080/014311600210191.
699Malenovsky, Z., H. Rott, J. Cihlar, M. E. Schaepman, G. Garcia-Santos, R. Fernades, and M. Berger (2012), Sentinels for Science: Potential of
700Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land, Remote Sens. Environ., 120, 91–101.
701Mason, I. M., A. Harris, C. M. Birkett, W. C. Cudlip, and C. G. Rapley (1990), Remote sensing of lakes for the proxy monitoring of climatic
702change, in Remote Sensing and Climate Change, Proceedings of the 16th Annual Conference of the Remote Sensing Society, pp. 314–324,
703Univ. Coll. Swansea, Swansea, Wales.
704Muala, E., Y. A. Mohamed, Z. Duan, and P. Zaag (2014), Estimation of reservoir discharges from Lake Nasser and Roseires Reservoir in the
705Nile Basin using satellite altimetry and imagery data, Remote Sens., 6(8), 7522–7545, doi:10.3390/rs6087522.
706Munier, S., A. Polebitstki, C. Brown, G. Belaud, and D. P. Lettenmaier (2015), SWOT data assimilation for operational reservoir management
707on the upper Niger River Basin, Water Resour. Res., 51, 554–575, doi:10.1002/2014WR016157.
708Pavelsky, T. M., M. T. Durand, K. M. Andreadis, R. E. Beighley, R. C. D. Paiva, G. H. Allen, and Z. F. Miller (2014), Assessing the potential global
709extent of SWOT river discharge observations, J. Hydrol., 519, 1516–1525.
710Salami, Y. D., and F. N. Nnadi (2012), Reservoir storage variations from hydrological mass balance and satellite radar altimetry, Int. J. Water
711Resour. Environ. Eng., 4(6), 201–207, doi:10.5897/IJWREE11.140.
712Sheffield, J., G. Goteti, and E. F. Wood (2006), Development of a 50-yr high-resolution global dataset of meteorological forcings for land sur-
713face modeling, J. Clim., 19(13), 3088–3111.
714Shuttleworth, W. J. (1993), Evaporation, in Handbook of Hydrology, pp. 4.1–4.53, edited by D. R. Maidment, McGraw-Hill, New York.
715Siddique-E-Akbor, A. H. M., F. Hossain, H. Lee, and C. K. Shum (2011), Inter-comparison study of water level estimates derived from
716hydrodynamic-hydrologic model and satellite altimetry for a complex deltaic environment, Remote Sens. Environ., 115, 1522–1531, doi:
71710.1016/j.rse.2011.02.011.
718State of Montana (2011), Hungry Horse Reservoir, Montana: Biological Impact Evaluation and Operational Constraints for AQ11a Proposed 90,000-
719Acre-Foot Withdrawal.
720Swenson, S., and J. Wahr (2009), Monitoring the water balance of Lake Victoria, East Africa, from space, J. Hydrol., 370(1–4), 163–176, doi:
72110.1016/j.jhydrol.2009.03.008.

J_ID: WRCR Customer A_ID: WRCR22028 Cadmus Art: WRCR22028 Ed. Ref. No.: 2015WR017830 Date: 11-April-16 Stage: Page: 20

ID: vedhanarayanan.m Time: 13:45 I Path: {MyPath}JW-WRCR160160

Water Resources Research 10.1002/2015WR017830

BONNEMA ET AL. SATELLITE-BASED RESERVOIR OUTFLOW 20

http://dx.doi.org/10.1029/2005RG000183
http://dx.doi.org/10.1002/wat2.1065
http://dx.doi.org/10.1029/2012WR012063
http://dx.doi.org/10.1029/2011WR011643
http://dx.doi.org/10.1029/2011WR011643
http://dx.doi.org/10.1016/j.jhydrol.2005.09.028
http://dx.doi.org/10.1029/2006WR005739
http://dx.doi.org/10.1109/JSTARS.2013.2283402
http://dx.doi.org/10.1109/JSTARS.2013.2283402
http://dx.doi.org/10.1109/MGRS.2014.2345414
http://dx.doi.org/10.1175/BAMS-D-13-00164.1
http://dx.doi.org/10.1080/01490419.2010.491030
http://dx.doi.org/10.1080/014311600210191
http://dx.doi.org/10.3390/rs6087522
http://dx.doi.org/10.1002/2014WR016157
http://dx.doi.org/10.5897/IJWREE11.140
http://dx.doi.org/10.1016/j.rse.2011.02.011
http://dx.doi.org/10.1016/j.jhydrol.2009.03.008


722Tian, Y., and C. D. Peters-Lidard (2010), A global map of uncertainties in satellite-based precipitation measurements, Geophys. Res. Lett., 37,
723L24407, doi:10.1029/2010GL046008.
724Todini, E. (1996), The ARNO rainfall-runoff model, J. Hydrol., 175(1–4), 339–382.
725United Nations Environment Programme (2004), Addressing Existing Dams, Issue-Based Workshop Proceedings, 14-15 June.
726United States Bureau of Reclamation (2013), Hungry Horse Dam, U.S. Dep. of the Inter.
727United States Department of Agriculture (1986), Urban hydrology for small watersheds, Tech. Release AQ1255, Natl. Resour. Conserv. Serv.,
728Conserv. Eng. Div.
729United States Department of Agriculture (2009), Web Soil Survey, Natl. Resour. Conserv. Serv.
730Verron, J., et al. (2015), The SARAL/Altika altimetry satellite mission, Mar. Geod., doi:10.1080/01490419.2014.1000471. AQ13
731V€or€osmarty, C. J., and D. Sahagian (2000), Anthropogenic disturbance of the terrestrial water cycle, Biosciences, 50(9), 753–765.
732V€or€osmarty, C. J., et al. (2010), Global threats to human water security and river biodiversity, Nature, 467, 555–561, doi:10.1038/
733nature09440.
734Ward, A. D., and S. W. Trimble (2004), Environmental Hydrology, CRC Press, Boca Raton, Fla.
735Wenger, S. J., C. H. Luce, A. F. Hamlet, D. J. Isaak, and H. M. Neville (2010), Macroscale hydrologic modeling of ecologically relevant flow
736metrics, Water Resour. Res., 46, W09513, doi:10.1029/2009WR008839.
737Wolf, A., J. Natharius, J. Danielson, B. Ward, and J. Pender (1999), International river basins of the world, Int. J. Water Resour. Dev., 15(4),
738387–427. [Cros sRef][10.1080/07900629948682]
739Wu, H., J. S. Kimball, N. Mantua, and J. Stanford (2011), Automated upscaling of river 702 networks for macroscale hydrological modeling,
740Water Resour. Res., 47, W03517, doi:10.1029/2009WR008871.
741Zarfl, C., A. Lumsdon, J. Berlekamp, L. Tydecks, and K. Tockner (2014), A global boom in hydropower dam construction, Aquat. Sci., 77,
742161–170, doi:10.1007/s00027-014-0377-0.
743Zhang, J., K. Xu, Y. Yang, L. Qi, S. Hayashi, and M. Watanabe (2006), Measuring water storage fluctuations in Lake Dongting, China, by
744Topex/Poseidon satellite altimetry, Environ. Monit. Assess., 115, 23–37.
745Zhao, R. J., Y. L. Zhang, L. R. Fang, X. R. Liu, and Q. S. Zhang (1980), The Xinanjiang model, Hydrological forecasting, in Proceedings of the
746Symposium on the Application of Recent Developments in Hydrological Forecasting to the Operation of Water Resource Systems, vol. 129,
747pp. 351–356, Int. Assoc. of Hydrol. Sci.
748Zhou, T., B. Nijssen, H. Gao, and D. P. Lettenmaier (2015), The contribution of reservoirs to global land surface water storage variations,
749J. Hydrometeorol., 17, 309–325, doi:10.1175/JHM-D-15-0002.1.

750

J_ID: WRCR Customer A_ID: WRCR22028 Cadmus Art: WRCR22028 Ed. Ref. No.: 2015WR017830 Date: 11-April-16 Stage: Page: 21

ID: vedhanarayanan.m Time: 13:45 I Path: {MyPath}JW-WRCR160160

Water Resources Research 10.1002/2015WR017830

BONNEMA ET AL. SATELLITE-BASED RESERVOIR OUTFLOW 21

http://dx.doi.org/10.1029/2010GL046008
http://dx.doi.org/10.1080/01490419.2014.1000471
http://dx.doi.org/10.1038/nature09440
http://dx.doi.org/10.1038/nature09440
http://dx.doi.org/10.1029/2009WR008839
http://dx.doi.org/10.1029/2009WR008871
http://dx.doi.org/10.1007/s00027-014-0377-0
http://dx.doi.org/10.1175/JHM-D-15-0002.1

	AQ14
	AQ1
	AQ15
	AQ2
	AQ3
	AQ4
	AQ5
	AQ6
	AQ7
	AQ8
	AQ9
	AQ10
	AQ11
	AQ12
	AQ13



