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5Abstract The safety of large and aging water infrastructures is gaining attention in water management
6given the accelerated rate of change in landscape, climate, and society. In current engineering practice,
7such safety is ensured by the design of infrastructure for the Probable Maximum Precipitation (PMP).
8Recently, several numerical modeling approaches have been proposed to modernize the conventional and
9ad hoc PMP estimation approach. However, the underlying physics have not been fully investigated and

10thus differing PMP estimates are sometimes obtained without physics-based interpretations. In this study,
11we present a hybrid approach that takes advantage of both traditional engineering practice and modern cli-
12mate science to estimate PMP for current and future climate conditions. The traditional PMP approach is
13modified and applied to five statistically downscaled CMIP5 model outputs, producing an ensemble of PMP
14estimates in the Pacific Northwest (PNW) during the historical (1970–2016) and future (2050–2099) time
15periods. The hybrid approach produced consistent historical PMP estimates as the traditional estimates.
16PMP in the PNW will increase by 50% 6 30% of the current design PMP by 2099 under the RCP8.5 scenario.
17Most of the increase is caused by warming, which mainly affects moisture availability through increased sea
18surface temperature, with minor contributions from changes in storm efficiency in the future. Moist track
19change tends to reduce the future PMP. Compared with extreme precipitation, PMP exhibits higher internal
20variability. Thus, long-time records of high-quality data in both precipitation and related meteorological
21fields (temperature, wind fields) are required to reduce uncertainties in the ensemble PMP estimates.
22

23

24Plain Language Summary In this study, the hybrid approach is used to reconstruct the PMP in
25the Pacific Northwest region and investigate the likely future change in PMP under projected climate
26change by climate models. Our research questions are as follows. (1) What are the PMP estimates in the U.S.
27PNW region based on climate science and current engineering convention? (2) How will such PMP estimates
28change in the future in the PNW region and what are the contributions of various climate factors to the
29PMP change?

30
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32

33

341. Introduction

35In the past century, numerous water infrastructures have been built to facilitate irrigation, hydropower gen-
36eration, transportation, and municipal water use. In a changing climate, extreme precipitation events are
37projected to be more frequent and intense, exceeding known historical records (Allan & Soden, 2008; Kun-
38kel et al., 2013a; Trenberth et al., 2003). Along with structural safety, the hydrologic safety of water infra-
39structures is now therefore gaining more attention, since overtopping or embankment failure would bring
40catastrophic human and societal loss (Casagli et al., 2006; Evans et al., 2000; Lane, 2013). For example, the
41structural damage to both the primary and the emergency spillways of the Oroville Dam in California, which
42could have been exacerbated by hydrologic failure, during a series of heavy rainstorms in February 2017 led
43to an evacuation of over 188,000 downstream residents (Vahedifard et al., 2017).

44Most of the water infrastructures, especially the hazardous ones located upstream of population centers,
45are often designed considering the standard Probable Maximum Precipitation (PMP; Hossain et al., 2012).
46PMP, by its definition, is the theoretical maximum precipitation that a given watershed can receive in
47a given duration of time (World Meteorological Organization [WMO], 1986). WMO suggests several
48methods for PMP estimation: statistical method, generalized method, transposition method, and moisture
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49maximization method (Hershfield, 1965; Rakhecha & Kennedy, 1985; Rakhecha & Singh, 2009; WMO, 1986).
50The moisture maximization approach is the recommended method in the U.S. NOAA has published a series
51of Hydro-Meteorological Reports (HMRs) that provide instructions for PMP estimation in various climatologi-
52cal regions across the U.S. (Schreiner & Riedel, 1978). The moisture maximization method estimates PMP as
53PMP 5 p 3 PWM/PW, where p is the observed precipitation, PW is the observed precipitable water, and
54PWM is the climatologically maximum precipitable water (estimated from surface dew point temperature
55assuming hydrostatic conditions).

56The moisture maximization method has been criticized in several studies as being insufficiently grounded
57in physics (Abbs, 1999). Also, the accuracy of this approach heavily relies on availability and quality of obser-
58vation data, which makes PMP estimation less reliable in regions where sufficient observation has not been
59obtained. Traditionally, PMP is treated as a static value, estimated using long-term precipitation and related
60meteorological data (such as humidity, temperature, and winds). The static nature of PMP estimation has
61been questioned as global warming can lead to changing precipitation patterns. Nonstationary analyses of
62extreme precipitation also suggest that PMP, an upper bound of extreme precipitation, is likely to change in
63the future (Cheng & AghaKouchak, 2014; Cheng et al., 2014; Gao et al., 2016; Wi et al., 2016).

64In recent years, two significant advancements have been made to modernize PMP estimation used in engi-
65neering practice. One of them is the ability to derive uncertainty associated with PMP estimation (Micovic
66et al., 2015; Salas et al., 2014). Another advancement is the introduction of numerical atmospheric models
67to enable a more physics-based estimation of PMP (Chen et al., 2017; Chen & Hossain, 2016; Ishida et al.,
682015; Ohara et al., 2011; Tan, 2010). In atmospheric model-based estimates, PMP is obtained by modifying
69the initial/boundary conditions of extreme precipitation event simulations, such as increased moisture avail-
70ability (usually by setting relative humidity RH to 100%), increased air temperature, spatially shifted initial/
71boundary conditions, or artificially generated convergent wind fields. Most studies focused on the construc-
72tion of PMP from various atmospheric reanalysis data, although climate model data have also been
73explored (Beauchamp et al., 2013; Lee et al., 2017; Ohara et al., 2011; Rastogi et al., 2017; Rouhani & Leconte,
742016; Rousseau et al., 2014; Tan, 2010). These studies suggest that carefully selected climate data, such as
75the CMIP5 data, may have value for historical PMP estimation. However, care should be taken in selecting
76climate models, as climate simulations (such as CMIP5) exhibit a wide range of precipitation estimation
77(Sheffield et al., 2013). Alternatively, regional climate model output can be used for PMP estimation with the
78advantage of providing more spatially resolved precipitation features. These studies reveal the potential of
79climate projections to quantify the sensitivity of PMP to climate change (Beauchamp et al., 2013; Rastogi
80et al., 2017; Rousseau et al., 2014).

81Up to now, such model-based approaches have not been widely validated, and their physical basis has not
82been thoroughly established. By modifying different variables in the simulations, the modeling approaches
83implicitly assume that extreme precipitation will be more sensitive to the variables modified. For example,
84the RH maximization approach assumes that storm magnitude is more sensitive to the RH level, while a
85wind perturbation approach assumes that storm is more sensitive to the moisture convergence. Several
86other approaches, such as the spatial shift of initial/boundary conditions (Ishida et al., 2015; Ohara et al.,
872011), produce results that are even harder to interpret. From the modelling perspective, moving the atmo-
88spheric boundary condition spatially induces a shift in the land surface condition. In regions where surface
89heterogeneity is an important driver of precipitation variability, shifting the atmospheric boundary condi-
90tion can result in drastic changes in the storm characteristics and hence PMP estimation.

91The aforementioned approaches have not been comprehensively compared to the traditional estimates up
92to now, and the PMP estimation results often differ from traditional values that have been used in the infra-
93structure design stage. Such inconsistency makes it hard to use the new results to reevaluate the safety of
94infrastructures. Lastly, most of the modelling studies focused on selected watersheds, making it harder to
95derive general guidelines for engineering designing across regions (an exception is the study by Rastogi
96et al. (2017), which focused on building the depth-area-duration curves).

97The traditional engineering approach takes all the information from historical observations, while an atmo-
98spheric model-based physical approach accounts for all dynamical and physical processes that influence
99the storms. Due to a significant gap between these two contrasting approaches, it is hard for the respective

100communities (i.e., engineering for conventional PMP and scientists for model-based PMP) to communicate
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101the needs and constraints for collaborative advancements. This is especially important when evaluating the
102sensitivity of PMP to climate change since the reference (i.e., historical PMP) has been estimated quite differ-
103ently. Therefore, it is important to bridge the gap between the two contrasting types of estimation. In this
104study, a hybrid approach of applying the traditional methodology to climate model outputs is proposed. Cli-
105mate model outputs provide long-term archives of extreme events, which would improve estimates of
106extreme events and help reveal the climatic trend of PMP estimate. The nonstationary issues can therefore
107be addressed by estimating PMP using future climate projections. Most importantly, the availability of
108ensemble climate model output (e.g., �30 models used in IPCC AR5) allows derivation of ensemble PMP
109estimates useful for evaluating the statistical significance of future changes in PMP. An added benefit of the
110hybrid approach is the ease of use by those who are already familiar with the conventional approach used
111in the current engineering practice. No complex and computationally intensive modeling resources are
112required in our proposed approach as model outputs are readily available from the climate modeling
113community.

114In this study, the hybrid approach is used to reconstruct the PMP in the Pacific Northwest region and inves-
115tigate the likely future change in PMP under projected climate change by climate models. As overviewed
116by Hossain et al. (2012), most of the large, high-hazards dams across the U.S. are designed under PMP or
117PMF (probable maximum flood, the flood event under PMP scenario). Therefore, to check the future safety
118of such high-hazards dams and reservoirs, 3 day PMP is prioritized in this study. Our research questions are
119as follows. (1) What are the PMP estimates in the U.S. PNW region based on climate science and current
120engineering convention? (2) How will such PMP estimates change in the future in the PNW region and what
121are the contributions of various climate factors to the PMP change?

1222. Data and Methods

123In this study, we focus on the Pacific Northwest, as shown in Figure F11. Figure 1a shows the topography from
124ETOPO1 database (Amante & Eakins, 2009 AQ1) in the study domain, which features the Cascade Range along
125the coast. Extreme precipitation in this region is mainly triggered by atmospheric river events that transport
126significant atmospheric moisture from the Pacific Ocean (Dettinger, 2011; Leung & Qian, 2009; Neiman
127et al., 2011; Ralph et al., 2011). As storms approach from the Pacific Ocean, extreme precipitation in this
128region shows a distinctive signature across the Cascade Range as abundant moisture condenses and is con-
129verted to precipitation when air mass is lifted over the mountain, so precipitation is much stronger on the
130west or windward side of the Range. Figure 1 shows the PMP estimation from this study for each Hydrologi-
131cal Unit (HU) in Pacific Northwest. HU is developed by US Geological Survey (USGS) to define various hydro-
132logical characteristics such as lakes, watersheds or catchments (Seaber et al., 1987). In this study the eight-

Figure 1. Pacific Northwest (PNW) domain in this study. (a) The surface elevation in the PNW study domain. (b) Highlights
all the Hydrological Unit (HU8) basins in the PNW. The colors show the hybrid PMP estimation from this study. The red
dots denote locations where PMP estimation is available in Hydrometeorological Report No. 57 (HMR57). These HMR57
PMP values are shown in Figure 5.
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133digit HU is used, and is referred to as HU8 below. The red dots denote the locations of dams/reservoirs
134where PMP estimations are available in HMR57 (HMR for Pacific Northwest region). These values were later
135used to evaluate the PMP estimations from this study.

136Our hybrid PMP estimation uses five CMIP5 model results for PMP estimation, and in total 10 CMIP5 models
137are used for robust uncertainty estimation (Mote et al., 2011). The PMP estimation approach follows the
138HMR57 instructions. Necessary modifications are made to adapt climate model data and the trajectory pro-
139cedure that is modernized using the HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory)
140model. Details about the data and the method are presented below. We chose 1970–2016 as the historical
141PMP study period and 2050–2099 RCP8.5 scenario as the future PMP study period.

1422.1. CMIP5 Climate Model Data
143Five CMIP5 models are used for ensemble estimation of PMP, and an additional five models are also used to
144estimate the uncertainty range of PMP estimation. Their information is summarized in Table T11. These ten
145models were selected from the comprehensive evaluation of CMIP5 models over the PNW region using
146multiple metrics (Rupp et al., 2013), and they cover a wide range of model performance from best to aver-
147age. The five models used in PMP estimation were selected based on their performance in capturing the
148statistics of atmospheric river frequency (Gao et al., 2015). This selection is discussed in detail in section 3.
149These five models also cover a range of model resolution (between 0.758 and 28), so the impact of climate
150model resolution on the PMP estimation can also be evaluated.

151For the two study periods, 6-hourly/daily data are used. They include 3-D data of horizontal and vertical
152wind, temperature, geopotential height, relative humidity, and 2-D data of 10 m wind, 2 m temperature,
153and sea surface temperature. Statistically downscaled data produced by the Localized Constructed Analogs
154(LOCA) method are used to provide high-resolution daily precipitation. Compared with dynamical down-
155scaling, the statistically downscaling techniques have two unique characteristics. (1) They save significant
156amount of computational time compared with dynamically downscaled data, and they are free from uncer-
157tainty that are caused by various parameterization schemes in the numerical models. (2) They smoothen
158the bias embedded in the current coarse-resolution GCMs and make more GCM usable for robust ensemble
159estimation.

160This 1/168 data set covers 32 CMIP5 models across the contiguous U.S. during 1950–2099. This data set is
161developed at the Scripps Institution of Oceanography and is used in the Fourth National Climate Assess-
162ment and other climate change impact studies (Pierce et al., 2014, 2015; Tarroja et al., 2016). Our evaluation
163indicates that for the historical precipitation (1981–2016), the LOCA-downscaled precipitation reproduces
164the observed spatial-temporal variations of precipitation well and is close to gauge-based data sets such as

Table 1
Information on the 10 Selected CMIP5 Models Used in This Study

Model Modeling center
Horizontal grid

size (atmospheric)
Number of

vertical layers

ACCESS1.0 Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of
Meteorology (BOM), Australia

1.25 3 1.875 (N96) 38

CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti Climatici 0.75 3 0.75 (T159) 31
CNRM-CM5 Centre National de Recherches M�et�eorologiques/Centre Europ�een de Recherche et

Formation Avanc�ee en Calcul Scientifique
1.4 3 1.4 (TL127) 31

GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory 2 3 2.5 (M45L24) 24
MPI-ESM-LR Max-Planck-Institut f€ur Meteorologie (Max Planck Institute for Meteorology) 1.865 3 1.875 (T63) 47
ACCESS1–3 Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of

Meteorology (BOM), Australia
1.25 3 1.875 (N96) 38

CanESM2 Canadian Center for Climate Modelling and Analysis 2.7906 3 2.8125 (T63) 35
HadGEM2-CC UK Met Office Hadley Centre 1.875 3 1.25 (N96) 60
HadGEM2-ES UK Met Office Hadley Centre 1.875 3 1.25 (N96) 38
MIROC5 University of Tokyo, National Institute for Environmental Studies, and Japan Agency for

Marine-Earth Science and Technology
1.4 3 1.4 (T85) 40

Note: For all of the 10 models, the r1i1p1 ensemble member is used for historical (1970–2005) and RCP8.5 (2006–2016 and 2050–2099) periods. The first 5
models are used for PMP estimation; all 10 models are used to estimate the uncertainty in the PMP.
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165the PRISM gridded climatology data set (see section 4.3 for detailed evaluation; Daly et al., 1994). The LOCA
166method includes a bias correction step and a spatial downscaling step using historical analog (Pierce et al.,
1672014). The LOCA downscaling with observed precipitation (in this case the Livneh data) handles the oro-
168graphic effect on precipitation satisfactorily, as reflected in the historical analog. Therefore, the storm sepa-
169ration method (SSM) as suggested in HMR57 is no longer needed. The RCP8.5 scenario is chosen for this
170study, as it is closest to the emission in the recent years (Peters et al., 2013). Climate warming will directly
171affect precipitable water (PW) level as the atmospheric moisture holding capacity increases with tempera-
172ture following the Clausius-Clapeyron relationship (e.g., Berg et al., 2013; Ivancic & Shaw, 2016; Lenderink &
173van Meijgaard, 2008; Pall et al., 2007). Also, the ‘‘storm efficiency’’ (p/PW, i.e., how much air moisture will be
174converted to actual precipitation) may change through changes in vertical velocity. As the business-as-
175usual scenario, RCP8.5 features the largest warming through 2100, so it provides an upper bound useful for
176investigating the maximum possible change in extreme precipitation (thus PMP) for infrastructure risk con-
177cern in the future.

1782.2. HYSPLIT Back Trajectory Analysis
179The HYSPLIT model was developed by NOAA’s Air Resources Laboratory as a system for simulating air parcel
180transport, dispersion, and deposition process (Draxler & Hess, 1997, 1998; Stein et al., 2015). It has been
181widely used in the studies of air pollutants, wind-blown dust as well as air moisture transport (Ashrafi et al.,
1822014; Chen et al., 2013; Cohen et al., 2004; Draxler & Rolph, 2012; Stein et al., 2007). HYSPLIT has demon-
183strated its performance in evaluations against observations from several field campaigns (Graziani et al.,
1841998; Ngan et al., 2015). In hydrometeorology, HYSPLIT is often used to identify the origin and pathway of
185moisture transport in studies of different meteorological events (Brimelow & Reuter, 2005; Li et al., 2016).
186HYSPLIT uses 3-D meteorological fields to calculate tracks of air parcels either in a forward mode or back-
187ward mode, and it is used here with the CMIP5 model output (6-hourly or daily, at the finest temporal reso-
188lution available) for back trajectory calculation.

1892.3. PMP Estimation Method
190In this study, we combine the traditional PMP estimation method with climate model data, so our historical
191PMP estimations are consistent with the established numbers in practice as well as usable for projection
192into the future. AQ2

PMP5p � PWM
PW

(1)

193PMP is usually estimated using equation (1), which maximizes the observed total precipitation p using the
194climatologically maximum precipitable water PWM. In most regions, precipitable water is estimated from
195local surface dew point temperature, following the relationship in WMO (1986). Given that extreme precipi-
196tations in the PNW are often induced by atmospheric rivers that originate from the warm tropical/subtropi-
197cal oceans, precipitable water in PNW storms is estimated using sea surface temperature (SST) in practice
198(i.e., the surface dew point temperature is replaced by SST in the precipitable water calculation). From our
199experiments, most of the air mass contributing to extreme storms originates from within the box between
200158N and 558N, and from 1808W to the U.S. west coast. Below is a description of the steps to make 3 day
201PMP estimation using the hybrid approach, as illustrated in Figure F22.

202Step 1. Determine the extreme storm events in the study watershed (Figure 2a). In this study, the LOCA-
203downscaled precipitation data provide the daily total precipitation over the watershed, and the top 2%
204most severe 3 day precipitation events (�100 storm events in each watershed for a 50 year period) can be
205determined based on the total precipitation amount (Figure 2b).

206Step 2. From the precipitation data, determine the storm center as the location of maximum precipitation.
207This is done by checking the three daily precipitation maps from the LOCA-downscaled data set (Figure 2c).

208Step 3. From the storm center location/time, use the wind charts to track the air mass of the storm back-
209ward till the beginning of the 3 day period. If the end point of the back trajectory is over the ocean, SST at
210that point is taken to reflect the moisture availability (in the same way that local surface dew point tempera-
211ture is used in the other climatological regions). In this study, this step was modified to adapt to the HYSPLIT
212model as elaborated below.

J_ID: WRCR Customer A_ID: WRCR22987 Cadmus Art: WRCR22987 Ed. Ref. No.: 2017WR021094 Date: 13-November-17 Stage: Page: 5

ID: kannanb Time: 13:55 I Path: //chenas03/Cenpro/ApplicationFiles/Journals/Wiley/WRCR/Vol00000/170508/Comp/APPFile/JW-WRCR170508

Water Resources Research 10.1002/2017WR021094

CHEN ET AL. PMP UNDER CLIMATE CHANGE 5

cxd19
Cross-Out

cxd19
Inserted Text
3-day

cxd19
Cross-Out

cxd19
Inserted Text
3-day

cxd19
Cross-Out

cxd19
Inserted Text
3-day

cxd19
Cross-Out

cxd19
Inserted Text
50-year



213An air mass is released at 1,000 m above the ground at the location/date determined in step 2. The air mass
214at 1,000 m above the surface is representative of the air that provides the moisture content for condensa-
215tion and precipitation. This air mass is then tracked backward, and allowed to move both horizontally and
216vertically (Figure 2d). Once the air mass is over the ocean, its path is recorded as long as the air mass is
217within the ocean boundary layer (200 m in this study, Figure 2e). SST data are taken from this path. Note
218that our CMIP5 SST data have been smoothed to a 28 3 28 box (instead of using the GCM grid point SST
219value) to be more representative of the spatial scale of air-sea interaction. In the HYSPLIT model, the air par-
220cels are tracked for 10 days, corresponding to the average residence time of water vapor in the air (Chen
221et al., 2012; Huang & Cui, 2015; Numaguti, 1999). In our case, since at each watershed we checked �100
222extreme precipitation events, a small fraction (<3%) of the back trajectories may end up on the land, and
223these events are taken out from the estimation. Our check indicates that all the big storms (i.e., top 20) pro-
224duced end points over the ocean, so no major extreme storms are missing in the estimation.

Figure 2. Schematic of the hybrid PMP estimation approach. (a) The location of the demo watershed (Hydrological Unit
17010101), (b) the historical daily precipitation from LOCA-downscaled CNRM-CM5 data between 1970 and 2006, and the
top 100 events for PMP estimation is determined using 3 day total precipitation. For each event, we pick out (c) the grid/
day with the most daily precipitation as the storm center, and (d) release an air parcel at 1,000 m height from this loca-
tion/date in HYSPLIT. (e) The air parcel is tracked for 10 days, and the height/SST along the track is recorded. When the air
parcel is within 200 m height boundary layer above the ocean (the purple dashed line window in Figure 2e), moisture
maximization is applied, and (f) the maximum maximization ratio is used to maximize this storm to one MP estimation.
PMP is then estimated as the greatest MP based on these 100 events. More details are provided in section 2.3.
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225Step 4. At the end point of the back trajectory, climatologically maximum SST (i.e., the maximum SST in the
226duration of 1970–2016, or 2050–2099) is taken and used to maximize the moisture availability of the rain-
227storm. In HYSPLT model, since we do not track how much moisture comes from the ocean at each time
228step, we calculate the ratio between the maximum moisture availability and the actual atmospheric mois-
229ture along the trajectory, and take the maximum ratio to maximize the LOCA 3 day precipitation for maxi-
230mum precipitation (MP) estimation (Figure 2f).

231Following steps 2–4, one MP is obtained for each extreme event following equation (2), where observed
232precipitation p is maximized using PW estimated from the event SST and PWM estimated from climatologi-
233cally maximum SST. The MP calculation is done at the location where precipitation would be maximized
234most (i.e., highest PMW/PW ratio along the moist track). The relationship between SST and PW is provided
235in WMO (1986). Next, the largest MP among the top 2% storm events determined in step 1 is taken as the 3
236day PMP estimation for the watershed. Using the LOCA-downscaled precipitation with the corresponding
237CMIP5 wind and SST fields, one PMP can be determined from each CMIP5 model. Collectively, the five esti-
238mates from the five CMIP5 models with more skillful simulations of atmospheric rivers provide us an ensem-
239ble of PMP estimates with uncertainty information indicated by the spread of the ensemble.

MP5p � PWMðSSTÞ
PWðSSTÞ (2)

240In summary, our proposed hybrid approach differs from the HMR57 approach in the following ways. (1) Our
241approach relaxes several assumptions in the HMR57, which makes it more physical. This includes the possi-
242bility of air parcel to move vertically in the back trajectory procedure, and the search of maximum moisture
243maximization ratio (along the whole back trajectory track) rather than a given time point (i.e., the end point
244of the back trajectory that ends at the start time of the storm starting time in HMR57). (2) By analyzing cli-
245mate model data, we search for more extreme events than those considered in HMR57. The large enough
246selection of the local extreme events also allows our approach to avoid the storm separation and oro-
247graphic adjustment. (3) Our approach takes the precipitation information at the whole upstream watershed,
248so those depth-area-duration curves can be reduced to the duration-depth relationship. These improve-
249ments make the approach more objective.

2502.4. Sensitivity of PMP to Climate Change
251If we rewrite equation (1) as

PMP5
p

PW
� PWM (3)

252PMP is affected by two factors: PWM that reflects the maximum moisture availability, and the ratio p/PW
253that reflects the capability of the storm to convert precipitable water to precipitation, which we call ‘‘storm
254efficiency’’ in this study. This efficiency has been investigated by Kunkel et al. (2013b), and it is closely
255related to the atmospheric vertical velocity that produces adiabatic cooling of the air mass and condensa-
256tion of the water vapor to clouds. During extreme precipitation events, moisture several times larger than
257the precipitable water can be converted to actual precipitation over the storm life cycle (Kunkel et al.,
2582013b).

259Constrained by the energy balance, large-scale atmospheric overturning circulations will slow down with
260warming (Held & Soden, 2006), which will manifest in reduced vertical velocity in the tropical circulations.
261However, in the mid and high latitude, changes in vertical velocity were found to be generally small (Kunkel
262et al., 2013b). In the extratropics, changes in the storm tracks are more likely to influence extreme precipita-
263tion (Lu et al., 2014; Pfahl et al., 2017). Changes in moisture tracks have impacts on PW and PWM, which
264modify the PMP. Consider the ratio of PWM(SST)/PW(SST) in equation (2) to be a function of SST, the change
265in PMP in the future can be written as the sum of changes due to two factors related to the change in the
266back trajectory endpoint and the warming at that location that jointly determine the SST at the endpoint.
267Therefore, SST warming (thermodynamical effect) and moisture track change (dynamical effect) is another
268pair of competing factors that determine PMP changes in the future.

269Given the availability of climate projection in the future period, four experiments are designed to under-
270stand the sensitivity of PMP to the two pairs of factors (PWM versus p/PW changes and warming versus
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271moisture track change) of climate change. The configurations of these experiments are shown in Table T22.
272Experiment p0t0m0 performs back trajectory using historical climate simulations to generate PMP estimations
273for the historical period (1970–2016). Experiment p0t0m1 is the same as p0t0m0 except that the future maxi-
274mum SST (i.e., maximum moisture availability) at the end point of the historical back trajectory is used to max-
275imize the precipitation. Hence, the difference between p0t0m1 and p0t0m0 reflects how the projected
276changes in maximum moisture availability would affect PMP. Experiment p1t1m1 estimates the PMP using cli-
277mate simulations for the future period of 2050–2099. The increased value of PMP from p0t0m0 to p1t1m1
278provides an estimation of the changes in PMP between the future and historical periods. Lastly, experiment
279p10t10m10 is designed to study the impact of moisture track shift under future climate change on PMP. In
280this experiment, back trajectory is performed using the future simulation, but the precipitation amount and
281SST of the future period are both quantile-mapped to the historical values. Here quantile-mapping is used in
282this procedure. Using precipitation as an example, the exceedance frequency of a given future event is deter-
283mined from the future 3 day precipitation Cumulative Distribution Function (CDF) curve. This frequency is
284then used to determine the corresponding 3 day precipitation amount based on the historical CDF curve.
285Since SST determines PW and PWM, all quantities used to estimate PMP in this experiment reflect the histori-
286cal thermodynamic environment, so the difference between p0t0m0 and p10t10m10 reflects the changes of
287moisture track that alter the end point of the back trajectory in the future climate simulations relative to the
288historical climate simulations. The relationship of the four PMP estimations is also illustrated in Figure F33.

2892.5. Robust Uncertainty Estimation
290Previous studies suggest that a minimum of 8–10 climate models are required to make a robust estimate
291on the uncertainty of a climate variable (Mote et al., 2011). Here we use 10 models in total to derive more
292robust uncertainty estimates.

293First is the adjustment of the ensemble. As shown in supporting information Figures S1 and S2, the mean of
294maximum 3 day precipitation and the moisture maximization ratio are almost the same between the
2955-model ensemble and the 10-model ensemble. Therefore, the ensemble mean estimation of PMP does not
296require adjustment.

297Then the uncertainty can be estimated for each step of the PMP estimation, following an approach pro-
298posed in Micovic et al. (2015). By dividing the total uncertainty into uncertainty within the maximum 3 day
299precipitation and within the maximization ratio, the variation of the 10-model ensemble PMP, i.e.,
300Var10(PMP), can be approximated using equation (4).

Var10ðPMPÞ5Var5ðPMPÞ3 Var10 ðmax 3day PÞ
Var5 ðmax 3day PÞ 3

Var10 ðmaximization ratioÞ
Var5 ðmaximization ratioÞ (4)

301where Var5(X) is the standard deviation of X based on the 5-model ensemble and Var10(X) is the standard
302deviation of X based on the 10-model ensemble.

303The moisture maximization ratio is taken as the average ratio in the ocean region within 158N–558N and
304from 1808W to the U.S. west coast. In estimating the maximization ratio, it is necessary to define an ‘‘event
305PW.’’ This event PW is estimated using the X% exceedance frequency SST. Since most of the extreme precip-
306itation events in the PNW happen in winter, we vary X between 0 and 50, and it turns out that the maxi-
307mum Var10 (maximization ration)/Var5 (maximization) is about 1.1 (supporting information Figure S3).

Table 2
Design of the Four Experiments

Code Simulation period Precipitation (p) SST in the event (t) Maximum SST (m)

p0t0m0 1970–2016 Historical Historical Historical
p0t0m1 1970–2016 Historical Historical Future
p1t1m1 2050–2099 Future Future Future
p10t10m10 2050–2099 Future but

quantile-mapped
to historical values

Future but
quantile-mapped
to historical values

Future but
quantile-mapped to
historical valuesa

aThis value is identical to historical maximum SST (since they share the same quantile of 100% in the statistics).
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308Therefore, 110% is used in equation (4) to extend the uncertainty in
309the maximization ratio obtained from the 5-model ensemble.

3103. Results

3113.1. Simulation Skill in CMIP5
312Extreme storms in the PNW region are strongly influenced by atmo-
313spheric river (AR) events (Leung & Qian, 2009). Consistently, ARs
314accounted for most of the flooding events in Washington State
315(Neiman et al., 2011). Thus, it is important that the climate models
316used in the PMP estimation skillfully simulate the AR climatology.
317Figure F44 shows the simulated AR days over the PNW from 24 CMIP5
318models as gray lines, as well as the mean of four reanalysis products
319(CFSR, ERA-Interim, MERRA, and NCEP1) as black line, as analyzed by
320Gao et al. (2015). Here AR days refer to the number of days with an AR
321detected along the PNW coast (408N–508N). It is clear that ARs make
322landfall in the PNW coast more frequently in fall and winter. All 24
323CMIP5 models have realistic seasonality, but some of them fail to cap-
324ture the increased AR days from fall to winter. Based on this evalua-
325tion, five CMIP5 models that can best capture the AR days climatology
326(red lines) are selected for PMP estimations in this study. The blue
327lines show the performance of the five additional models for PMP
328uncertainty check, and most of them also exhibit the similar trend of
329AR days in autumn and winter.

3303.2. Historical PMP Estimation
331Since we combined the traditional engineering practice with climate
332model data, it is useful to compare the hybrid PMP estimation with
333the established PMP values to determine a common baseline. Figure F55 shows the sites of the established
334PMP values in HMR 57 (red dots), as well as their upstream watersheds as derived from river network data-
335base (Wu et al., 2012). We applied this hybrid approach to each
336HMR57 watershed to derive the PMP for that watershed. Thus, it car-
337ries the same upstream drainage area as the HMR57 design values.
338Figure F66 compares the HMR PMP values to the hybrid PMP values esti-
339mated using data from each CMIP5 model (Figures 6a–6e), as well as
340the multimodel ensemble (MME) mean historical estimation based on
341the five models (Figure 6f).

342Regarding the PMP values, the performance among the five models
343varies, from heavy underestimation in CMCC-CM to slight overestima-
344tion in MPI-ESM-LR. The five models can be classified into three
345groups: (1) CMCC-CM, which underestimates PMPs in all evaluation
346watersheds; (2) CNRM-CM5, ACCESS1-0, and GFDL-ESM2G, which pro-
347vide consistent estimates as HMR, with slightly underestimated PMPs
348in certain basins; (3) MPI-ESM-LR, which slightly overestimates PMPs
349than HMR. Despite this variation, all five models correctly reproduce
350the spatial heterogeneity and the magnitude of PMP with the lowest
351correlation coefficient of 0.67, which is acceptable given the range of
352available HMR PMPs (between 150 and 900 mm) and the varying sizes
353of the upstream watersheds (between 9 and 10,900 mi2 AQ3) in the
354domain. The MME mean still tends to underestimate PMPs, but the
355HMR values fall within the envelope of the MME range in most water-
356sheds (Figure 5f). The variation of MME increases as the PMPs become
357larger, which suggests increased variations in the extreme precipita-
358tion simulation in the models. It is also interesting to see that the

Figure 3. Relationship among the four PMP estimates in the experiments. The
left PMP estimation (p0t0m0) uses all the historical information (historical PMP);
the rightmost PMP estimation uses all the future information (future PMP); the
top PMP estimation differs from the historical PMP only in the change of maxi-
mum moisture availability due to SST warming; the bottom PMP estimation
reflects only the changes in the moisture track of extreme storms relative to
the historical PMP. From these experiments, the difference between historical
and future PMP can be decomposed into: moisture change and storm effi-
ciency change (the blue pathway); or moisture track change and atmospheric
warming (the magenta pathway).

Figure 4. Comparison of CMIP5 simulated atmospheric river (AR) climatology
defined as the number of AR days over PNW with reanalysis data. Black line
shows the mean of four reanalysis products (CFSR, ERA-Interim, MERRA, and
NCEP1), red lines show the AR frequency in five CMIP5 models used for PMP
estimation (ACCESS1-0, CMCC-CM, CNRM-CM5, GFDL-ESM2G, and MPI-ESM-LR),
and blue lines are the AR statistics from five additional CMIP5 models for uncer-
tainty estimation (ACCESS1–3, CanESM2, HadGEM2-CC, HadGEM2-ES, and
MIROC5). Gray lines show the AR statistics from all the 22 evaluated CMIP5
models. Data are taken from Gao et al. (2015).
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359simulated PMP does not always benefit from the use of finer resolu-
360tion climate model data; with the finest atmospheric grid size among
361the five models, CMCC-CM produces the most biased results. Since we
362used the LOCA-downscaled precipitation, biases in the GCM precipita-
363tion are inherently removed so the effects of model resolution on pre-
364cipitation are minimized. Differences in the hybrid PMP skill among
365the models are likely related to model biases in the moisture tracks
366and SST relative to the observations, which are not expected to have
367a simple relationship with the model grid sizes.

368Reanalysis product is a bridge between observation and climate simu-
369lations, as they are often used to evaluate the various climate simula-
370tions (Sheffield et al., 2013). Therefore, along with these five CMIP5
371models, we also did an experiment using the same hybrid approach,
372but with all the data from observation (i.e., Livneh precipitation, NOAA
373OISST SST) and reanalysis product (i.e., 6 h ERA-Interim wind fields). As
374shown later, the observation/reanalysis-based estimation shows bet-
375ter spatial correlation than the CMIP5-based estimates here. The
376observation/reanalysis-based results are shown and discussed in
377details in section 4.2.

378Figure F77 presents the geographic distribution of the hybrid PMP esti-
379mation. All five models show much higher PMP in the coastal region and a dramatic drop east of the Cas-
380cade Range. The PMP increases further east in the northern Rocky mountain range. This spatial pattern
381reflects the spatial variations of storm efficiency as influenced by topography and the spatial variations of

Figure 5. Locations of the 43 PMP estimation sites in the Hydro-Meteorological
Report (HMR) 57. Red dots denote the locations of dams/reservoirs, and blue
areas are the upstream watersheds of these sites. The background is the Hydro-
logical Unit (HU8) watersheds in the PNW region. Upstream watersheds are
derived using the river network database in Wu et al. (2012).

Figure 6. Evaluation of the hybrid historical PMP estimation against established values in HMR. The HMR PMPs are taken from basins shown as the red dots in Fig-
ure 1 and compared to the hybrid estimation. (a–e) The PMP estimates from individual CMIP5 models and (f) the ensemble mean and standard deviation of PMP
estimation in the basins. Blue lines are the regression between HMR PMP and hybrid PMPs.
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382the moisture source regions. The spatial pattern of PMP is most significant in CNRM-CM5 and GFDL-ESM2G,
383and least significant in CMCC-CM, which is reflected in the regression in Figure 6. The uncertainty (i.e., stan-
384dard deviation) of the hybrid PMP does not display strong spatial patterns (Figure 7b), and overall the stan-
385dard deviation is about 20% of the MME mean. However, larger disagreement among different models is
386found in the southeast region of PNW, but PMP values are very small in that region.

3873.3. PMP Change With Climate Warming
3883.3.1. Total Change of PMP
389Figure F88 compares the PMP estimations between the historical period (1970–2016) and future period
390(2050–2099), from the two experiments p0t0m0 and p1t1m1, respectively. PMP increases in all PNW water-
391sheds by up to 500 mm or 100% (Figure 8). The absolute change in PMP is largest in watersheds in the
392coastal range and Cascades range that already experiences more severe precipitation climatologically

Figure 7. Hybrid PMP estimation from five selected CMIP5 models. (a) The multimodel ensemble mean PMP estimation
using CMIP5 data for 1970–2016 and (b) the standard deviation (as percentage of the mean) among five models. (c–g)
The PMP estimations from five individual models.

Figure 8. Changes of PMP by 2099 compared to PMP by 2016. (a) The amount of change in mm and (b) the change as
percentage of historical PMP (1970–2016).
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393(Figure 7a). Percentage wise, the increase in PMP is more homogeneous across the watersheds, with an
394overall increase of about 50%.

395To appreciate the significance of the PMP increase in the future, Figure F99 shows the 220 hydrological units
396in the domain along the x axis, arranged by their historical MME mean PMP from high values to low values
397(red line). The PMP values indicated by the y axis on the left-hand side of the figure are all normalized by
398the historical 5-model MME mean PMP (which is the same as the 10-model MME mean, as demonstrated in
399section 2.5), and the green envelope shows the range (defined as standard deviation) of MME estimates in
400the historical period. The blue line and magenta envelope show the MME mean and the range (defined as
401standard deviation) of PMP in the future. Figure 9a shows the uncertainty from the 5-model ensemble, and
402Figure 9b shows the 10-model ensemble results. For most watersheds, the future MME mean PMP is well
403outside the ensemble range of the historical MME, and vice versa, so the increase depicted in Figure 7 is sig-
404nificant. On average, the future MME mean PMP has an increase of about 50% over the historical MME
405mean across the domain, but in several watersheds the future PMP can increase by as high as 100% of the
406historical PMP. There is a tendency for the relative uncertainty (range) to increase from wet watersheds
407(basins on the left side of the x axis) to the dry watersheds (basins on the right side of the x axis). In absolute
408terms, the uncertainty (range) still decreases from wet watersheds to the dry watersheds.
4093.3.2. Sensitivity of PMP to Climate Factors
410Two sensitivity experiments (p0t0m1 and p10t10m10) were designed to examine the impact of individual
411climate change factor on the PMP change. As described in the method section, the total change of PMP can
412be either broken into available moisture change and storm efficiency change, or storm track change
413(dynamical effect) and warming (thermodynamical effect). Figure F1010 shows the relative contribution of

Figure 9. Historical (by 2016) and future (by 2099) PMP in PNW from CMIP5 ensemble estimation. (a) The uncertainty
from 5-model estimation and (b) the results from 10-model estimation. Black lines are the historical multimodel ensemble
(MME) historical mean PMP, and blue lines are the future mean PMP. Green and magenta ranges are the standard devia-
tion in the MME estimation for historical and future period, respectively. All the data are normalized by the historical MME
mean values (left y axis). After the normalization, all historical MME mean is equal to one (black line). The actual values of
the historical MME mean are shown in the red line (right y axis). The x axis shows the 220 HU8 basins, which are arranged
by their historical MME mean PMP with decreasing PMP values from left to right.
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414these factors. From Figure 10a, the increase of maximum moisture availability due to warming explains 92%
415of the total increase in PMP, while the storm efficiency increase is responsible for the rest or 8% of the
416increase. As illustrated in Figure 10a, changes in storm efficiency lead to a decrease of PMP in some basins.
417This negative contribution of storm efficiency change is consistent with the earlier finding that storm effi-
418ciency would decrease in a warming climate due to increase in atmospheric stability (Pauluis, 2015). How-
419ever, if the increase of moisture can offset the decrease in the storm efficiency, the future PMP will still
420increase relative to current estimates. Figure 10b shows that atmospheric warming accounts for over 132%
421of the total PMP change, while moisture track shift has a contribution of 232% to the PMP increase. The lat-
422ter result is consistent with Warner et al. (2015) and Gao et al. (2015), who found that changes in AR fre-
423quency and moisture transport in the North Pacific ARs are dominated by changes in atmospheric moisture
424associated with warming in the future. Also, Gao et al. (2015) found that changes in moisture pathways
425counter the increase in AR days due to warming, and our results also show opposite contributions of mois-
426ture track change and warming to PMP increase in the future.

427Figure F1111 shows the spatial distribution of the relative contributions of the four factors to PMP changes in
428the future. Both moisture availability and storm efficiency have a domain-wide impact, although moisture is
429more dominant. Comparing Figure 8b with Figures 11a and 11b, watersheds with an above-average per-
430centage increase in PMP tend to be where storm efficiency plays positive roles in PMP changes. Notably,
431watersheds showing increased (decreased) contribution from storm efficiency are mostly located on the lee
432(windward) side of mountain ranges. This coincides with the findings that orographic precipitation tends to
433shift downwind in response to surface warming due to an upward shift of condensation with warming (Siler
434& Roe, 2014). Since LOCA provides spatial downscaling of precipitation through the use of historical analog,
435it can capture some effects of orographic adjustment but the extent to which it can represent changes in
436orographic precipitation in response to dynamical and thermodynamical changes in the atmosphere is not
437clear. Hence, the mechanisms for the changes in precipitation spatial distribution deserve further investiga-
438tion in the future. Figures 11c and 11d show the partitioning of PMP changes contributed by storm track
439shift and warming, respectively. Warming plays a clear dominant role, and storm track shift results in notice-
440able positive changes in only a small number of watersheds. Interestingly, watersheds that have larger con-
441tributions from moisture track shift (Figure 11c) tend to also exhibit larger contributions from storm
442efficiency (Figure 11b). A possible explanation for these coincidental changes is that wind direction changes
443related to moisture track shift have an influence on orographically induced upward and downward motions,
444and hence storm efficiency. For example, several of the watersheds with notable positive contributions
445from moisture track shift and storm efficiency change are located on the lee side of the Cascade Range
446where changes from westerly to southwesterly winds may increase storm efficiency.

Figure 10. Changes of PMP corresponding to each contributing factor. (a) Breaks down the total change into changes
due to moisture availability and changes due to storm efficiency change. (b) Breaks down the total changes into changes
due to storm track shift and changes due to warming.
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4474. Discussion

4484.1. Factors Affecting PMP Estimation Quality
449As can be seen from equation (1), PMP based on the hybrid method is sensitive to the quality of the simu-
450lated precipitation and precipitable water and the SST field. Figures 6 and 7 show differing capabilities of
451CMIP5 models in capturing PMP in PNW. In this study, the differences in performance of the CMIP5 models
452in simulating precipitation may be reduced by the LOCA downscaling process, which includes bias correc-
453tion and spatial downscaling.

454SST data used in the PW estimation are obtained via back trajectory, so the first concern is the resolution of
455the climate models. Figures 6a–6e are arranged by the atmospheric model resolution, from 0.758 in CMCC-
456CM to 28 in GFDL-ESM2G. PMP estimation in CMCC-CM does not benefit from the higher resolution of atmo-
457spheric models, while GFDL-ESM2G is the within top two of the five models. Therefore, climate model reso-
458lution may not positively affect the PMP estimation results. This may be particularly true as one may expect
459larger impacts of model resolution on precipitation, but such impacts have been minimized by using statis-
460tically downscaled precipitation. On the other hand, previous studies showed that a minimum spatial reso-
461lution of about 12 km is needed to fully resolve the spatial characteristics of cold season extreme
462precipitation in mountainous regions, so the impact of model resolution may be more significant as we
463approach a much finer resolution (Prein et al., 2013).

464Precipitation and SST also have a direct impact on the PMP estimation in equation (1). Since statistical
465downscaling method takes the same ground observation as a reference, the downscaled precipitation

Figure 11. Contribution of different factors to the future change of PMP in the PNW. (a, b) The relative contribution (in
percentage of total change of PMP) from increased moisture availability and increase storm efficiency. (c, d) The relative
contribution from shifted storm track and atmospheric warming.
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466among climate models is made close to each other (via similarities to the reference data). The CMIP5 SST
467data are evaluated using NOAA’s Optimum Interpolation SST data set (OISST; Banzon et al., 2016; Reynolds
468et al., 2007) for the overlapping period of 1982–2016, and the results are summarized in Table T33. The mean
469and variation are similar across the five models, but the construction of the maximum SST differs much
470more. It is important to point out that most of the extreme precipitation events in PNW occur in winter
471when SST is relatively cooler, so the SST during winter storms should be more characteristic of the PMP
472biases. Indeed, the bias (RMSE) of the constructed maximum SST also shares a lot of similarities with Figure
4736, where CMCC-CM has the largest bias in the estimated PMP, and CNRM-CM5 has the least biases. This can
474be explained by the relationship between SST and PW used in practice (WMO, 1986): PW follows an approx-
475imately exponential relationship to SST, which heavily amplifies small biases in the maximum SST when SST
476is high. This, in turn, affects the maximization ratio, and therefore the final PMP estimation. As shown in Fig-
477ure 10a, given all other factors (precipitation, representative SST of events) unaltered, the increase of maxi-
478mum SST alone is responsible for 92% of the future PMP increase. This suggests that the impact of warming
479on PMP increase is most likely a response to the increases precipitable water, which is reflected as the
480increase of SST in the hybrid approach.

4814.2. Evaluation of the Performance of Climate Model Output
482Figure F1212 shows the various experiments conducted using alternative data sources/approaches. Figure 12a
483uses the same hybrid approach, but with all the data from observation (i.e., Livneh precipitation, NOAA
484OISST SST) and reanalysis product (i.e., 6 h ERA-Interim wind fields). PMP is estimated using the available
485data during 1982–2013. This observation/reanalysis-based estimation shows better spatial correlation than
486the CMIP5-based estimations (Figure 6). However, the observation/reanalysis-based estimation tends to
487overestimate PMP. Since the reanalysis product is a reconstruction of historical climate, this overestimate
488can be explained by the slight differences in the back trajectory process: in the HMR57 instruction, the back
489trajectory is done along the surface, while in our hybrid approach the air parcel is allowed to move verti-
490cally. Thus, the trajectories might differ, leading to different ‘‘maximization location’’ (i.e., where the
491PWm(SST)/PW(SST) is found) identified.

492Figure 12b shows a similar experiment, but with OISST replaced by PW from ERA-Interim to evaluate the
493impact of the SST-PW relationship (WMO, 1986) on the PMP estimation. It shows that as the SST-based PW is
494replaced with the reanalysis PW, the final PMP is heavily overestimated. Further investigation suggests that
495the reanalysis assimilated PW has a wider range (1–130 mm) than the SST-derived PW (8–123 mm). The simi-
496larity at the higher end (i.e., 130 mm versus 123 mm) indicates that the climatologically maximum precipitable
497water (PWm) from ERA-Interim is similar to those estimated from SST. However, the low end of precipitable
498water from ERA (around 1 mm) is significantly smaller than the SST-derived number (around 8 mm). As most
499of the extreme precipitation events in the PNW region happen in winter when SST and PW are low, this
500means that in Figure 12b, the lower PW numbers are often used to present the PW during the event. Such
501underestimation of the event PW then leads to the overestimation of PMP through equation (1).

502Figure 12c shows the PMP estimation from a different approach using high-resolution climate simulation.
503The precipitation and PW data are taken from the 4 km WRF simulation during 2001–2012 (Liu et al., 2017),
504and the PMP estimation approach is taken from Rouhani and Leconte (2016). This approach leads to a more
505biased PMP estimation even using high-resolution dynamically downscaled data. Since the WRF simulation

Table 3
Evaluation of CMIP5 Simulated Daily SST

Model

Mean std Max

Corr RMSE (K) Bias (K) Corr RMSE (K) Corr RMSE (K) Bias (K)

CMCC-CM 0.993 1.367 20.53 0.907 0.464 0.980 2.716 21.87
CNRM-CM5 0.995 0.862 20.43 0.967 0.498 0.982 1.191 0.13
ACCESS1.0 0.995 0.922 20.13 0.909 0.482 0.960 2.132 21.18
MPI-ESM-LR 0.993 1.171 20.49 0.918 0.438 0.980 2.101 21.25
GFDL-ESM2G 0.994 1.538 20.96 0.901 0.617 0.971 1.620 20.37

Note: Evaluation is done in the 1982–2016 duration, with NOAA’s OISST as reference. Bias is calculated as
‘‘model – OISST.’’
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506is driven by ERA-Interim, the difference between Figures 12a and 12c suggests the impact of different meth-
507ods as well as different data sources for the PMP estimation. It shows that back trajectory for PW search is
508necessary for the PNW region, which would help to keep the PMP estimation consistent with the HMR
509approach.

5104.3. Impact of Bias in the Input Data on the Final PMP Estimation
511The main source of bias in the hybrid approach is from the statistical downscaling of precipitation, as well
512as the SST data. Figure F1313a compares the LOCA-downscaled maximum 3 day precipitation against the
513PRISM gridded observation (Daly et al., 1994) across the 220 HU8 watersheds. In general, the extreme pre-
514cipitation from LOCA exhibits good agreement with observation. If we divide the study region into three
515subregions: coastal/windward (Figure 13b), leeward (Figure 13c), and fareast of the PNW (Figure 13d), they
516show varied consistencies with good agreement in the windward and leeward regions but overestimation
517of extreme precipitation in the far-east region by LOCA. The overestimation in eastern PNW could be related
518to the coarse-resolution topography of CMIP5 models that allows more moisture to be transported across
519the Cascade Range to produce excess precipitation in the east. Apparently the LOCA bias correction is not
520able to fully account for the overestimation because bias correction mainly removes biases for the mean
521and variance rather than explicitly for extreme precipitation. Based on equation (1), this would lead to a
522higher estimate of PMP in the east part of the PNW region.

523Another bias in statistically downscaling is from the stationarity assumption of bias correction and down-
524scaling relationship. To check how much bias this introduces to the precipitation fields, the historical and
525future LOCA statistics are compared against dynamical downscaling (Figure F1414). The dynamical downscaling
526in Figure 14 is produced by running WRF at 4 km resolution for 2001–2012 to construct historical climate,
527and perturbed boundary condition to construct 2070–2099 climate (Liu et al., 2017). Figure 14 indicates
528that under future warming, LOCA produces similar results as dynamical downscaling. Therefore, the nonsta-
529tionarity within the LOCA methodology is not likely a big concern here.

Figure 12. Historical 3 day PMP estimation from alternative approaches. (a) Estimates PMP using the hybrid approach in
this study, but with the 1982–2013 Livneh precipitation observation, ERA-Interim reanalysis winds, and SST observation.
(b) Similar to Figure 12a, but with SST observation replaced by the precipitable water in ERA-Interim. (c) Estimates PMP
using the approach proposed by Rouhani and Leconte (2016) and the 2001–2012 4 km WRF simulation of the continental
U.S. (Liu et al., 2017). In all three figures, the x axis shows the PMP values in HMR 57, and the y axis shows the values from
three alternative approaches.

J_ID: WRCR Customer A_ID: WRCR22987 Cadmus Art: WRCR22987 Ed. Ref. No.: 2017WR021094 Date: 13-November-17 Stage: Page: 16

ID: kannanb Time: 13:56 I Path: //chenas03/Cenpro/ApplicationFiles/Journals/Wiley/WRCR/Vol00000/170508/Comp/APPFile/JW-WRCR170508

Water Resources Research 10.1002/2017WR021094

CHEN ET AL. PMP UNDER CLIMATE CHANGE 16

cxd19
Cross-Out

cxd19
Inserted Text
3-day

cxd19
Cross-Out

cxd19
Inserted Text
3-day



530Statistical downscaling techniques rely on ground observation, so the downscaled precipitation would also
531inherit the observational uncertainty (Henn et al., 2016). Since high-quality downscaled data provide precip-
532itation that closely matches the reference observation, the uncertainty in the downscaled precipitation may
533exhibit similar uncertainty pattern as observation. In the PNW region, the observational uncertainty is larger
534over the Cascade Range region. Therefore, the observation-induced uncertainty may be worth considering
535in this area.

536Biases in the SST is another potential source of bias to the PMP estimation, as any bias in SST would lead to
537amplified bias in PW and PWM through the nonlinear relationship between SST and moisture. Figure F1515
538compares the CMIP5 SST to the OISST observation in the 1982–2016 duration. Figure 15a compares the his-
539togram of SST in the ocean regions between 158N and 558N, and 1808W and west coast. All of 10 models
540show similar histogram as observation. Given the low spatial variation of SST, such high consistency is
541expected. Figure 15b converts the SST to the PW using the relationship from WMO (1986), and the high
542consistency is still clear. Therefore, SST does not require extra bias corrections.

543In summary, the PMP estimation in the PNW region is likely influenced by uncertainties from different sour-
544ces: PMP in the eastern part of region is more affected by extra moisture penetration in the CMIP5 models,
545while PMP in the western part inherits more uncertainty from the observational uncertainty of precipitation.
546The evaluation here indicates that for the hybrid approach to work, high-quality precipitation is the top
547priority.

5484.4. Usability of CMIP5 Output for PMP Estimation
549The biggest disadvantage of directly using the CMIP5 output in PMP estimation is the coarse spatial resolu-
550tion of data. This limits the models from correctly capturing mesoscale atmospheric systems such as hurri-
551canes and local convective systems as well as orographic rainfall, so care should be taken when using those
552data sets. In the PNW region, most of the extreme precipitation is associated with AR events that are fea-
553tures of the large-scale atmospheric circulation. CMIP5 models have demonstrated their capability in captur-
554ing such systems (Figure 4; Gao et al., 2015; Lavers et al., 2013; Warner et al., 2015) so they are suitable for

Figure 13. Evaluation of statistically downscaled maximum 3 day precipitation in the PNW region. Here the LOCA-
downscaled precipitation is compared against the PRISM gridded observation (Daly et al., 1994) in the 1982–2016 period.
(a) The comparison at 220 Hydrological Unit (HU8) watersheds in the PNW and (b–d) the comparison of the coastal/wind-
ward watersheds, leeward watersheds, and watersheds in the eastern part of PNW. In all these figures, the x axis shows
the HU8 watersheds arranged by PRISM maximum 3 day precipitation and the y axis is the maximum 3 day precipitation
from PRISM (red lines) as well as the LOCA ranges in 5-model (magenta) and 10-model (green) ensembles.
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555PMP studies in the PNW and other regions where extreme precipitation is dominated by AR events. As dis-
556cussed above, the difference in climate model resolution has no significant impact on the final estimates,
557and SST itself has low spatial variation. Hence, the coarse-resolution precipitation data are the main limita-
558tion of CMIP5 particularly for the topographically diverse region of PNW. This issue, however, can be
559addressed using statistically downscaled high-resolution precipitation data that are readily available for the
560U.S. For PMP estimation in other regions where the moisture source for extreme precipitation may be more

Figure 14. Evaluation of the nonstationarity in the LOCA-downscaled precipitation. Here the LOCA data are compared
against the 4 km continental U.S. simulation for the (a) 2001–2012 period and (b) 2071–2099 period. The x axis is the
Hydrological Unit (HU8) watershed, arranged by WRF maximum 3 day precipitation. The y axis shows the max 3 day pre-
cipitation in WRF (red lines), as well as the range of LOCA 5-model ensemble (magenta) and 10-model ensemble (green).
2001–2012 WRF simulation was driven by ERA-Interim reanalysis. 2091–2099 simulation was driven by modified ERA-
Interim to reflect the climate in 2070–2099.

Figure 15. Evaluation of SST in the CMIP5 models. The evaluation area is the ocean area bounded between 158N and
558N and from 1808W to the PNW coast. (a) The histograms of SST in this region and (b) the precipitation as calculated
from SST using the relationship in WMO (1986). In both figures, black lines are the histograms from NOAA’s Optimum
Interpolation SST (OISST) observation (Banzon et al., 2016; Reynolds et al., 2007), pink lines are from five CMIP5 models
used for PMP estimation, and green lines are the five additional CMIP5 models for PMP uncertainty estimation.
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561local, high-resolution PW data may also be required. Recently developed methods such as the adaptable
562random forest method presented in He et al. (2016) provide promising venues for use with the hybrid
563approach before higher-resolution GCM or RCM outputs are available.

5644.5. Trade-Off of Using Climate Models in PMP Estimation
565Previous studies have used dynamically downscaled climate model data (Beauchamp et al., 2013; Rastogi
566et al., 2017; Rouhani & Leconte, 2016; Rousseau et al., 2014). Compared with these studies, our approach
567involves as much raw climate model output as possible, and we show that with the advance of computa-
568tionally efficient techniques (such as statistical downscaling, and HYSPLIT), the raw model output can be
569quickly converted to ready-to-use data for the engineering communities. We demonstrate that combining
570the engineering practice with climate model data provides PMP estimates that are close to the ones used in
571the current engineering practice. This consistency provides confidence for using our PMP estimates for the
572future in safety evaluation. The method tested in this study inherits some familiar issues of traditional
573approach (mainly the linear assumption between PW and precipitation as criticized by Abbs (1999)). How-
574ever, the hybrid method represents an important intermediate step in the transition of the current engi-
575neering approach to an entirely model-based approach. Most importantly, the hybrid method facilitates
576comparison with the traditional approach and allows biases to be evaluated and factors contributing to the
577future changes in PMP to be quantified and understood relative to what is already in use. Comparison of
578the hybrid approach with the full model-based approaches can reveal the influence of various storm maxi-
579mization approaches used in the model by controlling the input data. Through this connection, a more reli-
580able transition to full model-based PMP can be achieved.

581In this study, PMP is estimated only through local storm maximization. In HMR57, big storms are also trans-
582posed from nearby regions (of similar climatology) to circumvent the limited or missing observational records
583to provide a broader collection of extreme events (e.g., rain gauge at the Nashville international airport
584stopped working during the Nashville 2010 May epic flooding; Chen et al., 2017). With climate models, long
585records of extreme precipitation (and other meteorological fields) are available, which (especially as an ensem-
586ble) allow us to investigate the climate signals of extreme precipitation, thus PMP in the future climate. The
587complete model output fields allow us to conduct more realistic estimation, e.g., by advancing back trajectory
588analysis of air mass along the surface to 3-D back trajectory as illustrated in this study. These advantages help
589fulfill the demands of storm transposition, as suggested by the similarities of PMPs in Figure 5.

5904.6. How Likely Will the Historical PMP Be Surpassed in the Future?
591Extreme precipitation is projected to change in a changing climate, but whether future storms will exceed
592the design standards of existing infrastructures remains a question. This is a safety issue beyond analysis of
593PMP changes: if the current PMP is going to be surpassed by future storms, a safety reevaluation is more
594urgent than that prompted by the finding that PMP will increase. Figure F1616 shows the future max 3 day pre-
595cipitation as a percentage of the historical MME mean PMP. The MME range of future max 3 day precipita-
596tion and historical PMP estimation is also shown in the figure. Historical PMP (black dashed line) is about
597250% of the historical max 3 day precipitation (solid black line). Future maximum 3 day precipitation is
598around 45%–50% of the historical PMP. Thus, infrastructures will not encounter ‘‘PMP storms’’ under the
599future climate. Even when considering the uncertainties in both historical PMP (light green envelope) and
600future max 3 day precipitation (magenta envelope), the risk of future extreme precipitation exceeding the
601historical design standards is still very low.

602It is also worth pointing out that 3 day PMP is associated with higher uncertainties than max 3 day precipita-
603tion. According to our definition in equation (1), PMP inherits uncertainty in the max precipitation, which is
604then amplified by uncertainties in the moisture condition (PW and PWM). Figure 16 shows that standard
605deviation of maximum 3 day precipitation is only about 20% of the MME mean, while Figure 9b indicates
606that the standard deviation of PMP can be as high as 40% of the MME mean. To further reduce the uncer-
607tainty of PMP estimation, more accurate precipitation data together with related meteorological fields (PW,
608temperature, and winds) are all needed.

6094.7. On the PMF Estimation
610The hybrid approach proposed in this study provides PMPs estimation for the critical large water manage-
611ment infrastructures. At the same time, a large amount of such infrastructures have been designed using
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612probable maximum flood (PMF) criteria (Hossain et al., 2012). For the
613PMF estimation using this hybrid approach, the PMP storm is fed into
614the surface hydrological model, which would produce the streamflow
615timeseries at the watershed outlet. Since surface hydrological models
616generally require subdaily input, here is what the engineers should do
617to develop the PMP storm that can be used by these models (with the
618example of Grand Coulee dam location):

6191. Delineate the upstream watershed boundary of the location (i.e.,
620the location is the outlet of the delineated watershed).
6212. Replace the daily precipitation data used here with subdaily data
622set. Some climate model output is available at subdaily time step,
623such as the MOAR run of CCSM4, which is available at 6 h resolu-
624tion. Further downscaling these climate model data would provide
625suitable data for the hybrid approach.
6263. Follow the instructions given in this study and compute the PMP of
627the watershed. Also at this point, we know which storm generates
628the PMP estimation as well as the maximization ratio.
6294. Multiply the maximization ratio to all the subdaily precipitation
630maps (in the 72 h duration) of the storm identified in step 3. We
631now get the spatial-temporal information of the PMP storm that
632can be used in hydrological models. PMF can then be estimated.

633Since different locations of storm center would impact the streamflow
634at the watershed outlet, in practice it may be best to check several
635PMP-class storms (i.e., those storms whose MP after maximization is
636close to PMP) so the worst streamflow process can be identified.

6375. Conclusions

638In this study, we applied a traditional PMP estimation approach (moisture maximization) to CMIP5 model
639outputs and estimated PMP over the PNW region. Model outputs from five CMIP5 models were used to
640assess PMP by 2016 and by 2099. The major conclusions are as follows:

6411. Combining traditional PMP estimation approach with modern climate science and model data can pro-
642vide PMP estimates that are consistent with the values used in current engineering practice.
6432. In the worst climate scenario (RCP8.5), PMP in the PNW region is projected to increase by about 50% 6

64430% by 2099 relative to current levels. This change is significant when considering the uncertainties of
645PMP estimation.
6463. Most of the increase in PMP can be attributed to climate warming, which mainly affects moisture avail-
647ability through the effects on SSTs. Future change of storm efficiency and storm track tend to reduce the
648future PMP.
6494. PMP presents larger uncertainty than extreme precipitation. Thus, it is important to have high-quality
650data for both extreme precipitation and the related meteorological fields (3-D wind fields, temperature)
651for more accurate PMP estimation.

652The hybrid approach presented in this paper connects the traditional PMP estimation and model-based
653approaches that are becoming popular recently. This study shows that selected climate model outputs are
654useful for PMP estimation in certain climatological regions such as the AR dominated PNW studied here, as
655they present similar quality as ground-based observation data after bias correction (such as the LOCA
656downscaling). Attributing the contributions of various processes to the PMP change in the future using the
657hybrid approach yielded results that are physical and consistent with previous findings regarding the effects
658of warming on storm efficiency and moisture tracks. This supports the physical basis of the hybrid approach
659through its adoption of physically and dynamically consistent climate model outputs and effective back tra-
660jectory analysis method. Although the method for the presented PNW case here can only be applied to
661other regions that also experience ARs, the idea behind the method is to use downscaled climate data
662together with traditional method for the PMP estimation. This would be applicable to all the locations

Figure 16. Maximum 3 day precipitation as projected by CMIP5 models. The
blue line is the 10-model MME mean, and the magenta envelope is the varia-
tion (defined as standard deviation) of MME. The solid black line is the 10-
model MME mean of historical max 3 day precipitation, and the black dashed
line is the 10-model MME mean historical PMP. All the data are normalized by
the historical MME mean PMP value (left y axis). The actual historical MME PMP
is shown as the red line (right y axis). The light green envelope is the MME
range of historical PMP. The x axis shows the 220 HU8 basins, which are
arranged by their historical MME mean PMP.
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663where PMP estimation is needed. Future work may further take advantage of atmospheric models and
664global/regional climate model data to advance state of the art for PMP estimation in a changing climate.

665
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