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Abstract. This study presents a simple and efficient schemel Introduction
for Bayesian estimation of uncertainty in soil moisture simu-
lation by a Land Surface Model (LSM). The scheme is as-In hydrology, uncertainty estimation techniques that are
sessed within a Monte Carlo (MC) simulation framework based on fully random Monte Carlo (MC) sampling of
based on the Generalized Likelihood Uncertainty Estima-probability distributions are usually considered the preferred
tion (GLUE) methodology. A primary limitation of using method due to their lack of restrictive assumptions, com-
the GLUE method is the prohibitive computational burden pleteness in sampling the error structure of the random vari-
imposed by uniform random sampling of the model's pa- ables, and the increasing availability of computational re-
rameter distributions. Sampling is improved in the proposedsources (Beven and Freer, 2001; Beck, 1987; Kremer, 1983).
scheme by stochastic modeling of the parameters’ responseIC sampling can also bypass several limitations of analyt-
surface that recognizes the non-linear deterministic behavical techniques (Bras and Rodriguez-lturbe, 1993). An un-
ior between soil moisture and land surface parameters. Uneertainty estimation technique called Generalized Likelihood
certainty in soil moisture simulation (model output) is ap- Uncertainty Estimation (GLUE) (Beven and Binley, 1992) is
proximated through a Hermite polynomial chaos expansionone such MC based tool that can be employed to assess an en-
of normal random variables that represent the model’'s pavironmental model’s predictive uncertainty. This method ex-
rameter (model input) uncertainty. The unknown coefficientstends the type of Generalized Sensitivity Analysis (GSA) of
of the polynomial are calculated using limited number of Spear and Hornberger (1980) by evaluating the simulation re-
model simulation runs. The calibrated polynomial is then sults for each randomly sampled model parameter set against
used as a fast-running proxy to the slower-running LSM tosome observed data through a likelihood value. Because its
predict the degree of representativeness of a randomly sanstructure is rooted in Bayesian theory, GLUE also allows
pled model parameter set. An evaluation of the scheme’blending of prior and current information for improved a pos-
efficiency in sampling is made through comparison with theteriori inferences. While GLUE is not the only uncertainty
fully random MC sampling (the norm for GLUE) and the assessmenttool currently available (Misirli et al., 2003; Thie-
nearest-neighborhood sampling technique. The scheme wasann et al., 2001; Tyagi and Haan, 2001; Krzysztofowicz,
able to reduce computational burden of random MC sam-2000; Young and Beven, 1994), the simplicity of the the-
pling for GLUE in the ranges of 10%-70%. The scheme wasory behind the technique is what makes it convenient and
also found to be about 10% more efficient than the nearestvery easy to implement (Beven and Freer, 2001). GLUE
neighborhood sampling method in predicting a sampled pahas therefore found extensive application in the assessment
rameter set’s degree of representativeness. The GLUE based predictive uncertainty of many hydrologic variables like
on the proposed sampling scheme did not alter the essentiatreamflow, flood inundation, ground water flow, land surface
features of the uncertainty structure in soil moisture simula-fluxes, etc. (Schulz and Beven, 2003; Christaens and Feyen,
tion. The scheme can potentially make GLUE uncertainty2002; Beven and Freer, 2001; Schulz et al., 2001; Romanow-
estimation for any LSM more efficient as it does not imposeicz and Beven, 1998; Franks et al., 1998; Franks and Beven,
any additional structural or distributional assumptions. 1997; Freer et al., 1996; among many others). Recently, the
GLUE technique has also proved to be a powerful tool in un-
derstanding the implications of remotely sensed rainfall error
Correspondence tdz. N. Anagnostou adjustment on flood prediction uncertainty (Hossain et al.,
(manos@engr.uconn.edu) 2004).




2 F. Hossain et al.: A non-linear and stochastic response surface method

However, the GLUE method has a major drawback. Itfor LSMs. Such a technique should not impose additional
requires analysis of multiple simulation scenarios based orstructural or distributional assumptions that may otherwise
uniform random sampling of the model parameter hyper-compromise the inherent simplicity of the GLUE method.
space. This requirement can be computationally prohibitiveKuczera and Parent (1998) and Bates and Campbell (2001)
for physically complex models that are slow-running (Bateshave already explored the use of Markov Chain Monte Carlo
and Campbell, 2001; Beven and Binley, 1992). Beven andMCMC) methods for more efficient parameter uncertainty
Binley (1992) have argued in detail that the assumption ofanalyses. Bates and Campbell (2001) however reported that
uniform distribution is unlikely to prove critical for GLUE. MCMC methods cannot be used as a black box — consider-
Freer et al. (1996) have further justified uniform sampling able care is required in its implementation when models have
because it makes the GLUE procedure simple to implementarge number of parameters. A further criticism made by
and avoids the necessity to sample from some multivariatdBeven and Freer (2001) was that MCMC methods can rarely
set of correlated distributions which is often very difficult to be useful in making considerable savings in computing time
justify from observed data. Nevertheless, the drawback ofwhen the model response surface with respect to parameters
uniformity assumption in GLUE magnifies tremendously for is not well defined and has the presence of multiple local
physically complex Land Surface Models (LSM) that simul- maxima or plateau. Christaens and Feyen (2002) employed
taneously balance water and energy budget across the lartle Latin Hypercube Sampling (LHS) method to accelerate
surface. Thus, GLUE application for Bayesian estimation ofparameter sampling for the MIKE-SHE hydrologic model.
uncertainty in land surface-atmosphere flux predictions hasdowever, LHS is based on the assumption of monotonicity of
so far been limited to relatively simpler conceptualizations model output in terms of input parameters, in order to be un-
of soil-vegetation-atmosphere transfer (SVAT) schemes (e.gconditionally guaranteed of accuracy with an order of mag-
Schulz and Beven, 2003; Schulz et al., 2001; Franks et al.nitude fewer runs than uniform random sampling (McKay et
1998; Franks and Beven, 1997). A more realistic Bayesiaral., 1979; Iman et al., 1981). Recent study by Hossain et
assessment of uncertainty requires the application of GLUEaLI. (2004a} has clearly shown that the use of LHS method is
to physically complex operational LSMs such as Commonnot always effective and that it requires care in planning an
Land Model (CLM; Dai et al., 2003), NOAH-LSM (Pan and effective sampling strategy. Consequently this study is moti-
Mabhrt, 1987), BATS (Dickinson et al., 1986) or SiB (Sellers vated by the need to develop a simple but efficient parame-
et al., 1986). Uncertainty assessment of these models arer sampling technique that can make GLUE computationally
important because, despite their physical complexity, theymore efficient for slow-running LSMs.
nevertheless suffer from parameter equifinality where a wide |n the current state of the art, GLUE for such models
range of parameter sets exhibit equally acceptable simulawould require an interpolator for the model parameter-output
tions against data available (Hossain and Anagnostou, 2004jesponse surface. This interpolator could then act as a fast-

In the last decade, researchers have strived to develop nitunning proxy to the slow running model and potentially
merical schemes for efficient sensitivity analyses of LSM pa-identify the regions of high likelihood values (i.e. regions of
rameters. Henderson-Sellers (1993) proposed a Factorial Aigh degree of representativeness of the hydrologic system)
sessment (FA) of sensitivity of model parameters that incor-on the parameter-output response surface. In this study we
porates the multifactor interactions and tries to avoid the po-have chosen to develop a stochastic interpolator based on the
tential weakness of the classical sensitivity analyses of per“Theory of Homogeneous Chaos” (Wiener, 1938) (hereafter
turbing one parameter at a time. However, the FA methodcalled “interpolator”). We do not demonstrate the presence
suffers from the following limiting requirements: 1) prior or absence of chaotic behavior of simulations in this study.
knowledge of parameter variances; and 2) large number oHowever, we are encouraged by the recent well-documented
model perturbations (Gao et al., 1996). Collins and Avis- discovery of chaos in hydrologic systems (Sivakumar et al.,
sar (1994) proposed a Fourier Amplitude Sensitivity Test2001a and 2001b; Sivakumar, 2000; Jayawardena and Lai,
(FAST) for land surface parameters. This method also hag994, Rodriguez-Iturbe et al., 1991). Essential concepts of
drawbacks similar to the FA method with the additional re- the interpolator are inferred from an uncertainty estimation
quirement that parameters be physically uncorrelated. Gagool originally developed by Isukapalli et al. (2000). How-
et al. (1996) summarized that there was no perfect metho@ver, the critical evaluation presented herein of the interpo-
for characterizing parameter uncertainty of land surface systator within the GLUE framework for improving parameter
tems and proposed a special form of the classical stand-alongampling is considered a relatively unexplored topic. In this
sensitivity analyses for land-surface schemes. Our qualitastudy we make an evaluation of the interpolator on a dif-
tive assessment of the techniques reported in literature anfbrent surface hydrologic variable — soil moisture — which
alluded herein indicates that none of them are pertinent tgs simulated by the physically-based NOAH-LSM (Pan and
GLUE for making uncertainty estimation of LSMs computa- Mahrt, 1987). The interpolator is also compared with the
tionally more efficient.

In recognition of the uncertainty due to input land sur-  1pssain, F., Anagnostou, E. N., and Bagtzoglou, A. C.: On
face parameters and the ease of implementation of the GLUEatin Hypercube Sampling for Efficient Uncertainty Estimation of
method, there is a need to develop a parameter sampling tecl$atellite-derived runoff predictions. J. of Hydrology, in review,
nigue that can make the application of GLUE more efficient2004a.
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Fig. 1. NOAH-LSM vegetation parameter and bias adjustment for soil moisture simulation. Upper panel — monthly accumulated precipitation
(mm) for 1998. Middle panel — observed soil moisture measurements (mean monthly) at 5cm depth compared with simulations with
adjustments and no adjustments. Lower panel — the monthly multiplicative bias in simulation with adjusted and unadjusted vegetation
parameters. Effective study period was 1 March — 30 November 1998.

fully random MC sampling technique (the norm for GLUE) flux measurements. This data is public domain and avail-

and the nearest-neighborhood parameter sampling techniqueble as part of standardized testing protocols for simulation

originally proposed by Beven and Binley (1992). codes of the NOAH-LSM (discussed next). To reduce the im-
The study is organized in the following manner. In Sect. 2, pact of snow and sensitivity to initial conditions in our study,

a brief description of the study region and data are providedwe chose an effective study period ranging from 1 March —

Section 3 describes the LSM part a and its readjustment pa@0 November 1998. For more information on the study re-

b that were found necessary to make the model representaion and data measurement protocols the reader is referred

tive of the study region. In Sect. 4, we describe the GLUEto the User's Guide, Public Release Version 2.5 available at

method based on fully random uniform parameter sampling ftp://ftp.emc.noaa.gov/mmb/gcp/ldas/noahlsm/26s.

Section 5 provides description of the algorithm for the inter-

polator for parameter sampling. Section 6 describes the sim-

ulation framework for assessment of the interpolator. Sec-3 The land surface model

tion 7 discusses the results, while Sect. 8 presents the con-

clusions and further extensions that can potentially extend3.1 Model description

the capabilities of the interpolator.
The LSM used in this study was NOAH-LSM (also known as

The Community NOAH-LSM) (Pan and Mahrt, 1987). We
2 Study region and data chose NOAH-LSM as it is a popular operational model and

insights into this study could prove beneficial in understand-
Our study region was Northern lllinois (USA) in a farmland ing the utility of the proposed sampling technique for uncer-
in Champaign located 40.0N and 88.37 W. The site char-  tainty prediction of land surface variables in general. This
acteristics were typical of those found throughout Midwest-LSM is a stand-alone, uncoupled, 1-D column version used
ern US with most of the land in agricultural production. The to execute single-site land surface simulations. In this tra-
soil was silt loam with a bulk density of 1.5gm/émThe ditional 1-D uncoupled mode, near surface atmospheric and
year under study was 1998 when soybeans were planted iradiation forcing data are required as input forcing. NOAH-
the farm. Atmospheric and radiation forcing data from a LSM simulates soil moisture (both liquid and frozen), soil
flux measuring system installed in the farm was recorded eviemperature, snow pack, depth, snow pack water equivalent,
ery 30min for that year. The major atmospheric data com-canopy water content and the energy and water flux terms
prised precipitation, temperature, humidity, surface pressurén terms of the surface energy balance and surface water
and wind. The radiation forcing data pertained to down-balance. A four-layer soil configuration (comprising a to-
ward solar (short-wave) and downward long-wave radiationtal depth of 2m) is adopted in the NOAH-LSM for captur-
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Fig. 2. Readjustment of monthly Fraction of Vegetation parameters for NOAH-LSM to make them more representative of the study region and
point-scale simulation of soil moisture for the upper 5 cm layer. Unadjusted parameters are derived from Normalized Difference Vegetation

Index (NDVI; Gutman and Ignatov, 1998). The growth sequence applies for soybeans that were planted during 1998.

ing daily, weekly and seasonal evolution of soil moisture andnatov (1998). Because NDVI as derived from the NOAA
mitigating possible truncation error in discretization (Srid- AVHRR are typically representative for the £35 kn? res-
har et al., 2002). The lower 1 m acts as gravity drainage ablution (see Gutman and Ignatov, 1998), we argue that they
the bottom, and the upper 1meter of soil serves as root zoneay require minor adjustment for the point scale study con-
depth. Since this study concerns the assessment of a paramucted herein. The use of high resolution LANDSAT data
eter sampling technique, we have considered soil moistur¢30 m) could perhaps address this limitation. However, the
observations and simulations only at the 5cm depth for thenon-availability of such higher resolution data prompted us
sake of simplicity. For more details on the physical descrip-to assume an adjusted set of fraction of vegetation parame-
tion of the model, one may refer to Sridhar et al. (2002). ter for a 1-D (point) investigation scenario. We argue that
this assumption is acceptable as the objective of this study is
3.2 Model readjustment confined to the exploration of sampling efficiency of our pro-
posed scheme. Based on knowledge of the soybean growth
Our preliminary investigation with NOAH-LSM revealed sequence (i.e. plant in May; flower in July and harvest in
significant underestimation of soil moisture simulation at theOctober) (Liu, 1997), we adjusted the vegetation fraction pa-
5 cm depth. This thereby indicated an overestimation of;ameters as shown in Fig. 2. It is seen that the bias is now
Evapotranspiration (ET) process that magnified further durequced after this adjustment for the growing season (May—
ing the soybean growing season (see Fig. 1, lower panel). Wgyy). The mean multiplicative bias (ratio of simulated to ob-
therefore found it necessary to adjust some of the NOAH'served) for the effective study period (1 March — 30 Novem-
LSM vegetation parameters to make the model more repygr 1998) was found to be 0.868 (Fig. 1, lower panel). We
resentative of the point-scale soil moisture flux simulationsiherefore applied a final multiplicative bias adjustment fac-
at the farm. We reduced the number of root layers fromor to the NOAH-LSM soil moisture simulations of 1.15 (i.e.
3 (100cm of deep roots) to 2 (40cm of deep roots). Thisy/g 868). The effect of bias adjustment after the vegetation
reduction was justified for our study period, as soybeansyarameter fine-tuning is shown to improve simulations sig-

do not typically grow roots beyond 30 cm depth (Norman, nificantly (see Fig. 1, middle panel, dashed line).
1978; Liu, 1997). We found Leaf Area Index (LAI) to be

an insensitive parameter to the bias in soil moisture simula3.3 Model parameter uncertainty

tion. We further hypothesized that a typical soybeans lateral

spacing of 80 cm (inferred from: Norman, 1978) should not NOAH-LSM parameter uncertainty was accounted for the
yield the fraction of green vegetation greater than 0.5 dur-following five soil hydraulic parameters that we consid-
ing the growing months. The vegetation fraction parame-ered most sensitive to soil moisture simulation: 1) max-
ters used in LSMs are derived from the NDVI (Normalized imum volumetric soil moisture content (porosity) (SMC-

Difference Vegetation Index) proposed by Gutman and Ig-MAX, m3/md); 2) saturated matric potential (PSISAT, m) (3)
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Table 1. Uncertainty ranges for soil hydraulic parameters of NOAH-LSM.

Parameter Minimum value Maximum value  Sampling strategy
1. SMCMAX (m3/m3) 0.05 0.50 Uniform

2. PSISAT (m) 0.01 0.65 Uniform

3. SATDK (m/s) 1.0610~6 1.77x1074 Log (uniform)

4. BB 2.00 15.00 Uniform

5. SMCWLT (n/md) 0.01 0.20 Uniform

saturated hydraulic conductivity K (SATDK, nT¥); 3) pa-  whereo, is the variance of errors anghs the variance of
rameter ‘B’ of soil-water retention model of Clapp and Horn- observations. These two likelihood measures are consistent
berger (1978) (BB); and (4) soil moisture wilting point at with the requirements of the GLUE method, as both increase
which ET ceases (SMCWLT, #fm3). The parameter un- monotonically with the similarity of behavior. The purpose
certainty ranges are shown in Table 1 and were based oof using two different likelihood measures was to demon-
the empirical study of Clapp and Hornberger (1978) and thestrate that the applicability of the interpolator was not sensi-
sampling requirements of GLUE (Beven and Binley, 1992) tive to the subjective choice.
(discussed next). Now, to implement the GLUE methodology, each param-
eter of NOAH-LSM was specified a range of possible values
shown earlier in Table 1. Constant (calibrated) values for
all other NOAH-LSM parameters were used. Model predic-
tions of soil moisture were carried out, and the model likeli-
GLUE is based on MC simulation: a large number of modelhood measure was calculated using the efficiency indices of
runs are made, each with random parameter values selectdeljs. (1) and (2). From the specified parameter ranges, MC
from uniform probability distributions for each parameter. simulations were conducted that allowed the selection of a
The acceptability of each run is assessed by comparing prdarge number of behavioral parameter sets characterized by
dicted to observed hydrologic measurement through soma simulation efficiency index value greater than an assigned
chosen likelihood measure. Runs that achieve a likelihoodminimum threshold value. For further details on GLUE im-
below a certain threshold may then be rejected as nonplementation, one is referred to Beven and Binley (1992),
behavioral. The likelihoods of these non-behavioral param-Freer et al. (1996) and Beven and Freer (2001).
eters are set to zero and are thereby removed from the sub-
sequent analysis. Following the rejection of non-behavioral
runs, the likelihood weights of the retained (i.e. behavioral)s  Algorithm of the inperpolator
runs are rescaled so that their cumulative total is one (Freer
etal., 1996). In this study the GLUE method was applied toThe principle of the interpolator is founded on the “Theory
uncertainty estimation of soil moisture simulation by NOAH- of Homogeneous Chaos” (Wiener, 1938). Wiener (1938) has
LSM at the 5 cm depth. Thus at each time step (at 30 minutgshown that if deterministic dynamical model is highly non-
intervals), the predicted soil moisture from the behavioraljinear (with a tendency to exhibit chaotic behavior), then it is
runs are likelihood weighted and ranked to form a cumula-possible to approximate both inputs and outputs (treated here
tive distribution of soil moisture simulation from which cho- s random processes) of the uncertain model through series
sen quantiles can be selected to represent model uncertain®xpansion of standard random variables using Hermite Poly-
While GLUE is based on a Bayesian conditioning approach,nomials. Although the presence of chaotic behavior in the
the likelihood measure is achieved through a goodness of fihydrologic system under study is not addressed herein, re-
criterion as a substitute for a more traditional likelihood func- cent literature supports the wisdom of choosing the “Theory
tion. We have considered two specific likelihood measuresof Homogeneous Chaos” as a basis for formulation of the
in this study: 1) the classical index of efficiendiys (Nash interpolator (Sivakumar, 2000; Sivakumar et al., 2001a, b;
and Sutcliffe, 1970) (Eqg. 1), and 2) the exponential index of Rodriguez-Iturbe et al., 1991). Rodriguez-lturbe et al. (1991)
efficiencyEexp (EQ. 2). has demonstrated chaotic behavior of soil moisture dynamics
at seasonal time scales. Since our effective study period was

4 The GLUE methodology

e |1 o? 1 seasonal (from March to November 1998), this observation
NS =1 -+7 Ugbs @ by Rodriguez-lturbe et al. (1991) therefore justifies the use of

2
Eexp=expl —— |, 2

%0bs

a chaotic approach for our methodology. Furthermore, the re-
quirement of multiple ordinary non-linear differential equa-

tions as the necessary condition for chaotic behavior in soil
moisture dynamics has also been noted by Rodriguez-lturbe
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wheree is asrv~ N(0,1) and; denotes the index for a ran-
Definie uniform distribution of model parameters dom realizationer f (xx) is the error function defined by the

, following integral,
Transforn the parameters from srvs N-(0,1) to uni form parameters

(Eruations 3 and 4)

erf(xx):%/e_wzdw. (5)
0

In Eq. (5),xx is thesrv andw an intrinsic independent vari-
able of the error function.

We have now expressed the random inputs (uniformly dis-
Derive the correspanding Evalue for the 21 sampled parameter sets tributed model parameters) via srv’'s gg?_; (where, n=

(R 5). The choice of transforming the model parameters to

the normal srvs is justified by mathematical tractability of
functions of these srv's (Devroye, 1988)r example, other
common univariate distributions such as gamma, exponen-
tial, Weibull, log-normal can all be transformed explicitly to
normal srv’s.

Forrmiate the Palynormial Chaos Expansion

Calibrate the coefficients & of iterpolator (Equation )

5.2 Step two: polynomial chaos expansion

Fig. 3. Flow-chart for the algorithm of the interpolator. Next, we represent our uncertain model outus; the like-
lihood measure (left-hand side of Egs. 1 or 2), aséh
] . ~order expansion of a Hermite Polynomial ofv's. This
et al. (1991). The physical formulation of NOAH-LSM indi- step, called “Polynomial Chaos Expansion”, follows from
cates that there are sufficient physical sub-models linking theshanem and Spanos (1991). In this study we have consid-

5 soil hydraulic parameters (of Table 1) to intuitively expect ored second order expansion which is defined as follows,
a chaotic behavior relationship (between soil moisture pre-

diction the hydraulic parameters). These notable sub-models \ n
are as follows: 1) The prognostic equation for volumetric L2=a0,2+ Zizlaia28i+zaii,2(5i2—l)+Zzaijlgigja (6)
soil water content (Richards Equation) (Sridhar et al., 2002); i=1 i=1j>1

2) The diffusion equation for soil temperature (Sridhar et
al., 2002); 3) The Penman-based energy balance approacvﬁ
for potential evaporation (Sridhar et al., 2002); and, 4) TheS'OM:

Mahrt and Ek (1984) formulaﬂon O.f surfacg skin tempgra- 5.3 Step three: calibration of coefficients of the Interpola-
ture. There are three major steps involved in the algorithm tor

formulation of this interpolator. We describe these steps be-

low. For more details the reader is referred to Isukapalli and
Georogopolous (1999) and Isukapalli et al. (2000).

n—=1 n

here the subscript aftdr represents the order of the expan-

From the above Eg. (5), it can be seen that the number of un-
known coefficients (the’s in the right hand side) to be deter-

mined for second order polynomial chaos expansion are 21.
These unknown coefficients are now identified by generating

. . . the same number of model data points and solving the sys-
Our NOAH-LSM model input parameter uncertainty domain tem of linear algebraic equations. Isukapalli and Georgopou-

is represented by a 5-D hypercube (Table 1) with the distribu- . L . .
tion of each parameter being uniform (the norm for GLUE). los (1999) provide guidelines on choosing model points for

itis defined as follows rot_>ust _calit_)ration qf coefficients. The choice of the model
' points in this study is, however, left open to the user depend-
ing on the nature of the problem. We investigated this issue
herein and report our findings in the next section. For calibra-
tion of polynomial coefficients we used the Singular Value
Decomposition (SVD) (Press et al., 1999) because of its abil-

g;ﬁ:l::;? tl O; E?g:ﬁ i)fossu::(ﬁgfjége{r?rigt(;léh;) fgefelfslgﬁtas' ity to handle ill-conditioned matrices (Press et al., 1999; Hos-
yp -fep sain and Anagnostou, 2004).

the parameter value. These uniformly distributed parameters . ) : .
P y P In Fig. 3 we summarize the algorithm for the interpola-

are then expressed as a series of a standard normal randotm First ‘ t of uniformlv distributed model
variable §rv) as, or. First, we generate a set of uniformly distributed mode

parameter sets fronrvs (using Egs. 3, 4 and Table 1). 21
1 1 points on the NOAH-LSM'’s parameter-output ) response
xij=pi +(qi — p)(5 + Eerf(&',j /v/2)),i=1.....5.(4)  surface are then chosen. The interpolator is then calibrated

5.1 Step one: transformation of parameter distributions

Xi~U(pi,qi), i=1, ...... , 5, (3)

where p andq form the lower and upper parameter ranges
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Fig. 4. General comparison of interpolator with Nearest-neighborh@o) method and uniform random sampling as a predictor for
sampled parameter sets in terms of Success Ratio.

for its 21 coefficient values by solving the system of 21 lin- ness of sampled parameter sets for GLUE analysis. In al-
ear algebraic equations. For a more global selection of calimost all previous GLUE applications, behavioral and non-
bration points, we derive 3 different sets of calibrated poly- behavioral parameter sets were identified through the actual
nomials for the interpolators. The me@hvalue predicted time-consuming execution of the physically-complex model.
by the 3 calibrated interpolators is then defined as the mosThis often resulted in high wastage of computational time
likely E value for a sampled parameter set. The total num-as the majority of the runs were found to be non-behavioral
ber of different sets of calibration points required is consid- (see Christaens and Feyen, 2002, for example). In this sim-
ered subjective and depends on the nature of the samplinglation framework we tested the accuracy of the interpolator
problem. Herein we consider 3 sets as sufficient to yield ef-in stochastic modeling the parameter-output response surface
fective results for a 5-D parameter hyperspace. Once the infor GLUE and assessed its potential in reducing the wastage
terpolator(s) is calibrated for NOAH-LSM on data available, of computational time due to the non-behavioral runs.

we test its efficiency in parameter sampling in the follow-

ing 4 steps: (i) sampling N (0, Ivs; (i) generating the

corresponding family of uniformly distributed NOAH-LSM

parameters from Eq. (4); (iii) computing the mean of the 3

interpolator-predicteds values from Eq. (6); (iv) if the in-

terpolator predicts a sampled parameter set to be behavioral,

then testing its accuracy by actual execution of NOAH-LSM

for that sampled parameter set. Note that the use of the inter- ) )
polator in this fashion within the GLUE framework does not . Ve conducted a total of 500 000 NOAH-LSM simulations

violate the fundamental requirement that parameters be sanfy Sampling the same number of parameter sets randomly
pled uniform distributions. It only helps to make an informed from the ranges in Table 1. This ensemble was further di-
decision on sampling by providing an indication of whether vided into 100 sub-divisions each containing 5000 parameter

the sampled parameter set is behavioral or non-behaviorai€ts- Each of these sets had its respective “true” model re-
before making the actual NOAH-LSM model run. sponse in terms of Ilkellr_]ood measur_eﬁ,é and Egxp from

Egs. (1) and (2) respectively) determined from actual execu-

tion of NOAH-LSM. We then evaluated the sampling accu-
6 Simulation framework racy of the interpolator calibrated within each of these 100

sub-divisions to make generalizations on the mean and vari-
The interpolator (which is now a simple algebraic equation)ability of its performance as a fast-running proxy. We first
is potentially a 5-6 orders faster in computation than NOAH- present a confusion matrix for sampled parameter sets be-
LSM and can therefore serve as a fast-running proxy forlow for the interpolator to define the performance measures
making Bayesian decisions on the degree of representativevhose description follows next.
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Truth (from NOAH-LSM
uth ( ) Table 2. Mean Bias ScoreKS) values for the interpolator amdN

Behavioral Non-behavioral scheme.
B Na Ns Interpolator  Nearest neighborhood
= % interpolator (6 neighbors)
c
% § é > ThresholdE
B g I (Nash-sutcliffe) BS BS
TE 2 0.1 0.812 1.07
e & 0.2 0.858 1.21
s 2 Nc Np 0.3 0.894 1.19
2 0.4 0.808 1.09
0.5 0.800 0.950

To define the probability of interpolator to successfully

. . . 0.6 0.867 0.700
predict whether a sampled parameter set is behavioral or non- 0.7 0818 0501
behavioral (based on a given threshold for likelihood mea- i i i
sureL) we define Success RatiSR) as,
N
SR = ——"— " _ —
Na + Np size of the pre-constructed model points when the dimension

The SR indicates only a partial assessment of sampling ef-Of the parameter hyperspace is high. This is considered a
ficiency. There can be instances where the interpolator ignajor weakness of th&/ N method when compared to the
overly conservative in predicting a set as behavioral andnterpolator.

thereby achieves a spuriously hi§i® over very small sam-

ples of model executions. Thus, another measuBs, (

Eq. 8) was also defined3 S quantifies the propensity of the 7 Results and discussion

interpolator to predict the behavioral sets as non-behavioral

or missing regions of high likelihood values on the response!n Fig- 4 we show the measR values of the 100 sub-

surface. divisions (comprising th_e total 500 000 s_ets) for the interpo-

Nadt N lator, NN method (6 neighbors) and uniform random sam-

BS = H (8)  pling for two different likelihood measures (Nash-Sutcliffe
A c

efficiency — upper panel; Exponential efficiency — lower
A BS value of less than 1 would indicate that the interpolator panel). Note that the (ASR) value actually represents the
has a tendency to be conservative in predicting correctly avastage of computational time due to non-behavioral runs
sampled parameter set’s likelihood valueBA value greater  of NOAH-LSM. This is because the sampled parameter sets
than 1 would indicate the interpolator’s propensity to predictwere evaluated of their degree of representativeness by run-
samples as behavioral. An ideal interpolator should thereforaing the NOAH-LSM only after the prediction by the inter-
have aBS of near 1.0 andSR that is higher than that for polator or theV N method gave a strong indication of the set
uniform sampling. to be behavioral. The interpolator in Fig. 4 was calibrated
Performance of the interpolator was compared with thewith sample points that had a minimufvalue of 0.7. We
fully uniform sampling of parameter sets using the above 2observe that the fully uniform random sampling can be very
measures (Egs. 7 and 8). The Nearest-Neighborhdad)(  inefficient and result in high wastage of computational time
search for interpolating parameter set’s likelihood value wag(ranging from 50%—-80%) as the acceptance criterion for be-
also compared herein (hereafter calld& method). This havioral parameter sets increasé&é>0.4, upper panel;
type of sampling method was first introduced by Beven andEgxp>0.5, lower panel). This observation justifies the wis-
Binley (1992) to address the computational concerns of thealom of using a more efficient parameter sampling scheme
GLUE method. In theVN method, a sampled point in pa- for GLUE based on interpolation of the parameter response
rameter hyperspace is searched for thé fiearest neigh-  surface. The interpolator is able to demonstrate sampling ef-
boring points in a model's response surface that is preficiency in predicting correctly the nature of a sampled set
constructed from a finite number sample points (=1000 pre<{behavioral or non-behavioral?) even at high degrees of ac-
constructed model points in this study). The probable like-ceptance criterion. For Nash-Sutcliffe efficiency likelihood
lihood value is then interpolated by the inverse squared dismeasure, thé R value for interpolator is always found to be
tance technique. We have considered 6, 12 and 24 neighabove 0.90 and about 0.10 higher than thatvé¥ method
bors for theN N method. A point to note is that th¥ N (Fig. 4, upper panel). Th&R value of the interpolator
method requires a computationally intensive sorting algo-for Exponential efficiency likelihood measure appears to de-
rithm to rank all the distances from a sampled point in param-crease moderately to 0.80 at the high acceptance criterion of
eter hyperspace. The computing time for sorting increases a8exp>0.60 (lower panel, Fig. 4), and become less than that
N2 whereN is the size of the pre-constructed model points of the NN method. However, for this case, the interpolator
(Press et al., 1999). Hence a compromise is needed with theersusN N method difference is found to be small (less than
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Fig. 5. (a) Impact of the choice of calibration points for interpolator (upper panel) and number of nearest neighbors in parameter search
(lower panel) for Nash-Sutcliffe efficiency likelihood measure. The solid line indicates the mean of the 100 subdivisions (each containing
5000 NOAH-LSM simulations). One standard deviation of variability is indicated by the vertical error bars (dashed).

Calibration Emin=0.3 Calibration Emin=0.5 Calibration Emin=0.7
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Success Ratio

0 T T T R S TS R R S T T R S
0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
Acceptance Threshold for Behavioral Sets (>Exponential Efficiency)

Fig. 5. (b) Same as in (a), but for exponential efficiency likelihood measure.

15%). Overall, when compared with the uniform random not reported herein. We observe that the interpolator is mod-
sampling, we note that the interpolator is able to reduce theerately conservativeBS <1.0) compared to th& N method
wastage of computational time due to non-behavioral rundn accepting a sampled parameter set as behavioral. This is
in the ranges of 10%—70%. not necessarily considered a drawback of the interpolator as
Table 2 summarizes the mean values (of the 100 subit can be executed as many times as needed to generate the
divisions of the 500 000 sets) f&S values for the interpola-  desired sample size of behavioral parameter sets. The more
tor andN N method using the Nash-Sutcliffe efficiency as the qualifying aspect is whether the interpolator exhibits regions
likelihood measure. Similar statistics were observed for theof local attractions in the response surface that are inconsis-
Exponential efficiency likelihood measure, and is thereforetent with the uniform random sampling (discussed next).
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Fig. 6. (a)Dotty plots obtained from uniform random sampling of GLUE model parameters with Nash-Sutcliffe efficiency likelihood measure
>0.4. The plots represent an ensemble of 5000 parameter sets.
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Fig. 6. (b) Same as in (a), but for the interpolator.

In Figs. 5a and 5b, we explore certain calibration aspectseighbors. We observe that the choice of calibration points
of the interpolator and th& N method for Nash-Sutcliffe  can have an impact on the efficiencyR value) of the inter-
and Exponential efficiency likelihood measures respectivelypolator with the best performance achieved when the choice
The upper panels show the effect of choice of calibrationof points are highly behavioral (i.e. Emi®.7). ForNN
sample points for interpolator for three different criteria (se- method, the choice of appears to have a negligible impact,
lection of points based on a minimum Efficiency value of although for both schemes, we observe that the variability
0.3, 0.5 and 0.7). The lower panels show the effect of thein prediction increases as the acceptance criterion increases.
“n” — the number of nearest neighbors — in interpolating theFurthermore, the sampling efficiency (in termsSat) of the
likelihood value by theV N method for 6, 12 and 24 nearest NN method appears to decrease in the moderate likelihood
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Fig. 6. (c)Same as Figs. 6a and 6b, but for the fifth NOAH-LSM parameter of SMCWLT.

measure ranges @< Ens<0.5; 0.4<Eegxp<0.6). We hy- Finally, in Figs. 7a and 7b, we show a typical GLUE anal-
pothesize that the simple inverse squared distance interpolasis with 90% confidence limits in soil moisture simulation
tion for N N method is not universally effective forimproved uncertainty obtained from the aforementioned 5000 behav-
parameter sampling for LSMs because the response surfadgeral parameter sets — one ensemble sampled by uniform
does not vary isotropically in a linear fashion with respect torandom sampling and the other ensemble sampled via the
parameters. interpolator. The prediction quantiles produced by uniform

random sampling are assumed as the reference for compari-

In Figs. 6a, b and ¢ we compare the dotty plots obtaineds,, here. For both likelihood measures (Nash-Sutcliffe ef-
from the interpolator sampling and the random uniform Sam'ficiency likelihood measure — Fig. 7a lower panel; Expo-

pling of GLUE model parameters. Dotty plots were first pro- o i) efficiency likelihood measure — Fig. 7b, lower panel)
posed by Beven and Binley (1992) as a simple way to demong,e pserve negligible difference in the uncertainty estima-
strate the parameter equifinality of a model. Against the I'ke'tion at the 90% confidence limits. However, a more quali-

lihood value presented along the y-axis, the scatter of the pag g test for the preservation of the uncertainty structure in
rameters along the x-axis is accepted as a qualitative measugg, \iation is provided in Fig. 8 where we compare the Ex-

of parameter equifiqality. If the dotty plots derived from uni- ceedance Probability{P) against the width of confidence
form random sampling are assumed as the reference, then tqﬁmts (from 10% to 90%).E P is defined as the number of

parameters sampled as behavioral via the initial screening Qe the observation (i.e. soil moisture measurement) is not

the interpolator should show similar scatter to represent Con'enveloped by the predicted confidence limits normalized by

sistent equifinality. This is an importa_nt aspect t_o assess fO{he total number of timesteps in simulatioA? would typ-
any parameter sampling scheme, Wh_'Ch otherwise may '®Mcally decrease monotonically with increasing width of the
der itself unsuitable for GLUE analysis. The dotty plots for |, ic A similarity of the monotonic decrease at high and

the two likelihood measures were found to be similar. HencelOW widths (>80% and<40%) is observed in Fig. 8. Since
we only show herein dotty plots pertaining to 5000 parameters| Ugis typically used for uncertainty analyses at high con-

sets sampled as behavioral for the Nash-Sutcliffe efficienCyiyence jimits (Freer et al., 1996: Beven and Freer, 2001) this
likelihood measurens>0.4. As seen by comparing Fig. 6b pcarvation indicates that the interpolator is able to preserve
(interpolator dotty plots) with Fig. 6a (uniform random sam- g iciently accurately the uncertainty structure of soil mois-
pling) for the four NOAH-LSM parameters, we observe that e simulation as would have been typically identified with
the behavioral parameters sampled by interpolator represent, \ 4om uniform sampling of the GLUE parameters. How-
at least qualitatively, the same degree of equifinality as th&, e the use of the current formulation of the interpolator
reference (uniform) dotty plots. The fifth parameter compar-geems most accurate at high confidence limits ranging from

ison is shown in Fig. 6¢ (also found to be similar). The inter- 70%—90% for NOAH-LSM soil moisture simulations.
polator has no specific regions of local attraction of uneven

sampling inconsistent with the uniform random sampling.
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Fig. 7. (a) The GLUE uncertainty estimation of soil moisture simulation at 90% confidence limits for uniform random sampling (upper
panel) and interpolator (lower panel). Nash-Sutcliffe efficiency likelihood measDré was used as the acceptance criterion for behavioral
parameter sets. Uncertainty estimation for each scenario was conducted from the 5000 sampled sets shown in Figs. 6a, b and c.
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Fig. 7. (b) Same as (a), but for Exponential efficiency likelihood measwel as the acceptance criterion for behavioral parameter sets.

8 Conclusions ministic behavior of physically complex models. Uncertainty

in soil moisture simulation was approximated through a poly-
This study has presented a simple and efficient scheme fonomial chaos expansion of normal random variables that rep-
Bayesian assessment of uncertainty in soil moisture simularesented the model’s parameter uncertainty. The calibrated
tion by a Land Surface Model. The scheme was assessegolynomial (interpolator) was then used as a fast-running
within a MC simulation framework based on the GLUE proxy to the slow-running model to predict the degree of rep-
methodology. Parameter sampling was improved in the proresentativeness of a randomly sampled model parameter set.
posed scheme by stochastic modeling of the parameter réeFhe sampling scheme based on the interpolator was able to
sponse surface that recognizes the inherent non-linear detereduce computational burden of uniform random MC sam-
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Fig. 8. Response of Exceedance Probability to width of predicted confidence limits. Left panel — Nash-Sutcliffe efficiency likelihood
measure; Right panel — Exponential efficiency measure.

pling for GLUE by about 10%—70%. It was also found to parameters in spatial format. Work is on-going on some of
be 10% more efficient and an order faster than the Nearesthe above aspects and we hope to report them in future.
neighborhood sampling method. The GLUE based on theA knowled h h iated with thi
proposed sampling scheme preserved the uncertainty strug:c<nowe gementsThe research associated with this paper was
ture in soil moisture simulation at moderate to high confi- partially supported by_ the NASA New Investigator Program (Grant
#NAG5-8636). The first author was supported by a NASA Earth

dence limits. System Science Fellowship.
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