
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Investigating the similarity of satellite rainfall error metrics as a function of
Köppen climate classification

Ling Tang, Faisal Hossain⁎
Department of Civil and Environmental Engineering, Tennessee Technological University, Cookeville, TN 38505-0001, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 November 2010
Received in revised form 10 October 2011
Accepted 11 October 2011

This study addressed the question: How much similarity exists in uncertainty of space-borne pre-
cipitation products for similar Köppen climate zones in different and distant landmasses? Various
metrics of satellite rainfall uncertainty were identified using a six year (2002–2007) archive of
NASA's TRMM Multi-satellite Precipitation Analysis (TMPA) data product called 3B42V6 for
two large distant landmasses that share many similar Köppen climate zones: 1) United States
and 2) Australia. The level of quantitative similarity in error metrics for the same Köppen cli-
mate zones was then investigated. It was found that the bias and root mean squared error
exhibited very close levels of similarity for similar Köppen climate zones in the US and Australia.
However, similar inferences could not be drawn for other (higher-ordered) error metrics such
as Probability of Detection (POD). The contrasting nature of the ground validation (GV) data
(i.e., NEXRAD-radar in US and point gauge in Australia) for characterizing uncertainty may be
one of the reasons for this observed lack of similarity. Using a dense gauge network of 42 gauges
over a standard 3B42V6 grid box (~0.25°) as a ground validation benchmark, the dependence of
uncertainty as a function of gauge density was quantified. These relationships were then cast in
the context of our Köppen climate similarity experiment to identify theminimum level of gauge
density that would be needed to resolve more accurately the actual level of similarity of error
metrics for distant landmasses.
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1. Introduction

Satellite remote sensing of rainfall has witnessed tremen-
dous progress in the last three decades (Gebremichael and
Hossain, 2010). The first ‘global’ rainfall products were devel-
oped using satellite infrared sensors on geostationary orbits.
In recent times, satellite rainfall estimation has seen signifi-
cant improvement in resolution both spatially and temporally
(Scofield and Kuligowski, 2003). From typical resolutions of
degree-daily in the 1980s (such as the Global Precipitation
Climatology Project-GPCP, Huffman et al., 2001), the current
suite of high resolution precipitation products (HRPP) now
provide rainfall estimates using various sensors and orbiting

platforms at typical scales of 25×25 km every 3 h or less
across the globe. A few examples of such products are Climate
Prediction Center MORPHing Technique (CMORPH; Joyce et
al., 2004), Tropical Rainfall Measuring Mission (TRMM) Mul-
tisatellite Precipitation Analysis (TMPA; Huffman et al.,
2007) and Global Satellite Mapping of Precipitation GSMaP
(Ushio et al., 2009). Some satellite rainfall products also pro-
vide operational rainfall data at much smaller resolutions,
such as 30 min 4×4 km (Behrangi et al., 2009). Hereafter,
rainfall is used as shorthand for precipitation.

NASA's planned Global Precipitation Measurement (GPM)
mission, in collaboration with other international partners,
now represents a unique tool for observing precipitation from
measuring satellites comprising a high-resolution, multi-
channel PMW rain radiometer known as the GPM Microwave
Imager (GMI), augmented by TRMM-like Dual-frequency Pre-
cipitation Radar (DPR) (Hou et al., 2008). GPM is currently
scheduled for launch in 2013. GPM will seek to achieve
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measurements with a 3-hour average revisit time over 80% of
the globe. It is also expected to provide high resolution (global)
precipitation products with temporal sampling rates ranging
from three to six hours and spatial resolution of 5 to 10 km
(Hou et al., 2008). Considering that in-situ rainfall measuring
networks are on the decline (Shiklomanov et al., 2002;
Stokstad, 1999), the potential value of GPM to the global so-
ciety cannot be underestimated (Hong et al., 2007).

GPM, together with the current range of HRPPs, will rep-
resent an interesting challenge in advancing the application
of satellite HRPPs over ungauged regions (i.e., those lacking
in ground measurement of rainfall). Most rainfall products
employ their own distinct estimationmethodology (i.e., algo-
rithm) even though the primary raw data input is essentially
the same (radiances from IR and PMW sensors and/or TRMM
radar reflectivity for calibration). Because of the difference in
estimation methodology, the accuracy of each product natu-
rally does not have similar characteristics as a function of lo-
cation, landform and climate features (Tian et al., 2010; Bitew
and Gebremichael, 2010; Zeweldi and Gebremichael, 2009).
Yet, many users need to know the errors of the satellite rain-
fall datasets across the range of time/space scales over the
whole domain of the dataset. This uncertainty can provide in-
sightful information to the user on the realistic limits of pre-
dictability that can be achieved with satellite rainfall HRPPs
when used for applications such as hydrologic prediction
(Hossain and Huffman, 2008). On the other hand, satellite
rainfall datasets are most useful over the vast ungauged re-
gions of the developing world lacking in ground validation
(GV) data. Hence, the desire to provide uncertainty informa-
tion and the need to promote global applications of GPM
rainfall data or HRPPs by the data producers is currently rath-
er difficult to reconcile.

This is where a ‘climate classification’ approach may be
worthwhile for investigation. Generally, rainfall climatology
refers to precipitation related weather conditions averaged
over period of time. The potential value of elucidating the cli-
matologic features of satellite rainfall estimation uncertainty
can be better appreciated by the Köppen climate classifica-
tion system. The Köppen climate classification is one of the
most widely used climate classification systems developed
by Wladimir Köppen, a Russian climatologist, around 1900.
It combines the information on native vegetation, tempera-
ture, and precipitation to express the climate of the world
into 29 patterns (McKnight and Hess, 2000). In Köppen cli-
mate classification, the world climates are divided into five
main groups and several types and subtypes (Fig. 1). These
five groups are: 1) Group A: Tropical/megathermal climates,
2) Group B: Dry (arid and semiarid) climates, 3) Group C:
Temperate/mesothermal climates, 4) Group D: Continental/
microthermal climates, and 5) Group E: Polar climates. Each
Köppen climate group has a distinguishable mean tempera-
ture and precipitation patterns in space and time (seasons).

If the world climate could be amenable to such a Köppen
‘climate classification map’ where similar climate patterns
are observed in various and distant parts of the world, then
is it possible to achieve a similar error classification map for
satellite HRPPs? And, if it was indeed possible to classify the
spatial structure of uncertainty as a function of climate across
the globe, then, can we ‘transfer’ the known uncertainty in-
formation from a GV site to a distant non-GV site known a

priori to have similar climatology? Because Köppen climate
classification system includes the information of precipita-
tion patterns across the space and time, we consider it as
our first-cut pathfinder map to investigate a global error cli-
matology classification scheme for satellite HRPPs. Our initial
hypothesis is that a statistical similarity of uncertainty should
exist in the same Köppen climate classes across the different
landmasses of the world. Hereafter, no distinction is made
between the terms ‘uncertainty’ and ‘error’.

Recent research has revealed that the associated uncer-
tainty of satellite rainfall does indeed vary distinctly in space
and time (Gebremichael et al., 2010; Ebert et al., 2007;
Dinku et al., 2007; Tian et al., 2007; 2010; Gottschalck et al.,
2005; Huffman, 1997). Hence, if the ‘average’ and reproduc-
ible features of satellite rainfall uncertainty could be defined
as a function of space and time scale, then we could potential-
ly resolve the following open question— How much similarity
exists in uncertainty of space-borne precipitation products for
similar Köppen climate zones in distant landmasses?

In this paper, we address this open question. The data
used as an example of a representative HRPP is a 6-year
(2002–2007) archive of NASA's TRMM Multi-satellite Precip-
itation Analysis (TMPA) rainfall data over the United States
(US) of America and Australia. TMPA rainfall data is currently
available at a quasi-global scale, and may be considered a po-
tential pathfinder to GPM-era design of HRPPs. Nine Köppen
similar climate classes that occur in two distant landmasses
(US and Australia) were investigated for resolving the open
question posed above.

This paper is organized as follows: Section 2 discusses the
study region and data; Section 3 presents the methodology
and the definition of error metrics for HRPPs. Section 4 pre-
sents the results and discussion of our investigation. Finally,
conclusions are presented in Section 5.

2. Study region and data

2.1. Study regions

We selected two distant landmasses for our investigation:
1) US and 2) Australia (Fig. 1). Both regions are large enough
to incorporate various Köppen climate zones and more im-
portantly, they share many between them. Furthermore, the
two regions are sufficiently distant geographically that spa-
tial correlation can be ruled out if there is any similarity in
uncertainty. A previous study by Tang and Hossain (2009)
has revealed thatmost error metrics for a typical HRPP product
(such as 3B42RT) decorrelate to the ‘noise’ level after 5 grid
boxes at the native resolution. The nine Köppen climate classes
common to both US and Australia are summarized in Table 1.

2.2. Study data

In order to minimize the error of the GV data, we used the
National Center for Environmental Prediction's (NCEP) 4 km
Stage IV NEXRAD rainfall data for the US. This data is adjusted
to gauges and conveniently available as a quality-controlled
data mosaic over the US (Lin and Mitchell, 2005; Fulton et
al., 1998). Because NEXRAD Stage IV-type data was unavail-
able in Australia, we used gauge data gridded at 0.25° and
daily resolution as the GV data (obtained from the Bureau of
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Meteorology, Australia; http://www.bom.gov.au/). Naturally
therefore, our common temporal resolution of error metrics
pertained to the daily time step to allow comparison between
US and Australia, while spatial resolution was 0.25°. As a pre-
lude to GPM, TMPA satellite rainfall data-product labeled as
3B42V6 was used as the satellite rainfall data (Huffman et
al., 2007). This is a quasi-globally available as a research-
grade product at 0.25° and 3 hourly resolution from the
worldwide web (see ftp://trmmopen.gsfc.nasa.gov or http://
precip.gsfc.nasa.gov). This data was aggregated and averaged
at daily time step. The 3B42V6data product is particularly suited
for our investigation because it is better quality controlled (in

Fig. 1. Study region: Köppen map for US and Australia (lower panel) (After Peel et al., 2007).

Table 1
Köppen climate classes common to US and Australia.

Group Types Köppen climate features

A Aw Tropical
B Bwk Desert (cold)

Bwh Desert (hot)
Bsk Semi-arid (cold)
Bsh Semi-arid (hot)

C Cfa Humid subtropical
Cfb Oceanic
Csa Mediterranean (hot)
Csb Mediterranean (warm)
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terms of data discontinuities and data homogeneity) than its
real-time counterparts such as the IR-based 3B41RT or PMW-
IR merged 3B42RT. The data for GV and satellite rainfall data
spanned the period of 2002–2007 (6 years). Table 2 lists the de-
tails of these datasets.

For the US, the NEXRAD Stage IV GV rainfall data was first
remapped to 0.25° 3 hourly resolution for consistency with
the native scale of the satellite rainfall product. Remapping
from 0.04° to 0.25° was a spatial aggregation process where
values at 0.04° located within the 0.25 degree grid box were
aggregated and averaged. In addition, hourly NEXRAD data
was accumulated in 3 hour time steps, and averaged to generate
the 3 hourly data.

The Australian rain gauge network consisted of up to 6000
sites that measured 24-hour accumulated rainfall at approxi-
mately 9 a.m. local time (approximately 00 UTC). Within
these sites, about 1000 to 1500 reported daily rainfall in
near-real time for the Australian Bureau ofMeteorology's oper-
ational daily rainfall analysis. These additional data were com-
bined with the original gauge data in the Bureau's climate
database to produce amore accurate reanalysis of daily rainfall,
which was used in this study. The data was already available
gridded at 0.25°. This gridding was derived from a multi-pass
inverse distance-weighting scheme to map the rainfall obser-
vations onto a 0.25-degree grid over Australia (Weymouth et
al., 1999).

3. Methodology

3.1. The error metrics

Three widely used error metrics were computed for
3B42V6 (see Appendix A). These metrics are: Bias (BIAS),
RootMean Squared Error (RMSE) and Probability of Detection
for rain (POD-rain). Readers should note that POD is also al-
ternatively referred to as ‘Percent Correct’ or ‘Hit Rate’ in rel-
evant literature. These metrics were computed for each grid
box over the 6-year period. The assumption in this study is
that a 6-year ‘average’ on the error would yield a relatively
stationary spatial field of ‘climatologic’ error metrics for a
given region or climate zone. The reader is referred to Ebert
et al. (2007), Ebert (2008) and Hossain and Huffman (2008)
for more details on the significance of these error metrics. The
reader is also referred to the website: http://www.cawcr.gov.
au/projects/verification/ where useful guidance is provided on
measures for validation of satellite precipitation products.

3.2. Testing the similarity of error metrics over for similar
Köppen climate classes

The three error metrics were calculated for the two geo-
graphically distant landmasses for testing the hypothesis on

similarity of satellite rainfall uncertainty over the same Köp-
pen climate class. As mentioned in Section 2, conterminous
US and Australia contained nine common Köppen climate
classes (Table 1). The grid boxes located within the same cli-
mate class (Fig. 1) were aggregated and the 6 year average
error metrics calculated for both US and Australia. The joint
probability of rain (i.e., detection) was also calculated. Our
assumption was that joint probabilities will not be as sensi-
tive to the GV data type and thus help us elucidate patterns
more clearly (Villarini et al., 2009). The joint probability
used in this paper was taken from Hossain and Anagnostou
(2006). This is a POD of rain that calculates the probability
that a satellite detects rains (>0), given that GV rain is also
greater than a given threshold. The POD-rain is plotted as a
function of increasing thresholds of GV rain rate. According
to Hossain and Anagnostou (2006), this plot can be reason-
ably modeled as a sigmoidal function having the form:

Joint probability Rð Þ ¼ 1
Aþ exp −BRð Þ ð1Þ

whereRis the threshold for GV data. In this study, comparison
between the coefficients A and B in Eq. (1) for US and Australia
Köppen classes revealed the extent to which hypothesis on
error similarity was valid for joint probability of rain.

4. Results and discussion

Fig. 2 provides the comparison of the 6 year average BIAS
and RMSE over United States and Australia for the same Köppen
climate zone. For the same Köppen climate classes (x axis), we
observe that the level of similarity is quite striking. Barring the
negligible scalar difference (b10%) in the error metrics, our
study indicates that the maximum and minimum ‘climatologic’
(6 year average) BIAS and RMSE occur in the same Köppen cli-
mate zones for both US and Australia. A point to note is that
the error metrics for BIAS and RMSE are for unconditional
cases (covering both rain and no-rain events). For climates
with higher frequency of rain (e.g., Cfa-Humid Subtropical),
we clearly see much closer agreement in BIAS and RMSE values
forUS andAustralia (solid lines in Figs. 2a and b). This provides a
strong indication that a world map of average satellite rainfall
uncertainty for BIAS and RMSE may be possible for 3B42V6
using a classification system similar to that of the Köppen
climate.

A potential drawback of unconditional metrics (BIAS and
RMSE) may be that the large percentage of no-rain events
are falsely contributing to this observed similarity. Hence,
the conditional BIAS and RMSE were also computed. The con-
ditional case refers to the events when GV data detected rain
(see dashed lines in Figs. 2a and b). In general, a climate-
based similarity still persists in the uncertainty for BIAS and

Table 2
Summary of satellite rainfall data and ground validation rainfall data.

DATA Products Native spatial scale
(degree)

Native temporal
resolution (hours)

Period (years)

Satellite rainfall data: NASA's TMPA 3B42RT 0.25 3 2002–2007
Ground validation: NEXRAD (for US) Stage IV 0.04 1 2002–2007
Ground validation gridded gauge (for Australia) Gauge 0.25 24 2002–2007
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RMSE even when the rainy events (as defined by GV data) are
exclusively considered. There are however cases where the
climate regime-dependent values for conditional BIAS and
RMSE are not quite similar. For example, the climate regimes
Aw and Bwh, which have greatest differences in both condi-
tional BIAS and RMSE, contain much less sampling points
(83 and 773) in U.S. compared to Australia (1125 and 4777
points). This may indicate that the sampling error has inad-
vertently crept into the results, even with a 3-year dataset.
A general implication of this finding is that the BIAS and
RMSE (conditional or unconditional) for a GV site can bepoten-
tially ‘transferred’ to far away non-GV sites having the same
Köppen climate provided some care is provided to sampling
and scale.

Even though there appears to be a detectable level of simi-
larity for metrics BIAS and RMSE for various climate classes, it
is obvious that the terrain features (which can influence satel-
lite rainfall estimation uncertainty) are not necessarily uni-
form. For example, for the Köppen class Cfa, that represents
the humid sub-tropical climate, there may be mountainous as
well as flat terrain regions distributed in both US and Australia.
In order to investigate the similarity of metrics for a similar

terrain, we extracted the mountainous grid boxes for the re-
gions of US and Australia belonging to the Cfa climate. For the
US, 977 grid boxes were identified as ‘mountainous’ (near the
Appalachian mountain range) from a total of 4025 Cfa grid
boxes. For Australia, a similar sample size of 786 Cfa grid
boxes were identified as mountainous. Table 3 summarizes
the extent of similarity of metrics for BIAS and RMSE for the
mountainous regions of the Cfa climate. It seems that the Köp-
pen climate similarity hypothesis still holds even for similar
terrain features within the same climate.

Fig. 3 provides the comparison of joint probability (of de-
tection) of rain over US and Australia for the same Köppen

Table 3
Similarity of error metrics (BIAS and RMSE) for mountainous regions within
the Cfa (humid subtropical) climate zone for US and Australia.

Error
(mm/day)

USA (Cfa) Australia (Cfa)

Unconditional Conditional Unconditional Conditional

BIAS −0.247023 −0.634599 −0.211505 −0.749554
RMSE 6.686498 9.302722 8.083081 10.269574

BIAS over Same Köppen Climate Classes

Köppen Climate Classes

Köppen Climate Classes

RMSE over Same Köppen Climate Classes
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Fig. 2. a. Comparison of BIAS in United States and Australia over same Köppen climate classes for 3B42V6 (based on 6 years of data; units on y-axis: mm/day). b.
Comparison of RMSE in United States and Australia over same Köppen climate classes for 3B42V6 (based on 6 years of data; units on y-axis: mm/day).
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climate classes. A different picture is revealed herein. The ex-
tent of similarity for the joint probability of detection rain (y
axis) in United States and Australia is found to be quite low
and unlike that for BIAS and RMSE. The maximum values
for the POD-rain are larger in United States than in Australia
for all the climate classes. This is not unexpected because
Stage IV radar (GV data for United States) data, being a spa-
tial average, is more sensitive at detection of rain events
than the point-based gauge data (GV data for Australia).

To further quantify the statistics on the trend of the joint
probability, we fitted the joint probability using a sigmoidal
model function (in Section 3.2, Eq. (1)). There are two pa-
rameters in the model: A and B; A is inversely related to the
maximum joint probability, while B represents the sensitivity
to detecting the rain. Higher B means that the joint probabil-
ity rises fast with increasing threshold (of GV data) and mis-
ses much less lighter rain than one with lower B. Table 4
shows how quantitatively different the parameters A and B
are for US and Australia, while in Fig. 4, we show the POD-
rain at a given rainfall threshold (5 mm/day and 20 mm/
day) for various climate zones. Herein (Table 4 and Fig. 4),
we find it hard to establish the hypothesis of similarity of
error metrics in Köppen climate classes.

Because it is evident that the point-based nature of gauge
data (even if it is gridded afterwards) led to an underestimation

of POD-rain compared to a spatially-averaged GV (like NEX-
RAD), we also investigated the possible role played by gauge
density using a small-scale highly dense rain gauge network
(Micronet: http://grl.ars.usda.gov/micronet/) The Micronet
network is located in the Little Washita River Experimental
Watershed in southwestern Oklahoma of the USwith 5 minute
meteorological data from 42 stations covering an area of
610 km2 (approximately one 0.25 degree 3B42V6 grid box;
see Fig. 5). Micronet data is quality controlled and flagged for
bad quality data, which is very important because a significant
component for a successful research study is the requirement
of high quality data (Anagnostou et al., 2010). The Micronet
data was available for the period of 2002–2004 (3 years).

U.S. Joint Probability of Detection Rain (2002-2007)

Australia Joint Probability of Detection Rain (2002-2007)
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Fig. 3. a. Joint Probability of Detection for rain (POD-rain) over United States.
X-axis represents the GV rain threshold for defining the probability of detec-
tion as satellite rain>0 given GV rain>threshold. b. Joint Probability of De-
tection for rain (POD-rain) over Australia. X-axis represents the GV rain
threshold for defining the probability of detection as satellite rain>0 given
GV rain>threshold.

Table 4
Joint probability (POD-rain) model parameters (A and B of Eq. (1)) over
United States and Australia for similar Köppen climate classes.

Joint probability
model (A and B)

United States Australia

A B A B

AW 1.1 1.1 1.4 0.5
BWK 1.1 1.1 3.75 1
BWH 1.2 0.5 2.1 0.25
BSK 1.05 0.5 4.2 0.5
BSH 1.05 0.5 1.5 0.1
CFA 1.05 0.5 1.75 0.1
CFB 1.05 0.5 2.25 0.1
CSA 1.25 1.5 3.75 0.1
CSB 1.5 1.5 3.6 0.1

Joint Probability of Detection
Rain (Threshold 5mm/day)

Joint Probability of Detection
Rain (Threshold 20mm/day)
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Fig. 4. a. Joint Probability of Detection for rain (POD-rain) over Australia and
US, for GV rain>threshold 5 mm/day. b. Joint Probability of Detection for
rain (POD-rain) over Australia and US, for GV rain>threshold 20 mm/day.
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Fig. 6 shows the dependence of the 3 year average values
of BIAS, RMSE and POD-rain on Micronet gauge density. The
POD-rain shown here refers to the marginal probability of de-
tection (see Appendix A). This dependence is shown for NEX-
RAD, 3B42V6 and Gauge. Here, ‘Gauge’ is analogous to the
Australian scenario where only one Micronet gauge (ran-
domly selected) was used. As for the sensitivity analysis, a
set of gauges numbering 1, 5, 10, 20, 30 and 42 were randomly
sampled 10 times from the total set of 42 gauges. This means
that once the Micronet stations were sampled, the mean rain-
fall valuewas computed as the average of the sampled stations.
This average yielded the GV data time series realization (for a
given combination of gauges), whichwas then used for the cal-
culation of error metrics. Finally, the BIAS, RMSE and POD-rain
computed for each realization (of random selection ofMicronet
gauges) were averaged over the 10 realizations to produce the
expected value (mean) of uncertainty for a given combination
of Micronet gauges.

The dependence of error metrics on gauge density may
explain the reported lack of similarity for POD-rain between

US and Australian Köppen climate zones. For BIAS and RMSE, it
appears that gauge density is not a critical factor. A maximum
number of 5 gauges per 0.25 degree grid box appear sufficient
to obtain stable estimates of error over a 3 year average. The
Australian GV data had typically 1 gauge within a 0.25 degree
grid box, which may explain the observed similarity observed
for BIAS and RMSEbetweenUS andAustralia for similar climate
zones. On the other hand, POD-rain (lowermost panel) appears
highly sensitive to the gauge density, barely stabilizing even
after 20 gauges in the 0.25 degree grid box to yield a somewhat
stable error estimate for different data types (Fig. 6).

Herein it is important to raise the issue of rainfall threshold
to define an event as rainy or non-rainy. On the surface, the re-
quirement of a very high density (more than 20 per 0.25 degree
box) of gauges for POD-rain estimates to stabilize may seem
somewhat counter-intuitive as one would expect theMicronet
rainfall hyetograph to converge to the ‘true’ series with the use
of fewer gauges. However, the Fig. 6 PODplotswere derived for
a threshold of 0.0 mm/day, which perhaps contributed to the
noisy nature of the plot. On the other hand, if a systematically

Fig. 5. The Oklahoma Mesonet (black dots on the Oklahoma map) and Micronet (location shown on the Little Washita River watershed shown above in lower
panel) networks. The stations marked with red color for Micronet are retired since 2005. The small grid boxes shown (in grey) inside of the big black box for
Mesonet is of 0.25 degree size. There are 42 gauges within the 0.25 degree grid boxes comprising the Micronet. Each grid box on the upper panel is equivalent
to a 0.25 degree grid box [Figure from Anagnostou et al. (2010)].
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increasing non-zero threshold is used, the POD is seen to stabi-
lize after a finite number of gauges. For example, a threshold of
0.01 mm/day reveals a 20 gauge/0.25 degree density is ade-
quate to achieve stable estimates of POD (Fig. 7). A threshold
of 0.05 mm/day reveals the stabilization number of gauges is
considerably less and approximately around 5 gauges (see
Fig. 8).

The issue of threshold raises an interesting question that is
beyond the scope of this study. What should be an acceptable
threshold for POD analysis? To a hydrologist engaged in hourly
simulation of hydrologic fluxes, 0.05 mm/day (equivalent to
0.0021 mm/h) might be considered measurement ‘noise’ for
the sensor or rain gauge (radar, tipping bucket or satellite), or
it might even be obscured by model noise and precision issues.
This issue certainly needs more investigation as methods are

prototyped for transfer of error metrics during the GPM era.
At the moment, it appears that a Köppen-type climatologic
classificationmap for POD (whether rain, no-rain or combined)
cannot be resolved yet without access to highly dense gauge
network at GV sites.

5. Conclusion

Our investigation revealed that only the first and second or-
dered moments of error (BIAS and RMSE) are most amenable
to a Köppen-type climate type classification in different land-
masses. These two error metrics exhibited striking similarities
formaximum andminimumvalues for a 6 year average for dis-
tant landmasses. Use of a high gauge density network (Micro-
net) revealed further that contingency based metrics such as
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Fig. 6. Estimation of error metrics as a function of Micronet gauge density in a typical 0.25 degree 3B42V6 grid box for three years from 2002 to 2004. Here, ‘Radar’
(solid line) refers to NEXRAD, while Gauge (dotted line) refers to one gauge selected randomly from the 42 Micronet gauges (BIAS and RMSE unit: mm/day). POD
(lowermost pane) refers to detection for rain with a small threshold of 0.01 mm/day.
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POD are strongly sensitive to the gauge density to yield stable
estimates.

The results of this climate similarity investigation indicate
that the long-term average BIAS and RMSE for a GV site can be
used as a proxy for a far away non-GV (ungauged) site provid-
ed the Köppen climates are similar. On the other hand, such a
method does not seem likely to succeed for higher-ordered
metrics as of yet. As mentioned earlier, most satellite HRPPs
use essentially the same raw data input. It is basically the na-
ture of the estimation methodology combined with the rain
system being applied on that dictates the space-time struc-
ture of error metrics in the data domain. In this regard, the
work of Berg et al. (2006) may be insightful in furthering
the investigation of similarity of error metrics. By breaking
up uncertainty into difference and detection (as our study)
and connecting it to physical variables such as column water

vapor, rain system (convective and stratiform), aerosol con-
centrations etc. Berg et al. (2006) provides a foundation for
exploring how the similarity (or lack of) in uncertainty can
be explained.

In the lead up to GPM, it may now be appropriate to inves-
tigate the various estimation methodologies used in HRPPs as
a function of rain systems, location and climate in order to un-
derstand the similarity of error according to an easily ‘classifi-
able’ and ‘mappable’ underlying pattern. Such patterns can
help estimate uncertainty of GPM products over ungauged re-
gions where satellite rainfall data will be most useful. Errors
are also known to have a strong dependency on the magni-
tude of rainfall. So, the study of joint distribution of error
with rainfall estimates would be worthwhile as an extension
of the climate similarity work. It is our belief that an underly-
ing pattern will most likely be revealed according to some
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Fig. 7. Probability of Detection for rain and no-rain (POD) as a function of Micronet gauge density in a typical 0.25 degree grid box of 3B42V6, with a threshold of
0.01 mm/day.
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simple relationship that could be leveraged for the creation of
a global classification map on satellite rainfall estimation
errors.
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Appendix A. Formulation of error metrics

For consistency in comparison between US and Australia,
the temporal resolution at which the metrics was computed
was daily. The spatial resolution was 0.25°.

BIAS

If i indicates one daily data in a grid box (derived from eight
3 hourly values of the day), Yi is the satellite estimate, and Xi is
the corresponding NEXRAD observation. N is the number of
data in the time period, then BIAS is computed as the average
of errors as:

Bias ¼ 1
N

XN
i¼1

Yi−Xið Þ:
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Fig. 8. Probability of Detection for rain and no-rain (POD) as a function of Micronet gauge density in a typical 0.25 degree grid box of 3B42V6, with a threshold of
0.05 mm/day.
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RMSE

RMSE (Root Mean Square Error) is calculated as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

Yi−Xið Þ2
vuut :

Probability of Detection (POD)

PODmeasures the fraction of rain or no-rain events that were
correctly detected by satellite.

POD−rain ¼ hits
hitsþmisses

POD−norain ¼ correct rejection
correct rejectionþ f alse alarms

:

In this study, the focus of POD was mainly on the detection
of rain events (POD-rain), while POD for detection of both rain
and no rain is the sum of POD-rain and POD-norain.
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