
RESEARCH PAPER

Improving operational flood forecasting in monsoon climates with bias-corrected
quantitative forecasting of precipitation
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ABSTRACT
For flood-prone countries subject to large-scale and seasonal flooding, precipitation forecasting is the
single most important factor for improving the skill of flood forecasting for such large river basins
dominated by the monsoon. Several flood forecasting agencies in South and Southeast Asia, where
monsoon floods dominate (e.g. Bangladesh, Pakistan, India, Thailand and Vietnam), are currently
using quantitative precipitation forecast (QPF) from numerical weather prediction (NWP) models.
Although there are numerous studies reported in the literature to evaluate QPF precipitation
performance, there appears to be lack of studies about the impact on the flood forecasting skill. In
this study, we demonstrate tangible improvements in flood forecasting based on NWP precipitation
forecast using an approach that is operationally feasible in resource-limited settings of many flood
agencies. Our improvement is based on a bias correction methodology for enhancing the skill of
QPF using observed and QPF climatology. The proposed approach can be applied to any type of
QPF dataset such as those dynamically downscaled from regional NWP. We demonstrate clear and
consistent improvement in the enhancement of flood forecasting skill at longer lead times of up to
7 days in three river basins of Ganges, Brahmaputra and Mekong by about 50% (reduction in
RMSE) or 25% improvement in correlation when compared to the forecasts obtained from
uncorrected QPF. Furthermore, our proposed bias correction methodology yields significantly
higher skill improvement in flood forecast for global (non-downscaled) QPF than those dynamically
downscaled QPFs for the macroscale hydrologic model used for forecasting stream flows. The
simplicity of the QPF bias correction methodology along with the numerical efficiency can be of
tremendous appeal to operational flood forecasting agencies of the developing world faced with
large-scale monsoonal flooding and limited computational resources and time for disaster response.
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1. Introduction

In large river basins located in the monsoon-dominated cli-
mates of Asia and Africa, such as the Ganges, Brahmaputra,
Indus, Mekong, Niger and Nile, the most flood-prone country
is often located downstream (Katiyar and Hossain 2007).
Such countries receive the lion share of flooding as seasonal
and transboundary flow (Sood and Mathukumalli 2011). In
general, the forecasting of such flooding can be performed
in many different ways by operational flood management
agencies. Examples of various approaches are: persistence
techniques based on auto-regression (Hirpa et al. 2013), stat-
istical-dynamical technique (Cane et al. 2013), use of hydro-
logic-hydrodynamic models (Maswood and Hossain 2015) or
assimilation of weather forecast and satellite data (Bianca-
maria et al. 2011).

For flood-prone countries, precipitation forecasting is the
most critical factor for improving the skill of flood forecasting
for such large river basins dominated by the monsoon (Coe
2000). Forecasting of precipitation is needed to increase the
lead time of a flood forecast beyond the time of concentration
of the river basin. Hereafter, we shall use flood forecast with
flow forecast to imply the same physical phenomenon. If we
assume that nowcast estimated precipitation (such as satellite
multi-sensor precipitation products) provides the most
reliable source of precipitation for large river basins, the
lead time will remain limited to the hydrologic time of con-
centration of flow. Thus, one of the most common practices

for increasing the flood forecasting lead time beyond the
time of concentration is to use Numerical Weather Prediction
(NWP) models (Cloke and Pappenberger 2009, Nam et al.
2014, Yucel et al. 2015). NWPmodels can quantitatively fore-
cast precipitation and their use are becoming widespread
among operational flood agencies as data on meteorological
forcings and computational resources are more widely avail-
able (e.g. Jasper et al. 2002, Liguori et al. 2012, Liu et al. 2015).
In this study, NWP forecast precipitation is considered
synonymous with Quantitative Precipitation Forecast (QPF).

Many studies have been conducted for real-time flood
forecasting using NWP precipitation along with hydrologic
and hydrodynamic models (Verbunt et al. 2006, Roberts
et al. 2009, Liguori et al. 2012). However, such studies have
shown that the precipitation forecasting using the NWP
remains challenging (Ebert 2001, Yucel et al. 2015). The
high uncertainty of NWP precipitation at longer lead times
propagates through the hydrologic transformation of flood-
ing to often results in low skill in forecast of flood level
(Bartholmes and Todini 2005, Nam et al. 2014).

Recent studies also show that the use of more regionally
constrained NWP models (such as the Weather Research
and Forecast-WRF model) can improve the QPF estimates
in monsoon climates better than global NWP models
(Kumar et al. 2016). Regional NWP models allow one to
dynamically predict the mesoscale phenomena comprising
convective and cumulus by taking advantage of terrain and
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land use features afforded by a higher resolution model (Rao
et al. 2007, Hong and Lee 2009, Ahasan and Khan 2013,
Hsiao et al. 2013, Sikder and Hossain 2016).

Several flood forecasting agencies in South and Southeast
Asia where monsoon floods dominate (e.g. Bangladesh, Paki-
stan, India, Thailand and Vietnam) are currently using WRF
as the regional NWP model as a source for higher resolution
QPF (Shrestha et al. 2015). The Department of Hydrology
and Meteorology-Nepal and Department of Hydro-meteoro-
logical Services-Bhutan have also begun introducing dynami-
cally downscaled QPF precipitation for flood forecasting
(World Bank 2016).

Although there are numerous studies reported in the lit-
erature to evaluate global QPF or the dynamically downscaled
QPF precipitation performance, there appears to be lack of
studies about the impact on the flood or flow forecasting
skill. This study is motivated by the current lack of a struc-
tured approach to the use of NWP-based QPF forecasting
for flow in monsoon dominated flood regimes. In particular,
we are motivated by the need to improve the use of global
QPFs from NWP in a way that is cognizant of the resource
limitations of forecasting agencies of flood-prone countries.
Our current study is also a natural progression from a series
of two previous works carried out to systematically under-
stand the impact of NWP parameterizations for cloud micro-
physics, cumulus physics and initial conditions on QPF skill
(Sikder and Hossain 2016, 2018). The goal of these two pre-
vious studies was to explore a set of core model parameteriza-
tions for skilful QPF in monsoonal climates. The goal of this
study is to explore the impact of those parameterizations on
flow forecasting skill. To help readers understand the back-
ground for this study, we list key findings from the previous
studies as follows:

(1) An optimal set of core parameterizations and scale exists
for South and Southeast Asian regions that can be inde-
pendently validated (Sikder and Hossain 2016). A
regional NWP model can be setup for the monsoon-
dominated region using a single set of model parameter-
izations. This optimized set of model parameterizations
is suitable for operational flood forecasting system,
where variable parameterization schemes for different
events or ensemble forecasting is not a feasible option
due to computational limitations.

(2) Betts–Miller–Janjic cumulus parameterization scheme
with WRF Single-Moment 5-class, WRF Single-Moment
6-class and Thompson microphysics schemes exhibited
the most skill in South Asian region (Sikder and Hossain
2016). These options can be used as the starting point of
further studies, such as application of regional NWP for
flood forecasting.

(3) Finer spatial resolution (3 km) regional NWP models
without cumulus parameterization schemes do not
necessarily yield significant improvements, especially if
the cloud microphysics scheme is not sufficiently com-
plex (Sikder and Hossain 2016). Use of the relatively
coarser resolution (e.g. 10–30 km) model can save com-
putational power and time, since this scale provides simi-
lar skill as the finer resolution in the monsoon weather.

(4) The more complex initial condition techniques typically
involve more QPF uncertainty and cannot significantly
exceed the performance of simple initialization tech-
niques in monsoon weather (Sikder and Hossain 2018).

Lack of good quality observed data in this region
makes it difficult to improve the initial condition of
real-time NWP forecast. Therefore, use of the simple
model initialization technique is worthwhile for oper-
ational forecast.

The natural extension of above two studies is to now
explore how well NWP-based QPF precipitation from global
or regionally constrainedmodels (i.e. dynamically downscaled
byWRF) performs in flow forecasting during the flood season.
An issue worth an investigation for operational flood agencies
is whether flood forecasting in large river basins benefits from
regionally constrained and higher resolution NWP models
that are computationally prohibitive. We test the idea of pub-
licly available global QPFs being sufficient for capturing flood-
ing in large river basins of monsoon climates. The specific
research question we ask in this study is ‘How can we improve
flood forecasting based on NWP precipitation forecast that is
skilful and operationally feasible in resource limited settings of
flood agencies of monsoon dominated countries?’

2. Study region

For assessment of operational flood forecasting based on
NWP QPF, two of the world’s largest river basins that experi-
ence large scale and seasonal flooding during the monsoonal
season were selected. These are: Ganges Brahmaputra
Meghna (GBM) basin and the Mekong river basin (MRB).

The Ganges, Brahmaputra and Meghna (GBM) river
basins comprise land areas from Bangladesh, India, Nepal,
Bhutan and China (Nishat and Rahman 2009, Figure 1).
With Meghna river basin being a considerably smaller part
of GBM, we shall confine our study to Ganges and Brahma-
putra river locations. The total drainage area of GBM is about
1.72 million sq. km, with a population of at least 630 million.
The downstream most country (i.e. Bangladesh) is the most
flood-prone and occupies only 8% of GBM basin area. All
of the basin streamflow flows through that country and dis-
charges into the Bay of Bengal (Nishat and Rahman 2009).
For more details about the basin, the reader is referred to Sid-
dique-E-Akbor et al. (2014) AQ3

¶
, while historical evolution of the

flood forecasting system of Bangladesh may be found inWeb-
ster et al. (2010), Hossain et al. (2014a, 2014b, 2014c).

The MRB (Figure 1) is also a monsoon-dominated river
basin currently undergoing rapid development due to
increasing water and energy demand (Zarfl et al. 2015 AQ4

¶
). It

comprises land areas from China, Myanmar, Thailand, Viet-
nam, Laos and Cambodia (Kummu and Sarkkula 2008 AQ5

¶
). In

addition to development pressures, a changing climate (e.g.
a changing Monsoon) and rising sea level are perhaps the big-
gest threats to livelihood in the MR (Syvitski et al. 2009). For
more details on the MRB, the reader is referred to Hossain
et al. (2017).

3. Models

3.1. Hydrologic model for QPF-based flood forecasting

The Variable Infiltration Capacity (VIC) model, first devel-
oped by Liang et al. (1994) was used as the macroscale distrib-
uted hydrological model for forecasting of riverine flooding in
GBM and MRB. VIC is a large scale, semi-distributed macro-
scale hydrological model. It is capable of solving full water
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and energy balances. The basic structure of the VIC model is
described in detail by Liang et al. (1994); followed by many
papers that provide various updates to the model (e.g. Cher-
kauer et al. (2003) for cold land process updates, Andreadis
et al. (2009) for snow model updates, Bowling and Lettenma-
ier (2010) for lakes and wetlands, among others). The model
has been widely applied for purposes such as seasonal hydro-
logical forecasting, climate change impacts studies, and water
and energy budget studies among various other applications.
VIC’s distinguishing hydrologic features are its represen-
tation of the role of sub-grid variability as a control on soil
water storage and in turn runoff generation, and its parame-
terization of base flow, which occurs from a lower soil moist-
ure zone as a nonlinear recession (Dumenil and Todini 1992).

The basic model features of VIC are as follows: (1) The
land surface is modelled as a (lumped) grid of large
(>1 km), flat, uniform cells; (2) Inputs to the model are
time series of daily or sub-daily meteorological drivers (e.g.
rainfall, snow, air temperature, wind speed); (3) Land-atmos-
phere fluxes, and the water and energy balances at the land
surface, are simulated at a daily or sub-daily time step;
Water can only enter a grid cell via the atmosphere; (4)
Grid cells are simulated independently of each other, and
entire simulation is run for each grid cell separately, one
grid cell at a time, rather than, for each time step, looping
over all grid cells; (5) Routeing of streamflow is performed
separately from the land surface simulation, using a separate
model (i.e. the routeing model of Lohmann et al. 1996, 1998).

The VIC model was set up over Ganges, Brahmaputra and
MRB at daily time step with 0.125, 0.25 and 0.1 degree spatial
resolution, respectively. The model setups calibrated and sub-
sequently validated based on quality-controlled hydro-
meteorological forcing datasets from in situ and space plat-
forms. Most of these quality controlled forcings are derived
from Global Summary of Day (GSOD) archived by National
Climatic Data Center (NCDC). Details of the calibration and
validation are available in Siddique-E-Akbor et al. (2014) for
GBM and Hossain et al. (2017) for MRB. Currently, this

calibrated setup provides routine nowcast of streamflow,
soil moisture and runoff operationally for 4 national agencies.
These nowcast hydrologic variables are currently rendered for
end users on the South Asian Surface Water Modeling System
(SASWMS) portal (http://depts.washington.edu/saswe).
Figure 1 shows the skill of the VIC model to capture the
flow peaks during the Monsoon season for GBM and
Mekong. Table 1 provides performance metrics in terms of
RMSE and efficiency of the VIC model calibrated using the
quality controlled forcing datasets prepared from GSOD.
These metrics indicate that the VIC model acceptable for
assessing the propagation of NWP-based QPF precipitation
forecasts for assessment of skill in flood forecasting.

3.2. NWP model for QPF

The Global Forecasting System (GFS) developed by the
National Oceanic and Atmospheric Administration
(NOAA) was used as the key source of global NWP model-
based QPF. GFS produces global-scale weather forecast
every 6 hours up to 16 days lead time at a spatial resolution

Figure 1. Study region along with VIC Model calibration points.

Table 1. VIC Hydrologic model calibration and validation metrics for Ganges,
Brahmaputra and Mekong river basins. Ganges and Brahmaputra basins were
assessed at Hardinge Bridge and Bahadurabad, respectively, while Mekong
basin was assessed at Kampong Cham (see Figure 1).

Basin Period
RMSE
(m3/s) Correlation

Efficiency
(Nash–
Sutcliffe)

Calibration Ganges 2002–
2005

6523 0.89 0.78

Brahmaputra 2002–
2005

7606 0.91 0.86

Mekong 2003–
2008

6390 0.93 0.84

Validation Ganges 2006–
2010

7081 0.89 0.77

Brahmaputra 2006–
2010

10918 0.92 0.82

Mekong 2009–
2013

5615 0.92 0.85
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of 1 degree. As a publicly available service for the world, GFS
is ideal for short-term weather prediction applications, par-
ticularly in South Asia where economic resources are con-
strained (historical and real-time data are available: https://
www.ncdc.noaa.gov/data-access/model-data/model-datasets/
global-forcast-system-gfs). The spatial and temporal resol-
utions vary with lead time. For first 10 days of lead time,
the GFS provides forecasts for every 3 hours, and the outputs
are available at 0.25, 0.5, 1.0 and 2.5 degree resolutions. His-
torical data of this model are available in 0.5 degree resolution
since October 2006. Lead time of the historical data varies
with time. The 0.5 degree GFS-based NWP model QPFs
were used to run this study for propagation through VIC
model with or without dynamic downscaling by WRF.

3.3. The WRF model

TheWRF model V3.7.1 was used for dynamic downscaling of
coarse resolution global NWP weather forecasts, such as from
GFS. Such downscaling generated high-resolution precipi-
tation forecast over the GBM and MRB. WRF is a mesoscale
cloud resolving NWP model, which is the successor of the
MM5 model. It uses non-hydrostatic Euler equations,
which are fully compressible in nature. WRF offers various
features such as advanced dynamics, physics, and numerical
schemes. For computation, the model uses Arakawa-C grid
staggering for horizontal discretization, and second or third
order Runge–Kutta integration scheme for time separation.
WRF uses the terrain-flowing pressure coordinate system.
Thus, the upper boundary of the model maintained by a con-
stant pressure level. Further description of WRF physics and
dynamics can be found in Skamarock et al. (2008).

The WRF model was recently applied in two previous
studies to assess the role of cumulus and cloud microphysics
parameterizations with scale (Sikder and Hossain 2016) and
initial conditions (Sikder and Hossain 2018) over GBM and
Indus river basins. The Sikder and Hossain (2016) study
explored the choice of 3 spatial resolutions from 3 to 27 km
with 3 cloud microphysics and 5 cumulus parameterizations.
A total of 45 combinations of WRF configuration were
assessed to identify a set up that was most skilful in predicting
precipitation in the monsoon climates of Ganges, Brahmapu-
tra. This optimal set up was later independently verified over
Indus (Sikder and Hossain 2016). In the Sikder and Hossain
(2018) study, various combinations of initialization of WRF
model (known as hot start and cold start) were investigated
with the optimal WRF set up identified in the earlier study.
In this study, we have applied most optimal WRF set up
(comprising the appropriate parameterization and skill)
identified in the previous two studies, over GBM and MRB
and for investigation of the impact of dynamic downscaling
of QPF on flood forecasting. This set up is: 9–27 km spatial
resolution; WSM5 or WSM6 or Thompson cloud microphy-
sics scheme and Betts–Miller–Janjic cumulus parameteriza-
tion with a cold start for model initialization.

4. Assessment methodology

We first investigated the impact of regional NWP (i.e. WRF)
based dynamic downscaling of global QPF on flood forecast-
ing by comparing it with flood forecasts generated from glo-
bal QPFs only. For both basins, a one month time period was
selected during the peak of the monsoon. The selected time

range for the basins is: 1 August–10 September 2015 (41
days) for GBM; and 1 September–30 September 2011 (30
days) for MRB. These two periods were unusually flood-
prone (high flow) episodes and therefore ideal for investi-
gation of QPF-based flood forecasting.

The available 3 hourly GFS forecast data (global QPF and
other relevant forcings) have a lead time up to 10 days and 8
days in case of GBM and Mekong basin, respectively. To gen-
erate the continuous 10 days WRF forecast within the study
period of GBM basin, the WRF model was initialized 9 days
before 1 August 2015 (i.e. 23 July 2015, total 50 days of simu-
lation). In this way, continuous 1–10-dayWRF simulated fore-
casts were generated for selected study periods. Similarly, the
simulation of the MRB was started 7 days before 1 September
to generate a complete 8-day forecast for the study period
(total 37 days of simulation). For each day of forecast, the
VIC model was spun up with the prior 2 years of data (i.e.
GSOD precipitation) to reach equilibrium conditions.

Two different years were selected for these river basins
based on the intensity of the monsoon season. The idea was
to select years with contrasting intensity of precipitation for
testing the forecasting scheme. The years 2009 and 2015
were selected for the GBM basin, where 2009 experienced a
relatively less intense monsoon season. Similarly, the mon-
soon season in the year 2010 was relatively weak in Mekong
basin, while 2011 was an extreme flood year. The WRF model
was simulated using the selected optimized setup (i.e. WSM5-
BMJ with 27 km grid), for these two monsoon seasons start-
ing from June to September of each year. The VIC model then
forced by the forecasted precipitation and the first month was
excluded from the analysis as model spin-up time. The results
of the further study were reported based on the July–Septem-
ber month flow outputs.

5. Results

Figure 2 shows an example of the skill of flood forecast in the
MRB at the location of Kampong Cham at a 6-day lead time.
The flow forecast pertinent to Julian Day on the x-axis that
was predicted 6 days ago is presented for various combinations
of QPF (global from GFS or regionally downscaled by WRF)
and compared against observed streamflow, observed clima-
tology and VIC modelled streamflow. The difference between
long-term observed climatology and other flows (i.e. observed
and simulated) indicates that 2011 was an extreme flood year
in the Mekong basin. The figure indicates that the difference
between the optimized WRF setups is not significant. More-
over, the performance of the global NWP (i.e. GFS) is almost
similar to the optimized WRF setups. Since the optimized
WRF setups performed equallywell, we used the computation-
ally less expensive option, the WSM5-BMJ with 27 km grid as
the WRF forecast for further study.

Figure 3(a,b) provides a closer look at the performance of
flood forecast for various lead times for GBM basin in the
context of VIC simulated flow from quality controlled now-
cast forcing (shown as ‘GSOD’ in the figure) as well as observe
flow. The various lines represent the forecast as obtained from
global QPF (GFS) and downscaled QPF (GFS downscaled by
WRF) for a given optimum spatial resolution (i.e. 27 km). A
good quality and skilful forecast is one that closely remembers
the line obtained with quality controlled nowcast forcings (i.e.
from GSOD in Figure 3(a,b)). What is clear from these
Figures 2 and 3(a,b) is that the skill of regionally downscaling
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global QPF in flood forecasting is comparable to that from
using only global QPFs. At times, the global QPF (see GFS-
3day in Figure 3(a) for Brahmaputra river basin) seems to
outperform modestly the downscaled QPF in flow forecast-
ing. For the Ganges river basin, it appears there is a modest
benefit of applying regional NWP for flood forecasting. Over-
all, due to the very modest gain (or the lack of it) in flood fore-
casting skill, there is no clear trend that informs an
operational flood forecaster that incorporating computation-
ally intensive QPF dynamic downscaling is worthwhile.

It is important to state that the above finding should not be
misconstrued as dynamic downscaling being unnecessary in
all circumstances. There could be many factors at play for
this apparent lack of clarity on the flood forecasting benefits
of using downscaled QPF as indicated earlier. There may
also be potential dependency on the quality of the hindcast
meteorological data used inVICmodel due to the hydrological
system memory or the lack of appropriate hydrologic process
complexity to take advantage of higher resolution and dynami-
cally downscaled QPFs. It is likely that the coarser grid

Figure 2. Flow forecast obtained from WRF downscaled GFS forecasts and global QPF (as GFS) and compared with GSOD and observed flow at the 6-day lead time.
The comparison was conducted at Kampong Cham in Mekong river (see Figure 1 for location of Kampong Cham). Here: GSOD is Global Summary of Day archive by
NCDC and represents the flow simulation by VIC model from quality controlled forcing datasets ; GFS is the flow forecast obtained at 6-day lead using the global QPF
in VIC model as is without any dynamic downscaling; All other lines except for ‘Observed’ represent various combinations of dynamically downscaled QPF via WRF.
WSM5 – a cloud microphysics (MP) scheme found optimal for monsoon climates; TS – Thomson cumulus scheme found optimal for monsoon climates. Details on the
skill of precipitation forecast for TS and WMS5 parameterizations can be found in Sikder and Hossain (2016, 2018).

Figure 3. (a) Assessment of flood forecasting from NWP QPF (downscaled or global) for various leads times for Brahmaputra river basin at Bahadurabad location
inside Bangladesh (see Figure 1). GFS represents the global QPF forecast as publicly available without any downscaling, while WRF represents the dynamically down-
scaled QPF via WRF. The WRF configuration pertains to 27 km resolution and WSM5 and BMJ combination. GSOD represents the VIC modelled flow from quality
controlled forcing datasets (nowcast). Upper panel shows actual forecasted flows; Lower panel shows flow anomalies relative to the observed flow climatology.
(b) Same as Figure 4(a) but for Ganges river basin assessed at Hardinge Bridge location inside Bangladesh (see Figure 1).
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increments of global NWP (GFS) are more than compensated
by consistent dynamics and parameterizations throughout.
However, for very complex terrain where local terrain drives
significant mesoscale circulations amplifying precipitation,
dynamic downscaling is known to be essential. In large river
systems, localized precipitating systems are not the dominant
mechanism for riverine flooding. The goal of this study to
explore practical and operationally feasible ways where an
agency can advance operational flood forecasting using global
QPFs that are publicly available (see next section).

Since precipitation data from any NWP model contains
systematic bias, it should be corrected before using in hydro-
logic purpose. Many studies have been conducted to find out
an appropriate bias correction approach for global as well as
regional NWP precipitation forecast (e.g. Mpelasoka and
Chiew 2009, Chen et al. 2013). Few of the studies suggested
that the quantile mapping bias correction approach shows
relatively better performance in case of heavy precipitation
(Themßl et al. 2011AQ6

¶
). However, it is difficult to identify a

bias correction approach that works universally well for all
situations (Räty et al. 2014).

Given the apparent lack of overwhelming benefit of dyna-
mically downscaled QPF in flood forecasting for the hydrolo-
gic model in question (VIC), our next goal was to develop a
practically efficient approach as a correction technique for glo-
bal QPFs in order to maximize its skill in precipitation. Here,
we used the ‘delta change’ method (Hay et al. 2000), which is
reported to be not a significant departure from the distribution
mapping approach (Roosmalen et al. 2011). This approach is
modular enough that it can be easily applied to downscaled
QPFs fromWRF aswell. The approach is based on climatology
of forecasts fromNWP and it applies bias correction by taking
advantage of anomaly from climatology of observations. We
applied the approach on both global QPFs and downscaled
QPFs to compare the relative performance.

In delta change (also known as ‘constant scaling’) bias cor-
rection methodology for QPF, the daily gridded precipitation
climatology was derived from gridded NCDC–GSOD data
that is available in a quality controlled format over a long
period. These gridded NCDC–GSOD data were already
used for VIC model calibration and validation. This gridded
climatology is considered as the true (or observed) climatol-
ogy of the area or the river basin. Next, the daily gridded cli-
matology was calculated for global NWPQPFs (i.e. GFS) for a
given lead time from 1 (L1) to 7 days (L7). The gridded daily
anomaly of GFS precipitation for each Julian day of forecast-
ing was then calculated using this global QPF climatology for
a given lead time (L1–L7). Finally, this anomaly was added to
the true (or observed) gridded climatology from the NCDC–
GSOD dataset to derive the bias-corrected NWP QPF for use
in operational forecasting. The bias-corrected global QPFs
generated for each day was then used to force the VIC
model and forecast the consequential flow at river locations.
In essence, what the flood forecaster would do every day is
extract the global QPF for the forecasting domain or river
basin, then derive the anomaly from QPF climatology per-
taining to various lead times and finally add that anomaly
to the observed climatology for that day.

6. Discussion

In this study, two approaches of ‘delta change’ bias correction
were carried out. Figure 4 demonstrates the concept of the

used bias correction methodology (i.e. delta change) to
daily QPF using QPF climatology and true climatology
using over the GBM basin. At first, the gridded GFS climatol-
ogy was calculated using only 1-day lead time precipitation
forecast. Herein, GFS and QPF imply the same forecast data-
set. This 1-day lead time GFS climatology was considered as
the constant or universal GFS climatology for different lead
times for the sake of computational efficiency. In the second
approach, the gridded daily GFS climatology was calculated
for different lead times and not just for lead time 1 day or
L1. For example, the 3-day lead time (L3) QPF climatology
was calculated using the 3-day lead time QPF.

The impact of bias correction analysis was carried out for
the monsoon period of 2007–2016. Figure 5 shows the impact
of applying this bias correction to QPF for flow forecasting
for Brahmaputra, Ganges and Mekong river basins, respect-
ively. These figures are showing the flow climatology (10-
year average flow) of three river basins.

Two clear trends are apparent from this figure. First, the
bias correction approach based on QPF climatology yields
significant improvement in flood forecasting skill with drastic
reduction in flow bias between observed and forecast at all
lead times for all three river basins. Second, the use of QPF
(GFS) climatology pertaining to the corresponding lead
time improves flood forecast skill further compared to the
use of computationally simpler 1-day QPF climatology (see
the middle and lower panels of Figure 5).

In the next step, we implemented the same bias correction
approach on downscaled QPF (GFS) derived from WRF to
identify the potential net benefit of using regional NWP for
flood forecasting. WRF climatology was prepared from the
simulated output of 2007–2016 (1-day lead time), like GFS.
We used the 1-day QPF climatology as the reference for
bias correction to save the computation time required to
develop 1–7-day QPF climatology of WRF. To be consistent
with the WRF, we used the same approach for the GFS,
though 1–7-day climatology was available for GFS. It should
be noted that the performance of the bias-corrected QPF can
be improved more by using corresponding lead time climatol-
ogy (lower panel of Figure 5). Table 2 summarizes the forecast
performance (skill in terms of correlation and normalized
RMSE) for all three river basins after applying the bias correc-
tion. As the performance results for all basins follow mostly a
similar trend, we show herein results from the MRB as an
example (Figure 6). Two contrasting years were picked for
the assessment of bias correction of WRF downscaled QPF
– 2010 as the relatively weak flood year and 2011 as a very
strong flood year. Figure 7 shows the overall performance
of the GFS and WRF forced flow forecast in three river basins
during strong flood season. The figure indicates that the per-
formance of the QPF-based flow forecast is better than the cli-
matology-based forecast with exception of few cases in higher
lead time.

What is also clear from Figures 6 and 7 or Table 2 is that
while at lower lead times, there is no apparent difference
between the flood forecasting skill of global QPF or down-
scaled QPF, the bias correction approach yields higher
benefits for global QPF at longer lead times. In lower lead
times, the performance of the downscaled QPF is mostly
dominated by the initial condition of the NWP model,
which is essentially the global QPF. At longer lead times,
the bias correction methodology for WRF downscaled QPF
appears to perform modestly worse than the bias-corrected
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global QPF. There are likely many reasons behind this obser-
vation, with the critical ones being hydrologic, and stemming
from the choice of hydrologic model, model initialization,
hindcast, sensitivity to scale, etc. These physical features of
a hydrologic model are known to interact in a nonlinear

fashion with higher resolution forcing to often magnify the
uncertainty in the simulation of the output (i.e. flow) (Nam
et al. 2014). This also brings up the intriguing issue of com-
mensurate hydrologic model complexity in terms of scale
and processes that can take advantage of the dynamically

Figure 4. A proposed and simple methodology for bias correction of QPF data based on climatology of observation, QPF or downscaled QPF.
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downscaled QPFs with higher spatial resolution. Perhaps a
higher resolution and more physically distributed and com-
plex hydrologic model (such as MIKE – SHE) would be
able to accentuate the benefits of downscaled QPF in flood
forecasting. However, the operational agency has to weigh
in the benefit of such models in the context of the significant
cost to its daily operations.

It is beyond the scope of this study to investigate the
underlying hydrologic causes and this study is motivated by
the need for an operationally feasible approach in resource-
constrained settings of the developing world. We are there-
fore of the opinion that for an open-source, macroscale
(10km × 10 km, daily) hydrologic model like VIC, the use
of global QPF with bias correction based on QPF climatology
(and without any dynamic downscaling) has great oper-
ational appeal to flood forecasters in developing nations.
This appeal stems from the fact that the computationally pro-
hibitive WRF need not be applied every day or every time step
to update flow forecasts in large and higher order rivers with a
lot of hydrologic processes integration. The publicly available
global QPFs can be used ‘as is’ after some efficient bias correc-
tion to maximize the flood forecasting skill. In our study, the
consistent performance of the computationally efficient bias
correction approach for global QPFs is the take-home

message. We therefore recommend this approach to flood
forecasters who routinely use QPF as a practical innovation
for improving operational flood forecasting in monsoon
dominated flood regimes. We believe such a simple approach
has not appeared in flood forecasting literature to the best of
our knowledge.

7. Conclusions

Having studied closely in real-world operational forecasting
settings (Hossain et al. 2014a, 2014b, 2014c), we have realized
that the advancement of existing flood forecasting schemes in
monsoon-driven flood regimes requires both computational
feasibility as well as enhanced skill at longer lead times (>5
days). The skill requires to be of a nature that allows agencies
to issue specific warnings very quickly at specific locations
with quantitative clarity well in advance of the hardship the
local inhabitants are likely to face. If the forecast generation
is time-consuming, then valuable time is lost in disaster
response and management. In our study, it is quite clear
that flood forecasting systems using macroscale hydrologic
models like VIC can benefit modestly from the application
of regionally downscaled QPFs by WRF. However, the mod-
est benefit does not appear to justify the significant

Figure 5. Impact of using bias corrected global QPF (from GFS) on flow climatology, with no dynamic downscaling on flood forecasting for Brahmaputra, Ganges, and
Mekong river basin at Bahadurabad, Hardinge Bridge, and Kampong Cham station, respectively. The lower panel is the flood forecast based on bias corrected QPF
using QPF climatology of the corresponding lead time; middle panel is bias corrected QPF using QPF climatology corresponding to lead time 1 day as representative
climatology for all lead times. The GSOD line is the simulated VIC flow obtained from quality controlled nowcast forcings that can be considered as a benchmark. LX
stands for lead time at X day.

Table 2. Performance (correlation and % NRSE in parenthesis) of the bias correction methodology for global QPF (GFS) and WRF downscaled QPF in flow forecast for
Ganges, Brahmaputra and Mekong rivers.

Lead time (Day)

Ganges (July–October 2009, 2015) Brahmaputra (July–October 2009, 2015) Mekong (July–October 2010, 2011)

Refer. GFS WRF Refer. GFS WRF Refer. GFS WRF

1 GSOD
0.82 (39.5)
Climat.

0.63 (63.5)

0.74 (87.3) 0.62 (81.9) GSOD
0.7 (29.5)
Climat.
0.55 (35)

0.86 (27.4) 0.87 (24.7) GSOD
0.86 (24.9)
Climat.

0.63 (62.2)

0.77 (34.4) 0.81 (38)
2 0.78 (62.2) 0.68 (53.9) 0.88 (19.7) 0.85 (23.7) 0.75 (39.8) 0.66 (62.3)
3 0.84 (54.4) 0.69 (53.2) 0.82 (23.4) 0.81 (27.6) 0.73 (38.8) 0.68 (67.8)
4 0.85 (61.5) 0.76 (54) 0.74 (27.8) 0.78 (29.4) 0.68 (38.7) 0.65 (74.6)
5 0.83 (93.3) 0.83 (61.9) 0.68 (31.7) 0.72 (32) 0.58 (43.3) 0.54 (94.7)
6 0.82 (101.9) 0.76 (78.9) 0.63 (34.5) 0.57 (41.1) 0.54 (42.1) 0.46 (105.2)
7 0.83 (113.1) 0.66 (102.3) 0.44 (53.3) 0.56 (43.6) 0.57 (40.5) 0.32 (96.9)
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computational burden of dynamic downscaling when com-
pared with the bias-corrected approach for global QPFs.
We have developed our bias correction methodology for glo-
bal and publicly available QPFs such that flood forecasting
agencies can apply it efficiently every day without requiring
time-consuming dynamic downscaling. Such a correction

approach has been shown to significantly and consistently
improve the skill in flood forecast for all three river basins
of Ganges, Brahmaputra and Mekong studied here for impor-
tant flood years. To the best of our knowledge, flood forecast-
ing agencies of the developing world are not yet applying such
an efficient approach to take advantage of the global QPFs

Figure 6. Flow anomaly (relative to climatology of observed flow) for various combinations QPF (bias corrected or downscaled) for Mekong river at Kampong Cham.
Suffix ‘.corr’ stands for the bias-corrected QPF.

Figure 7. Flood forecasting skill in the three river basins based on bias-corrected and uncorrected QPF data with and without dynamic downscaling on extreme flood
year. Upper panel – Ganges at Hardinge Bridge; Middle panel – Brahmaputra at Bahadurabad and lower panel – Mekong at Kampong Cham. NRMSE refers to RMSE
of forecasted flow normalized by observed flow and expressed as a %.

INTERNATIONAL JOURNAL OF RIVER BASIN MANAGEMENT 9

965

970

975

980

985

990

995

1000

1005

1010

1015

1020

965

970

975

980

985

990

995

1000

1005

1010

1015

1020

1025

1030

1035

1040

1045

1050

1055

1060

1065

1070

1075

1080

1025

1030

1035

1040

1045

1050

1055

1060

1065

1070

1075

1080



that are publicly available. Furthermore, the simplicity of the
bias correction methodology implies that it can be applied to
any other forecast dataset such as WRF downscaled QPF or
those that are not publicly available (e.g. from European Cen-
ter for Medium Range Forecasting). If agencies are already
employing computationally intensive techniques routinely
(such as dynamic downscaling at forecasting time step), the
bias correction methodology will further improve the skill
with the choice of an appropriate hydrologic model. It is
our belief therefore that such computationally efficient meth-
odology is the future for most, if not all, flood forecasting
agencies that deal with monsoon-driven large-scale flooding
in the developing world and require to spend more time on
disaster response and management.
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