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[1] The adequacy of current passive-microwave-(PM)- and infrared-(IR)-based satellite
rainfall retrieval and sampling for flood prediction of a medium-sized watershed is
investigated. On the basis of Tropical Rainfall Measuring Mission (TRMM) Precipitation
Radar rainfall measurements, rain retrieval error parameters for PM and IR sensors are
derived. PM rain retrievals are inferred from the overland component of the TRMM
Microwave Imager (TMI) rain estimation algorithm, while IR retrievals are obtained from
hourly PM-calibrated IR rain fields, which are part of a variable rainfall product (VAR)
array produced at NASA/GSFC. A probabilistic error model is developed for satellite-
based precipitation measurements on the basis of retrieval error parameters in this
simulation study. The PM rain detection ability was found to be significantly more
sensitive than that of IR while the successful no-rain detection probabilities were found to
be 93% and 88%, respectively. The IR retrieval was found to give false alarm rain rates
about twice as large as that of PM. The PM sensor constellation comprised two Special
Sensor Microwave Imagers (SSM/I) (F14 and F15), the TMI, and the Advanced
Microwave Sensing Radiometer (AMSR-E). It was found that current PM sampling is
associated with flood prediction uncertainty approximately 50–100% higher than that of a
canonical 3-hourly sampling planned for the Global Precipitation Measurement (GPM)
mission. The comparatively greater limitation in capturing the correct space-time rain
structure by IR retrievals had the effect of increasing the error in predicting the time of
peak runoff when merging was performed with PM retrievals. It was found that a reduced
standard error (<100%) in IR retrieval combined with a higher probability of rain detection
(POD) (>0.90) can make IR retrievals useful in reducing uncertainty in the prediction
of peak runoff. To reduce the error in time to peak, further improvement, such as reduction
in the IR retrieval’s false alarm rates coupled with an even higher POD, may be necessary.
In terms of overall runoff volume, combined moderate improvements in POD and error
variance of current IR retrieval algorithms are sufficient for the reduction of prediction
uncertainty. INDEX TERMS: 1821 Hydrology: Floods; 1854 Hydrology: Precipitation (3354); 1860

Hydrology: Runoff and streamflow; 1869 Hydrology: Stochastic processes; 1894 Hydrology: Instruments and

techniques; KEYWORDS: rainfall retrieval, sampling, passive microwave, infrared, flood prediction uncertainty
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1. Introduction

[2] Advancements in space-based precipitation observa-
tion systems that originated nearly three decades ago
[Griffith et al., 1978] have enabled us to track the fate of
precipitation in the hydrologic cycle through improved
understanding of its variability. With the increased avail-
ability and quality of precipitation observations from space
it is now possible to assimilate these estimates in hydrologic
models to provide flood prediction over regions with poor
in situ data. This is important as a substantial portion of
floods takes place in regions that are remote or that lack the

financial resources to be adequately covered by ground
stations. In such cases, space-based rainfall estimates are
the sole source of rain input to hydrological models. Since
precipitation is the single most important determinant of the
state of surface runoff, it is therefore important to under-
stand how errors in satellite retrieval manifest themselves as
flood prediction uncertainty.
[3] Global Precipitation Measurement (GPM), which is a

mission to be launched by the international community by
2009, envisions a large constellation of passive microwave
(PM) sensors to provide global rainfall products at scales
ranging from 3 to 6 hours and spatial resolution of 100 km2

[Smith, 2001; Bidwell et al., 2002; Flaming, 2002; S. Yuter
et al., Error and uncertainty in precipitation measurements,
GPM Monitor, Feb. 2003, available at http://gpm.gsfc.
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nasa.gov/Newsletter/february03/index.htm]. These resolu-
tions offer tremendous opportunities to address the flood
prediction problem of local ungauged watersheds over the
globe. Nevertheless, satellite rainfall retrieval is subject to
errors caused by various factors ranging from infrequent
sampling to the high complexity and variability in the
relationship of the measurement to precipitation parameters.
The presence of such errors in remote sensing of rainfall can
potentially lead to high uncertainties in runoff simulation
[Winchell et al., 1998; Borga et al., 2000; Hossain et al.,
2004a, 2004b]. A study by Smith [2001] has revealed that
the current (pre-GPM era) PM sensors collectively have
their maximum revisit times exceeding 9 hours over the
tropics. Unfortunately, this is a region where a large number
of ungauged watersheds exist. Half-hourly infrared (IR)
rainfall estimates from geostationary platforms could po-
tentially reduce the flood prediction uncertainty during such
infrequent PM revisit intervals. However, the weak physical
connection of IR cloud top observations to precipitation
processes offers indirect relationships to surface rainfall
variability, which are associated with significant uncertainty
at high spatial and temporal resolutions [Arkin and Meisner,
1987]. Consequently, this study seeks to assess how current
satellite rainfall retrievals and sampling frequencies affect
flood prediction uncertainty. This understanding is impor-
tant in the identification of aspects that could make future
satellite missions such as the GPM useful for flood predic-
tion applications.
[4] To understand the error propagation, it is important to

realize that the error due to the three major sources of
uncertainty: retrieval, sampling, and the hydrological mod-
eling system, are all intimately linked and cannot be
decomposed into simple additive components in flood
prediction uncertainty [Borga et al., 2000; Borga, 2002;
Hossain et al., 2004a, 2004b]. Past satellite rainfall studies
have concentrated on the rain retrieval uncertainty issue for
large spatial scales and temporal accumulations (daily,
monthly, and yearly) using a limited number of error
statistics (Griffith et al. [1978], Arkin and Meisner [1987],
Negri and Adler [1993], Tsonis et al. [1996], Huffman
[1997], Xu et al. [1999a, 1999b], and Todd et al. [2001],
among others). These statistics are quite useful in assessing
the use of satellite data for large-scale climatological or
water management studies [Guetter et al., 1996; Nijssen et
al., 2001]. However, the averaging introduced at coarse
resolution smoothes the small-scale variability of measure-
ment error, which can have nonlinear effects in the runoff
simulation parameters of a flood event (e.g., the time and
magnitude of the peak runoff). A recent study by Nijssen
and Lettenmaier [2004] attempted to quantify the sole effect
of precipitation sampling error on the prediction of land
surface processes at the scale of large continental river
basins. They reported a strong sensitivity of streamflow
prediction error to the size of the drainage area. However,
their study provides insufficient assessment toward the
evaluation of the utility of current satellite retrievals for
flood prediction because of the nonrepresentation of the
retrieval uncertainty, which is known to interact intimately
with the sampling error. It also appears that the macroscale
hydrologic models that have been developed to study land-
atmospheric processes and interactions in this regard have
not yet been fully assessed in terms of their sensitivity to the

detailed structural properties of satellite rainfall estimation
error [O’Donnell et al., 2000; Nijssen et al., 2001; Rhoads
et al., 2001; Nijssen and Lettenmaier, 2004].
[5] This study aims at assessing the use of current PM

and IR satellite rainfall remote sensing in flood prediction.
The study builds upon the recent work by Hossain et al.
[2004b] (hereinafter referred to as HAD04), who investi-
gated the adequacy of a canonical 3-hourly and 6-hourly
PM sampling for flood prediction using simulated satellite
retrievals. The objectives of the present study are to
(1) compare the effect of current PM sampling frequencies
to the planned canonical 3-hourly GPM era in terms of flood
prediction uncertainty for a mid-sized watershed; (2) study
the effect of storm morphology on the uncertainty of flood
prediction driven by satellite rainfall data; and (3) investi-
gate potential improvements associated with the combina-
tion of IR rain estimates with PM retrievals.
[6] In section 2 we describe the study area, hydrologic

model, and data. In section 3 we describe the formulation
and tuning to actual data of the statistical model used to
simulate PM and IR rain retrievals from hypothetically true
rain processes. In section 4, we present the simulation
experiment, results, and discussion of findings. Section 5
contains the conclusions and discusses proposed extensions
of this study.

2. Study Area, Hydrologic Model, and Data

[7] The watershed chosen for this study (named Posina)
is located in northern Italy, close to Venice (Figure 1, right
panel). Posina has an area of 116 km2 and altitudes ranging
from 2230 to 390 m at the outlet (Figure 1, left panel).
Within a radius of 12 km from the center of the watershed
there is a network of 11 rain gauges reporting hourly rain
accumulations, 7 of which are closer to the watershed,
providing representative estimates of the basin-averaged
hourly rainfall rates (hereinafter referred to as ‘‘accumulated
reference rain rate’’). The annual precipitation accumulation
is estimated to be in the range of 1600–1800 mm. Posina is
68% forested, and saturation-excess is the main rainfall-
runoff generation mechanism. Further details about the
study area, including its terrain characteristics and rain
climatology, are given by Borga et al. [2000].
[8] The rainfall-runoff model TOPMODEL [Beven and

Kirkby, 1979] was chosen to simulate the rainfall-runoff
processes of floods in the Posina watershed. It is a semi-
distributed watershed model that can simulate the variable
source area mechanism of storm runoff generation and
incorporates the effect of topography on flow paths. This
model makes a number of simplifying assumptions about
the runoff generation process that are thought to be reason-
ably valid in this wet and humid environment. The model is
premised on the following two assumptions: (1) that the
dynamics of the saturated zone can be approximated by
successive steady state representations; and (2) that the
hydraulic gradient of the saturated zone can be approximated
by the local surface topographic slope. Detailed background
information of the model and applications is given by
Beven et al. [1995]. The model has been applied in the
study region and found adequate to simulate the rainfall-
runoff transformation processes of the watershed [Borga et
al., 2000; Hossain et al., 2004a]. As with many other
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TOPMODEL applications, the topographic index ln (a/tan
b) is used as an index for hydrological similarity, where a is
the area draining through a point, and tan b is the local
surface slope. In this study, the derivation of the topographic
index from a 20-m grid size digital terrain model utilized the
multiple-flow-direction algorithm by Quinn et al. [1991,
1995]. The rainfall input to the model was lumped (basin-
averaged). The generated runoff was routed to the main
channel using an overland flow delay function. The main

channel routing effects are considered using an approach
based on an average flood wave velocity for the channel
network.
[9] A series of 15 widespread storm events (3–7 days

long) that took place from 1987 to 1997 were studied
(Table 1). Shorter-duration intense precipitation events
(<2 days) have been excluded from this study, as they
would be most affected by the infrequent PM sampling.
Generalizations of findings from this study are therefore

Figure 1. Geographic location of Posina watershed (right panel) and watershed elevation map (left
panel) overlaid by the rain gauge network locations (in solid circles). The inner rectangle represents a
10 � 10 km2 PM satellite pixel over the watershed, while the larger box is a 25 � 25 km2 pixel for
representing IR retrievals.

Figure 2. An example of simulated overpasses by the assumed complement of four PM sensors for storm
9 (October 1992). The assumed constellation comprises SSM/I-F14, SSM/I-F15, TMI, and AMSR-E.
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limited to flood events lasting longer than 2 days and for
medium-sized (50–500 km2) watersheds driven by satura-
tion-excess runoff production processes. The storms studied
here are the outcome of cyclogenesis in the surrounding
regions enhanced by orographic lifting in the mountainous
Alpine terrain when the moisture-laden clouds from the
Mediterranean travel northward [Bacchi et al., 1996]. The
first seven columns of Table 1 describe the basic features of
the storm morphology. We present the storm duration, rain
fraction, mean conditional rain rate, standard deviation, and
coefficient of variation (CV: standard deviation normalized
by the mean). In the last three columns of Table 1, we present
the characteristics of the simulated PM sampling for these
storm events. The assumed constellation comprised four PM
sensors (TMI, SSM/I-F14, SSM/I-F15, and AMSR-E). The
inclusion of TMI makes the implicit assumption that the
watershed be hypothetically located within ±40� latitudes.
The constellation’s sampling pattern over the watershed
was identified on the basis of a satellite-tracking system
maintained by NASA (http://earthobservatory.nasa.gov/
MissionControl/overpass.html) and from real sensor data of
SSM/I-F14, SSM/I-F15, and TMI. We first identified the
mean of the sampling pattern for a typical 7-day period (the
maximum storm duration in our database) for a few loca-
tions, each of 0.1-degree resolution, distributed uniformly
within the tropics. We then assumed this mean weekly
sampling pattern to be representative for the description of
hypothetical PM overpasses for the storm events under
study. Figure 2 shows the sampling pattern identified in
this fashion for a particular storm (storm 9 in Table 1) by
the assumed complement of four PM sensors. The overall
sampling pattern appears to be consistent with that identi-
fied by Smith [2001], who has reported a maximum revisit
time exceeding 9 hours within the tropics. The ‘‘sampling
coverage’’ in Table 1 indicates the number of hours with
available PM rainfall retrievals. Also in Table 1 we show the
‘‘maximum and mean revisit time,’’ which is the maximum

and mean time between successive PM overpasses, respec-
tively. The maximum revisit time was found to be invariably
equal to 11 hours for all storm cases.

3. Satellite Rainfall Error Model

3.1. Model Formulation

[10] Our motivation for the formulation of a satellite
rainfall error model (SREM) is the need to fully characterize
the retrieval error of satellite sensors at high resolutions. It is
obvious that as the space scales and timescales become
smaller, the sensor’s precipitation measurement error char-
acteristics become more complex and random. In this study,
we adopted the probabilistic error model originally devel-
oped by HAD04. The error model is schematically pre-
sented as a flowchart in Figure 3, and details are discussed
below.
[11] The approach is to simulate statistical realizations of

satellite (PM and IR) rainfall retrievals by corrupting a more
accurate measurement of rainfall. In this study, the most
accurate measurement of rainfall available constituted the
basin-averaged hourly accumulated rainfall derived from
the dense network of rain gauges within and around the
Posina basin (earlier labeled as ‘‘accumulated reference
rainfall’’). Satellite retrievals, though, represent almost in-
stantaneous rainfall fields. To quantify the error of instan-
taneous rain rates in representing accumulated hourly
rainfall, we define two error characteristics: (1) the error
in rain detection and (2) conditional error. The probability of
detection of instantaneous rain rate PODINST is used to
define the detection error:

PODINST ¼ Prob RREF�INST > 0 j RREF�ACCU > 0f g; ð1Þ

where RREF-INST represents realizations of an instantaneous
area-averaged reference rain rate value and RREF-ACCU is the
accumulated reference rainfall of the corresponding hour.

Table 1. Statistical Summary of Storm Events With the Simulated PM Sampling Overpasses of the Assumed Complement of Four PM

Sensors

Date
(Month
Year)

Rainfall Statistics

Maximum
Discharge,

m3/s

PM Sampling (2 SSM/I + AMSR-E +
TMI)

Duration,
hours

Rain
Fraction,

%

Mean
Conditonal

Rain
Rate,
mm/h

Std.
Dev.,
mm/h

CV,a

%

Sampling
Coverage,
hours

Maximum
Revisit
Time,
hours

Mean
Revisit
Time,
hours

1 08 1987 72 34.0 3.90 5.8 148 54.40 14 11 5.1
2 10 1987 96 40.8 2.80 2.7 96 75.72 21 11 4.3
3 07 1989 96 29.0 3.20 2.9 91 31.49 21 11 4.3
4 11 1990 96 35.8 2.80 2.9 103 64.37 21 11 4.3
5 12 1990 108 40.1 3.61 3.9 108 76.41 25 11 4.5
6 03 1991 72 32.3 2.49 2.9 115 32.59 14 11 5.1
7 10 1991 84 44.4 3.85 4.5 170 117.40 17 11 4.6
8 04 1992 120 58.3 1.35 2.3 107 56.89 26 11 4.4
9 10 1992 120 86.7 4.24 4.5 107 192.50 26 11 4.4
10 12 1992 144 36.3 1.94 1.9 99 41.60 32 11 3.9
11 09 1993 132 61.5 2.98 3.5 116 49.40 30 11 4.2
12 11 1994 72 55.0 3.65 4.1 112 106.90 14 11 5.1
13 10 1996 96 85.4 3.65 3.2 87 156.50 21 11 4.3
14 11 1996 120 81.7 1.84 2.3 124 70.80 26 11 4.4
15 12 1997 84 76.0 1.78 2.3 128 70.26 17 11 4.6

aCoefficient of variation.
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The conditional error EINST-ACCU of RREF-INST with respect
to RREF-ACCU is defined as

EINST�ACCU ¼ RREF�ACCU=RREF�INST: ð2Þ

Because of the multiplicative nature of the error the
statistical distribution of EINST-ACCU is considered to be
lognormal, with mean and variance components defined as
MUINST-ACCU and SINST-ACCU, respectively. The above
error-modeling framework is used to statistically generate
instantaneous reference rain rates RREF-INST from the
hourly accumulated area-averaged reference rainfall values
RREF-ACCU determined from gauges; this is discussed later
in this section.
[12] An instantaneous satellite rain retrieval, on the other

hand, may exhibit one of the following possible outcomes:
(1) When it actually rains, the satellite retrieval can be
nonzero (successful rain detection) or zero (false no-rain
detection), while (2) when it does not rain, the satellite
retrieval can also be zero (successful no-rain detection) or
nonzero (false rain detection).
[13] We define the successful rain detection probability

P1 as a function of RREF-INST. The functional form is
identified through calibration with actual data as discussed
in the following section. The false no-rain detection is

derived from P1 as (1 � P1). The successful no-rain
detection P0 is the unitary probability that satellite retrieval
is zero when RREF-INST is zero, which is also determined
from actual data. The false rain detection probability is then
derived from P0 as (1 � P0). A probability density function
Dfalse is introduced to characterize the probability distribu-
tion of the satellite retrieval in false rain detection. This
function is also identified through calibration on the basis of
actual sensor data.
[14] The nonzero instantaneous satellite rain retrieval

RSAT-INST is statistically related to corresponding nonzero
instantaneous reference rain rate RREF-INST as

RSAT ¼ RREF�INST: eS ; ð3Þ

where the multiplicative satellite error parameter es is
assumed lognormally distributed. The lognormality of the
distribution is justified by the nonnegative property of es. A
log transformation of the log (RSAT) � log (RREF-INST)
statistical relationship transforms the error es to a Gaussian
deviate e with N(m, s) statistics, where m and s are the mean
and standard deviation, respectively. To determine the
multiplicative mean MUINST and standard deviation SINST
of es, the following conversion is used in terms of m and s:

MUINST ¼ exp mþ 0:5s2
� �

; ð4Þ

S2INST ¼ exp s2
� �

� 1
� �

exp 2mþ s2
� �

: ð5Þ

The error parameter e (hereinafter also referred to as ‘‘log-
error’’) can be spatially and temporally autocorrelated. Only
temporal autocorrelation is considered in this study because
the watershed scale is represented by a single PM satellite
retrieval pixel (
100 km2, see Figure 1, left panel). A lag-
one autocorrelation function was used to model the
correlated error sequence, which for a Gaussian random
variable, leads to the following equations for the propaga-
tion of m and s2:

mi ¼ mþ rð Þ ei�1 � mð Þ; s2i ¼ s2 1� r2
� �� �

; ð6Þ

where time index i represents discrete hourly time step
while r2 is the lag-one autocorrelation of e. The previous
study by HAD04 had shown evidence of the runoff error
being insensitive to the lag-one autocorrelated rain retrieval
error for 3- and 6-hourly sampling scenarios; hence r2 was
constrained to a fixed value of 0.4 in this study.
[15] The SREM operation is summarized in the flowchart

of Figure 3. When at a certain hour i the hourly accumulated
area-averaged reference rainfall is nonzero (RREF-ACCU,i > 0),
we use equations (1) and (2) to generate the realization of an
instantaneous reference rain rate RREF-INST,i. Namely, a
Bernoulli trial is conducted to model the PODINST by
generating a uniform U[0, 1] random number rn. If rn is
less than PODINST (which is determined as a function of
RREF-ACCU,i), an instantaneous reference rain rate RREF-INST,i

is calculated on the basis of equation (2) by randomly gener-
ating a lognormally distributed deviate LN [muINST-ACCU,
SINST-ACCU], representing EINST-ACCU. Next, when the instan-
taneous reference rain rate is nonzero (RREF-INST,i > 0), the

Figure 3. Satellite rainfall error model (SREM) algorith-
mic structure. The rn is a randomly generated number from
the uniform [0–1] probability distribution.
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satellite error model (SREM) decides as to whether the
satellite rainfall is zero or not through another set
of Bernoulli trials. If the uniform U[0,1] random number
rn generated is less than P1 (which is determined
as a function of RREF-INST,i), then the instantaneous satel-
lite retrieval RSAT,i is nonzero and modeled through
equation (3). Otherwise, RSAT,i is assigned a zero value.
Similarly, during a nonrainy hour (RREF-INST,i = 0), a
Bernouilli trial is used again to decide as to whether the
satellite rainfall will be zero or nonzero. If the uniformly
random deviate rn is less than P0, then RSAT,i is assigned a
zero value. Otherwise, the nonzero satellite rainfall value
is determined through random sampling on the basis of the
false alarm probability density Dfalse function.

3.2. SREM Calibration

[16] Having mathematically formulated the algorithm
for SREM, the next step is to calibrate the model parameters
on the basis of actual data at the sensor resolution. We
seek to determine the values and/or functional forms of
(1) PODINST, MUINST-ACCU, and SINST-ACCU parameters
of the instantaneous rainfall representativeness error and
(2) the P1, P0, Dfalse, MUINST, and SINST parameters of
SREM.
[17] To evaluate the PODINST, MUINST-ACCU, and

SINST-ACCU parameters, we used six months of high-resolu-
tion (1 min) rainfall data from a gauge network in the area;
the storm intensities and durations were of similar magni-
tudes to the storms studied herein. We created time series of
10-min rain accumulations at 10 � 10 and 25 � 25 km2 area
averages by averaging the gauge rainfall reported within

each domain size to make it representative of the PM and IR
retrieval scales. Within the PM (10 � 10 km2) domain there
were 4 gauges, while the IR domain had a total of
8 (inclusive of all the gauges in the PM domain) gauges.
A study reported by Habib and Krajewski [2002] has shown
that a 5–10-min accumulation can be considered represent-
ative of an instantaneous remote sensing measurement at
4 � 4 km2 grid; in our case, this space scale-timescale
similarity may be representative of even larger time inte-
grations given the coarser spatial resolution of both IR and
PM retrievals. Figure 4 shows the dependency of PODINST

on RREF-ACCU. We observe that at hourly accumulated
rainfall values beyond 1 mm/h the 10-min sample will have
probability greater than 95% to report rainfall. A sigmoid
function of the form shown in equation (7) (below)
appeared a statistically good fit to model PODINST.

PODINST RREF�ACCUð Þ ¼ 1

AACCU þ exp �BACCU RREF�ACCUð Þ : ð7Þ

[18] The other error parameters, MUINST-ACCU and
SINST-ACCU, controlling the conditional error are reported
in Table 2. To generate instantaneous reference rain rates
for the PM retrieval, hourly accumulated reference rain-
fall values were computed from an average of 7 gauges
located within a 10 � 10 km2 grid surrounding the
basin and subsequently corrupted by the representative
error model comprising equations (1) and (2). To
generate corresponding instantaneous reference rain rates
for the IR retrieval, the hourly accumulated reference
rainfall values were computed from the entire network of

Figure 4. Probability of detection PODINST of 10-min (representing instantaneous) reference rain rate as
a function of hourly accumulated reference rainfall. The dashed lines are the best fits to the data.

D07102 HOSSAIN AND ANAGNOSTOU: SATELLITE RUNOFF PREDICTION ERROR

6 of 14

D07102



11 gauges that are within the 25 � 25 km2 grid area
(see Figure 1, left panel, for a schematic of the gauge
network configuration).
[19] We used as common reference (i.e., our ‘‘truth’’)

for PM and IR retrievals coincident rain profile estimates
from TRMM Precipitation Radar (PR) [Kummerow et al.,
2000]. The PR estimates are based on a radar profiling
retrieval that is superior to any overland passive micro-
wave technique [Iguchi et al., 2000]. The primary aspects
of the retrieval are the precipitation classification, which
is facilitated by the high-vertical-resolution (250 m)
reflectivity profile measurements, and an inversion
algorithm that is controlled by a surface reference tech-
nique for path-integrated attenuation and a reflectivity-to-
rainfall relationship with parameters differentiated for
convective and stratiform rain regimes [Iguchi et al.,
2000; Meneghini et al., 2000]. Ground validation studies
on PR have shown high correlation (>0.9) and low (<7%)
systematic differences with rain-gauge-calibrated ground
radar rainfall estimates [Anagnostou and Morales, 2002;
Liao et al., 2001].
[20] The calibration exercise was performed in three

distinct geographic regions with TRMM coverage: United
States (35�N to 15�N and 100�–70�W), Africa (10�N to
10�S and 10�–40�E), and the Amazon Basin (0�N to 20�S
and 60�–30�W). We selected a period of three months
(May–July 2002) to determine the PM retrieval error model
parameters, while for the IR retrieval we selected a period of
1 year (February 2002 to January 2003). The PM retrieval

was evaluated on the basis of matched TRMM PR and TMI
rainfall products aggregated at 10 � 10 km2 resolution
relevant to the size of the watershed. The TMI rainfall
product used in this study is the 2A12 TRMM product
computed with the Goddard profiling algorithm (GPROF)
[Kummerow et al., 2001]. A fairly optimistic assumption
made in this study is that GPROF retrieval errors for SSM/I
and AMSR-E sensor observations are comparable to those
of the TMI sensor. In terms of IR retrievals, we used the
hourly PM-calibrated variable IR rainfall product (VAR)
produced by multisatellite precipitation analysis (MPA)
[Huffman et al., 2003]. This data product is operationally
known as 3B41RT. The IR retrieval error was evaluated at
25 � 25 km2 resolution on the basis of coincident PR scans
that are within a maximum time window of 15 min of the
nominal scan time of the IR image, in a fashion similar to
Negri et al. [2002]. Although the IR scale is larger than the
size of the watershed, this is the smallest scale at which a
global hourly IR rain product is currently available for flood
prediction.
[21] In Figure 5 we show a representative example of

matched instantaneous TMI and IR rain map with PR
over Africa. The convection indicated by the PR seems to
be well detected by the TMI (leftmost panel, Figure 5).
For the IR there may be a possibility of a spatial offset
and overestimation in the presence of convection when
compared to the PR (rightmost panel, Figure 5). This can
possibly be due to the anvil of convective cirrus clouds (a
likely scenario in Africa) being displaced from the active
convective elements by vertical shear or mesoscale dy-
namics [Huffman et al., 2003]. IR retrievals are also
likely to underestimate the peak rain rate and delay the
time of peak for warm rain systems.
[22] Figure 6 shows the sensor’s rain detection probabil-

ity within rain rate ranges of 0–10 mm/h determined
from instantaneous sensor data previously described.
Again, a sigmoidal function of the form shown similar to
equation (7) (equation (8) below) appeared to be a statis-
tically good fit to the above rain detection probabilities. We
argue for a sigmoidal function as it offers a physically
consistent and convenient model for rain detection because
of its bounded nature within the realistic 0–1 probability
levels and because it is often difficult to identify the most

Table 2. Mean Error Model Parameters Calibrated for PM (2A12)

and IR (3B41RT) Sensor Retrievals on the Basis of Coincident

TRMM Precipitation Radar Rainfall Fields

2A12
(10 � 10 km2)

3B41RT
(25 � 25 km2)

AACCU (AINST) 1.05 (1.0) 1.01 (1.35)
BACCU (BINST) 4.5 (3.5) 5.5 (1.0)
l 0.9 0.5
MUINST-ACCU (MUINST) 1.0 (1.27) 1.0 (1.52)
SINST-ACCU (SINST) 0.24 (0.94) 0.19 (1.51)
Lag-one correlation r2 0.40 0.40
No-rain detection probability P0 0.93 0.88

Figure 5. An example of matched TMI- (2A12), IR- (3B41RT), and TRMM-PR- (2A25) retrieved rain
maps over central Africa. (left) TMI (orbit 24225); (middle) PR (orbit 24225); (right) IR (1300 UTC), on
13 February 2002. PR and IR are shown at 25 � 25 km2 resolution.
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representative functional form that fits the entire range of
data (especially for IR retrievals).

P1 RREF�INSTð Þ ¼ 1

AINST þ exp �BINST RREF�INSTð Þ : ð8Þ

The inverse of coefficient AINST serves to indicate the
maximum possible rain detection probability within the
above range of reference instantaneous rain rates. Coeffi-
cient BINST indicates the sensitivity of the retrieved rain
detection ability to the magnitude of the reference
instantaneous rain rate. The calibrated values of all the
error parameters for SREM are shown in Table 2. As shown
in Figure 6 (right panels), PM rain detection ability is
significantly more sensitive than that of IR. At instanta-
neous reference rain rates beyond 2.5 mm/h, PM rain
detection converges to nearly 1, while the IR rain detection
remains below 80%. The IR successful no-rain detection
probability P0 is found to be 88%, while the corresponding
PM is 93% (a difference of 5%).
[23] The probability distribution function of the falsely

detected instantaneous rain rates Dfalse was found to be
exponential, Dfalse(RSAT) = lexp{�lRSAT}, for both PM
and IR retrievals (see left panels of Figure 6). The fitted l
values for PM and IR retrievals are shown in Table 2. We
observe that the IR retrieval is likely to give false alarm rain
rates about twice as large as those from PM. In Table 2 we
also summarize the two statistics characterizing the multi-
plicative conditional instantaneous rain retrieval error: mean
MUINST and standard deviation SINST. These statistics are
the mean over the three large regions chosen for calibration.
An IR retrieval standard error about 1.5 times that of PM

observed in our calibration study appears to be consistent
with what has been previously reported in the literature (see
HAD04 for details).

4. Simulation Experiment

[24] Using a global optimization routine [Duan et al.,
1992], the TOPMODEL parameters were calibrated for
each of the 15 storm events at 1-hourly and 3-hourly time
steps using hourly accumulated reference rainfall and
observed runoff. The gauge-based simulated hydrographs
from the hourly calibrated TOPMODEL parameters were
considered as reference runoff. To account for the relative
effect of the hydrologic model’s inherent prediction error,
we also considered the observed versus reference runoff
difference for three hydrologic parameters: peak runoff
PR, time to peak runoff TP, and runoff volume RV.
Table 3 summarizes the normalized absolute error of
the reference runoff NAEREF for each storm event.
Multiple runs of the hydrologic model, each having as
rain input a random realization of the satellite-retrieved
rain process simulated from SREM, were then performed
and compared to reference runoff to statistically assess
the effect of satellite retrieval error and sampling error on
flood prediction uncertainty. As shown in Table 3, the
hydrologic modeling error is considerably lower than that
due to rainfall error alone. Nevertheless, in evaluating the
satellite retrieval error statistics we considered both rain
input and modeling error; this is discussed later in this
section. For the assessment of the PM retrievals, which
are available at coarse temporal sampling (>3 hours),
hydrologic simulations were performed at 3-hourly time

Figure 6. Probabilities of rain detection (right panels) and probability distributions of rain rates in false
alarms (left panels) for PM (upper panels) and IR (lower panels) retrievals. These experimental results are
determined on the basis of coincident TRMM PR overland rainfall data around the globe. The solid lines
are best fits to the data.
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steps using the relevant calibrated TOPMODEL param-
eters. For the assessment of the combined PM-IR
retrievals, which are available at hourly scale because
of the frequent IR data, hydrologic simulations were
performed at the hourly time step using the hourly
calibrated TOPMODEL parameters. For each storm event
an ensemble of 20,000 realizations of synthetic satellite
precipitation retrievals from SREM were propagated
through the hydrologic model to derive an equal number
of simulated hydrographs for computation of error statis-
tics in runoff simulation.

[25] The following hydrologic error parameters are
assessed in this study: (1) normalized mean absolute error
in peak runoff PR, (2) normalized mean absolute error in
time to peak TP, and (3) normalized mean absolute error
in runoff volume RV, defined as

error in PR ¼ 1

Nsim

XNsim

i¼1

peak runoff i � peak runoffREF

peak runoffREF

����
����

þ NAEREF PR;

error in TP ¼ 1

Nsim

XNsim

i¼1

time to peaki � time to peakREF

time to peakREF

����
����

þ NAEREF TP; ð9Þ

error in RV ¼ 1

Nsim

XNsim

i¼1

runoff volumei � runoff volumeREF

runoff volumeREF

����
����

þ NAEREF RV;

where Nsim is the total number of simulation runs
(20,000), subscript i indicates the simulation index, and
subscript ‘‘REF’’ implies the hydrologic parameter that
was derived from reference runoff. The second term in
equation (9), NAEREF_X, represents the hydrologic mod-
eling error for each hydrologic parameter X (PR, TP, and
RV) due to reference runoff.

4.1. Assessment of PM Retrievals

[26] We first assess the PM retrieval alone. In this case,
the instantaneous rain rate fields are assumed constant
between successive PM overpasses, which is a reasonable

Table 3. Hydrologic Modeling Error of TOPMODEL Based on

Observed Runoff Versus Reference Runoff Differencesa

Storm

Normalized Absolute Error NAEREF

Runoff Volume Peak Runoff Time to Peak Runoff

1 0.038 0.310 0.080
2 0.027 0.083 0.000
3 0.008 0.043 0.000
4 0.022 0.048 0.000
5 0.035 0.016 0.075
6 0.210 0.540 0.056
7 0.098 0.110 0.038
8 0.099 0.062 0.031
9 0.083 0.232 0.000
10 0.309 0.019 0.000
11 0.069 0.129 0.017
12 0.007 0.071 0.000
13 0.128 0.072 0.011
14 0.119 0.025 0.016
15 0.115 0.089 0.051
Mean 0.091 0.123 0.025

aNormalized absolute error NAEREF = jXobs � Xrefj/Xobs.

Figure 7. Flood prediction uncertainty (5% and 95% upper/lower quantiles) of storm 9 (October 1992)
for the GPM-based 3-hourly sampling (left) and current PM sampling (right). Upper panels are based on
PM retrievals, and lower panels are based on the merged IR-PM rain products.
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scenario for real-time operation. As the TOPMODEL was
run using 3-hourly time steps, simulated runoff was
interpolated at hourly intervals by a polynomial function.
Because the first overpass by a PM sensor may occur at
any time during a storm event, we also considered all
possible sampling start times (rounded off to the closest
hour) for the examined storms. For this purpose, we
shifted the start of the PM sampling up to 11 hours,
which was the maximum revisit time during an event (see
Table 1, column 10).
[27] The same procedure was followed to determine the

error statistics in terms of the above runoff parameters for
the planned GPM-based 3-hourly canonical PM sampling.
Although GPM revisit time intervals would vary between 1
and 6 hours (with an average revisit time of 3 hours), we
have assumed an idealized scenario of 3-hourly canonical
sampling. The 3-hourly error statistics were used to nor-
malize the error statistics determined for the current PM-
based prediction as

error statistics ratio ERð Þ

¼ runoff error statistics current PM samplingð Þ
runoff error statistics 3-hourly samplingð Þ : ð10Þ

These error ratios ER, determined for the PR, TP, and RV
parameters, are used to quantify the factor by which the
current PM sampling scenario is more uncertain than the
planned GPM 3-hourly sampling in terms of flood
prediction. We argue that ERs are more informative than
using absolute errors in understanding the implications of
the retrieval and sampling error in runoff.
[28] The upper panels of Figure 7 show the PM-based

hydrographs along with the 90% confidence limits for one
of the storms in our database (storm 9). The runoff
prediction uncertainty of the current PM retrievals (right
panel) appears to be higher (approximately 50%) than those
associated with the 3-hourly PM sampling (left panel). The
uncertainty in peak runoff was nearly 350 m3/s (compared
to the 300 m3/s for the 3-hourly sampling), while the time

to peak tended to be overestimated by about 20 hours. This
can be explained by the high revisit times (
11 hours)
between successive PM overpasses, which can completely
misinterpret the peak rainfall rates of a storm (see Figure 2,
lowermost panel). Table 4 shows the ER values of the
runoff parameters for all 15 storms. The mean ER values of
peak runoff, time to peak runoff, and runoff volume are
1.52, 2.17, and 1.50, respectively. Overall, the flood pre-
diction uncertainty based on the current PM retrieval and
sampling is found to be higher than what would be achieved
by the planned 3-hourly GPM sampling in the range of 50–
100%. An interpretation of this is that the GPM can be
expected to be more reliable for flood prediction than
current PM sensors but significant uncertainty would still
persist as indicated in Figure 7.
[29] Figure 8a shows the response of storm morphology

to flood prediction uncertainty associated with current PM
retrieval and sampling. In the upper left panel, the impact
of storm duration to error in time to peak is evident. As
storm durations become longer (from 3 to 7 days) the time
to peak runoff is predicted with less error (a reduction
from 220% to 30% is observed). This is explained by the
fact that the PM satellite sampling effect becomes less
important as storm duration increases. We also observe
that as the rain fraction (%) increases, the error in runoff
volume reduces moderately (Figure 8a, upper right panel).
It is noted that because of the high PM rain detection
probability, as the hours during a storm event associated
with rain increase, the error for a PM sensor to retrieve the
storm’s total rainfall accumulation decreases. There is
insignificant sensitivity observed in the mean conditional
rain rate (lower left panel, Figure 8a) and variability of
rain rate (lower right panel, Figure 8a) to the error in
runoff volume. When the response of the storm morphol-
ogy to flood prediction uncertainty for the current PM
sampling is compared to the planned GPM 3-hourly
sampling (shown in Figure 8b), the following two notable
effects are observed. First, the hydrologic error statistics
(mainly error in time to peak and runoff volume) are
lowered by an average of 10–30%. Second, the overall
sensitivity of the four storm morphological parameters on
the flood prediction uncertainty appears to diminish, as
there are no obvious gradients and widespread scatter
observed in Figure 8b. Consequently, the increased sampling
in GPM should allow more consistent flood prediction than
current PM sampling for storm events whose morphological
properties are within the domain analyzed herein.

4.2. Assessment of Combined PM-IR Retrievals

[30] In this section, we assess the utility of merging IR
retrievals with PM. We used simulated (through SREM)
hourly IR rainfall retrievals to fill up the gaps between
successive simulated PM retrievals and repeated the runoff
simulation experiment on the basis of the framework
described in section 4.1. There are two major distinctions
to be highlighted in the application herein: (1) The time step
used in the hydrologic model simulation is now hourly, and
(2) the hourly accumulated reference rainfall for the IR
retrieval pertains to averaged rainfall over a 25 � 25 km2

grid area surrounding the Posina basin as we discussed
before in section 3.2 (see also Figure 1, left panel). Results
of this simulation experiment are used to determine an error

Table 4. Runoff Prediction Error Ratio ER Values of PM

Retrievals for the 15 Storm Events Evaluated for the Current PM

Sampling Scenario

Storm

Error Ratio ER

Peak Runoff Time to Peak Runoff Runoff Volume

1 1.09 1.01 1.13
2 1.31 1.77 1.46
3 6.29 1.67 3.47
4 1.01 2.72 1.23
5 1.23 1.16 1.17
6 1.07 1.04 1.19
7 1.31 3.09 1.38
8 1.11 3.56 1.30
9 1.12 1.09 1.13
10 1.22 1.00 1.17
11 1.04 1.27 1.69
12 1.14 7.04 1.59
13 1.15 1.08 1.19
14 1.16 4.09 1.24
15 2.70 1.01 2.12
Mean 1.52 2.17 1.50
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Figure 8a. Effect of storm morphology on the uncertainty of flood prediction driven by current PM
retrieval sampling scenarios. Upper left panel: error in time to peak versus storm duration; upper right
panel: error in runoff volume versus rain fraction; lower left panel: error in runoff volume versus mean
conditional rain rate; lower right panel: error in runoff volume versus standard deviation of conditional
rain rate.

Figure 8b. Same as in Figure 8a, but for flood predictions driven by the GPM-based 3-hourly PM
sampling scenario.
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parameter named the ‘‘merging error ratio’’ (merging ER)
and defined as follows:

merging ER ¼ 1

nstorm

Xnstorm

i¼1

� runoff error statistics merged PM-IR retrievalsð Þi
runoff error statistics PM retrievalsð Þi

:

ð11Þ

Here nstorm is equal to 15 (the total number of storm
events), with i being the storm index. Merging ER values
are determined for all three runoff parameters. A merging
ER value of less than 1 indicates that the merging of IR with
PM retrievals reduces the overall uncertainty in the
associated runoff parameter compared to the stand-alone
use of PM rain retrieval input.
[31] The example shown in Figure 7 (lower panels)

indicates that the use of IR retrievals with current perfor-
mance statistics can, for a catastrophic flood event like
storm 9, worsen the flood prediction uncertainty for both the
GPM and current PM sampling scenarios. Even though the
90% confidence limits are narrower when filling sampling
gaps with IR, the reference runoff is enveloped only
sparsely by these bounds (for example the first peak is
completely missed for storm 9). This indicates that the
hydrologic model had lost its predictive accuracy through
the use of the IR retrieval. Our findings in this study
indicate that the worsening in flood prediction for storm 9
can be attributable to the relatively lower rain detection
accuracy of IR retrievals at finer scale, which results in a net
underestimation of total rain volume compared to that by
the four PM retrievals (upper right panel, Figure 7). Al-
though a portion of this underestimation may have been
compensated for by the higher IR false alarm rates, the
inaccurate temporal characterization of rain fluxes renders
the corresponding estimation of runoff in time similarly
erroneous. In the next section, we shall analyze in detail
the response of PM-IR retrieval in runoff, considering all
15 storm events jointly.

[32] In Figure 9a we present the impact of combined PM-
IR retrievals for various hypothetical levels of IR retrieval
accuracy and current PM sampling. As IR measurement
accuracy can be sensitive to scale and the retrieval tech-
nique, a range of possible IR uncertainty levels are expected
in future algorithm improvements. Keeping the PM retrieval
error characteristics, the IR’s Dfalse and probability of no-
rain detection P0 fixed at the calibrated values (shown in
Table 2), the IR’s maximum rain detection probability was
covaried with the IR multiplicative conditional retrieval
error standard deviation SIR. The variation of maximum
rain detection probability was performed from 0.2 (very low
rain detection probability) to 1.0 (an optimistic scenario
where IR equals the maximum detection probability of PM)
by varying parameter AINST in equation (8) (0.75 forms the
IR rain detection level for the 3B41RT). The error standard
deviation SIR was covaried from 0.9 (a fairly optimistic
scenario comparable to PM, see Table 2) to 1.90 (a
pessimistic scenario) (1.51 forms the current level of SIR).
The covariation of these two IR retrieval parameters
was assessed in terms of their reduction in flood prediction
uncertainty by evaluating the merging ER parameter
(equation (11)). The temporal correlation r2 of IR error
was fixed to 0.4.
[33] Several distinct features are worth noting from

Figure 9a. While merging ER in both peak runoff and
runoff volume decreases below 1 in the optimistic regions
of IR retrieval performance (Figure 9a, leftmost and right-
most panels), it was always higher than 1 for time to peak
(Figure 9a, middle panel). It seems that IR retrievals’ high
false alarm rate (nearly twice as much of the PM) coupled
with its relatively lower probability of no-rain detection P0

obscured the positive effect of improving rain detection and
retrieval error variance on the prediction of time to peak
runoff. On the other hand, IR retrievals are found to reduce
uncertainty moderately by 15–20% in peak runoff predic-
tion when they are associated with high rain detection levels
(P1 IR > 0.90) and with comparably lower conditional error
standard deviation (SIR < 1.0) (Figure 9a, leftmost panel).
For a similar amount of error reduction in runoff volume

Figure 9a. Contours of merging ER values representing the relative runoff prediction error of the
combined PM-IR rain products to PM retrieval alone (current PM sampling scenarios), for various levels
of IR rain estimation accuracy (SIR versus maximum IR rain detection probability). (left) Merging ERs in
peak runoff; (middle) merging ERs in time to peak runoff; (right) merging ERs in runoff volume. The
solid circles represent the retrieval level of the current IR algorithm (3B41RT).
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simulation, a lesser IR rain detection probability (P1 IR >
0.70) seems necessary. The stronger gradients along the axis
of rain detection probability (abscissa of rightmost panel)
indicate that the runoff volume error is more responsive to
improvements in IR rain detection than the other two
hydrologic parameters (PR and TP).
[34] In Figure 9b we present the impact of combined PM-

IR retrievals for varying levels of IR retrieval accuracy
associated with the 3-hourly GPM sampling scenario. While
we observe a pattern of error interaction qualitatively
similar to that presented for the current PM sampling, there
is a distinctive aspect emerging from the increased sampling
frequency in GPM. The merging ER values are about 20–
30% higher than those of current PM sampling for both the
peak runoff and runoff volume parameters (see leftmost and
rightmost panels of Figure 9b). This indicates that with an
improved PM sampling, the benefit of combining IR with
PM retrievals to reduce flood prediction uncertainty is an
expected reduction of 20–30%. This agrees with a previous
study by HAD04, where it was found that runoff error for a
canonical 3-hourly PM sampling was 30–50% lower than
that of a 6-hourly PM sampling. For the time to peak
parameter we still observe that combined PM-IR retrievals
would increase the prediction uncertainty compared to using
solely PM-based predictions.

5. Conclusions

[35] Hydrologic assessment of satellite rainfall retrievals
for flood prediction warrants the recognition that as the
space scales and timescales become smaller, the sensor’s
precipitation detection and retrieval accuracy become in-
creasingly more complex. This study revealed that current
PM retrieval and sampling scenarios can be 50–100%
more uncertain than the planned GPM-era 3-hourly sam-
pling scenario in terms of flood prediction for medium-
sized watersheds. The merging of IR with PM retrievals on
the basis of current retrieval error characteristics showed
that it would worsen flood prediction uncertainty, especially
in terms of the time to peak prediction, and for catastrophic
storm events. Considering that the accuracy of IR retrievals
varies by scale and retrieval technique and that improve-
ments are expected in new algorithms, various levels of
its measurement uncertainty were assessed here in terms of

the reduction in flood prediction uncertainty when merged
with PM retrievals. It was found that for certain levels
(some of them very optimistic for an IR retrieval scheme at
a fine resolution) of rain detection efficiency and conditional
retrieval error variability of IR rain estimates can lead to
significant reduction of prediction uncertainty in terms of
runoff volume and peak runoff parameters. No error reduc-
tion in time to peak was achieved, however. Probably, to
reduce the error in time to peak, further improvement, such as
a reduction in IR retrieval’s false alarm rates coupled with an
even higher rain detection ability, may be necessary.
[36] Results from this study are limited to major floods

resulting from long-lasting storms (>2 days) and saturation-
excess runoff generation mechanisms from medium-sized
mountainous watersheds (50–500 km2). Mountainous
basins at these scales are prone to high flood risks, while
satellite observations for many of those regions are probably
the only data source for measuring rainfall. Nevertheless, the
results of this study cannot be generalized to other scales and
runoff generation mechanisms. For example, the work needs
to be expanded to larger basins and other land surface
environments (e.g., vegetated versus dry regions and/or
basins dominated by infiltration excess runoff) to better
understand the interactions of precipitation error with
hydrology. The study herein highlighted the need for
improving satellite retrieval error characteristics to achieve
improved hydrologic forecasts. Recent techniques have
sought such improvements in IR rain estimation accuracy
through pattern recognition of cloud features [Xu et al.,
1999a], assimilation of lightning information [Morales and
Anagnostou, 2003; Chronis et al., 2004], and assimilation of
microwave information [Todd et al., 2001], to name a few.
Similarly, PM retrievals continue to evolve regularly in
terms of new overland techniques [McCollum and Ferraro,
2003] and improved sampling and resolutions as we transi-
tion to the GPM era. It is worthwhile, therefore, to under-
stand the effect of scale on the precipitation measurement
error from a host of single-sensor and multisensor retrievals
and how this propagates in hydrologic prediction. Further-
more, short-duration storms and larger-size watersheds need
to be studied to understand the temporal sampling problem
and the aspect of spatial variability of satellite measurement
error in runoff prediction. These are some of the many
aspects that need to be addressed to achieve more meaning-

Figure 9b. Same as in Figure 9a, but for the GPM-based 3-hourly sampling scenario.
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ful applications of satellite rainfall observations to flood
hydrology.
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