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Sensitivity Analyses of Satellite Rainfall Retrieval
and Sampling Error on Flood Prediction Uncertainty

Faisal Hossain, Emmanouil N. Anagnostou, and Tufa Dinku

Abstract—The Global Precipitation Measurement mission
planned jointly by the United States, Japanese, and European
space agencies envisions providing global rainfall products from
a constellation of passive microwave (PM) satellite sensors at time
scales ranging from 3-6 h. In this paper, a sensitivity analysis was
carried out to understand the implication of satellite PM rainfall
retrieval and sampling errors on flood prediction uncertainty for
medium-sized (~ 100 km?) watersheds. The 3-h rainfall sampling
gave comparable flood prediction uncertainties with respect to
the hourly sampling, typically used in runoff modeling, for a
major flood event in Northern Italy. The runoff prediction error,
though, was magnified up to a factor of 3 when rainfall estimates
were derived from 6-h PM sampling intervals. The systematic
and random error components in PM retrieval are shown to
interact with PM sampling introducing added uncertainty in
runoff simulation. The temporal correlation in the PM retrieval
error was found to have a negligible effect in runoff prediction.
It is shown that merging rain retrievals from hourly infrared
(IR) and PM observations generally reduces flood prediction
uncertainty. The error reduction varied between 50% (0%) and
80% (50 %) for the 6-h (3-h) PM sampling scenarios, depending on
the relative magnitudes of PM and IR retrieval errors. Findings
from this paper are potentially useful for the design, planning,
and application assessment of satellite remote sensing in flood and
flash flood forecasting.

Index Terms—Flood prediction uncertainty, infrared, passive
microwave, rainfall retrieval error.

1. INTRODUCTION

ASSIVE microwave (PM) radiometers for remote sensing

of rainfall have shown great promise because of the direct
interaction between hydrometeors and the radiation field.
Unlike infrared (IR) measurements, which are sensitive only to
the uppermost layer of clouds, PM radiation has the ability to
penetrate the clouds offering insight into the structure of rain-
fall itself. PM sensors have flown on a number of spaceborne
platforms. In 1987, the first Special Sensor Microwave/Imager
(SSM/T) was launched on the Defense Meteorological Satellite
Program (DMSP) F-8 satellite. Currently, there are three
SSM/I spacecrafts (F13, F14, and F15) providing PM rainfall
retrievals in sun-synchronous orbits. In 1997, the Tropical
Rainfall Measuring Mission (TRMM) was launched. TRMM
carries a Microwave Imager (TMI) similar to the SSM/I [1].
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Very recently, another PM sensor for rainfall retrieval, the Ad-
vanced Microwave Scanning Radiometer for EOS (AMSR-E)
was launched in 2002 as part of the AQUA mission [2].

The particular success of TRMM in improving our under-
standing on tropical and subtropical rainfall distribution and
precipitation structures has now spurred a larger scale mission
aimed at the study of global water cycle. This mission, named
the Global Precipitation Measurement (GPM), envisions a
constellation of PM sensors that will provide global rainfall
products at scales ranging from 3—-6 h over regions as small
as 100 km? [3]-[6]. GPM also envisions the extension of
“scientific and societal applications” of this high-resolution
global rainfall data as one of its major objectives [5]. Previous
uses of PM rainfall retrievals include weather forecasting,
climate analysis, and large-scale hydrologic studies [7]-[11].

The enhanced revisit frequency and global coverage of PM
sensors as planned in GPM will make for the first time PM
retrievals attractive for the prediction of floods over ungauged
watersheds. This is extremely important, as flood is the dead-
liest and economically most destructive natural hazard; more
than 2000 lives are lost and at least 10000 000 people are dis-
placed annually since 1991 (see www.dartmouth.edu/~floods).
Most importantly, floods are more frequent in regions that lack
financial resources to employ networks of surface weather sta-
tions necessary for flood monitoring. Thus, observations from
satellite sensors stand to offer tremendous benefit to such un-
gauged areas.

However, PM rainfall retrieval is subject to errors caused by
various factors ranging from instrument issues (e.g., calibra-
tion, measurement noise) to the high complexity and variability
in the relationship of brightness temperatures to precipitation
parameters. It is documented that any presence of error in re-
mote sensing of rainfall can potentially lead to high uncertain-
ties in the simulation of runoff at the watershed scale [12]-[14].
Guetter et al. [15] have found that satellite retrieval errors prop-
agated through a hydrologic model forced with satellite data
can yield significant uncertainty in the prediction of hydrologic
parameters. Hossain et al. [14] show that the systematic and
random components of a rain retrieval algorithm would interact
nonlinearly with the hydrologic modeling uncertainty, leading
to a high uncertainty in the resulting flood forecasts. Hence, we
need to understand the sensitivity of flood prediction uncertainty
to the error characteristics of the satellite rainfall retrievals that
are used as input to the hydrological model.

Furthermore, as space-based sampling from PM sensors is
less frequent than the hourly scale typically used in most types
of flood prediction [3], it would be important to study the ef-
fect of infrequent sampling (hereafter named sampling error)
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Fig. 1. Geographic location of (right panel) Posina watershed and (left panel)
watershed elevation map overlaid by the rain gauge network locations (in solid
circles). The inner box represents a typical 10 x 10 km satellite footprint.

ranging from 6 h (average current conditions) to 3 h (average
planned for GPM constellation) on flood prediction uncertainty.
In contrast to PM sensors, IR radiometers on geosynchronous
satellites provide excellent time and space sampling, but the re-
motely sensed parameter (primarily cloud-top brightness tem-
perature) is connected loosely to the physics of rainfall below.
Hence, it is also worthwhile investigating the utility of the less
definitive IR rainfall retrievals in conjunction with PM retrievals
for flood prediction. The specific questions that this paper seeks
to address are: 1) How do factors of PM sampling (3- and 6-h)
and retrieval error characteristics interact in the runoff trans-
formation process at the watershed scale and contribute to flood
prediction uncertainty? 2) What is the impact of using combined
IR and PM retrievals at hourly time scales on flood prediction
uncertainty? With the anticipated wider availability of satellite
rainfall products from GPM, this paper is probably the first of
the many required to answer the bigger question facing the hy-
drologic community today: What combination and levels of un-
certainty of multisensor satellite rainfall retrievals are neces-
sary to achieve realistic flood predictions?

Section II provides a description of the data, the watershed
and hydrologic model used for flood prediction. Section III
describes the formulation of a satellite rainfall retrieval error
model. This error model is necessary in making multiple
simulated realizations of the rainfall process as would have
been typically observed by a constellation of satellite sensors
(PM and IR) during a storm event. In Section IV, the simulation
framework used to investigate the sensitivity of sampling and
retrieval error characteristics in flood prediction uncertainty are
described. Results and discussion of the implications of this
paper are also provided in this section. Section V describes our
conclusions and discusses extensions of this paper.

II. WATERSHED, DATA, AND HYDROLOGIC MODEL

The watershed chosen for this paper (named Posina) is
located in northern Italy, close to Venice (Fig. 1, right panel).
Posina has an area of 116 km® and altitudes ranging from
2230-390 m at the outlet (Fig. 1, left panel). Within a radius
of 10 km from the center of the watershed there is a network
of seven rain gauges providing representative estimates of the
basin-averaged hourly rainfall (hereafter referred to as “refer-
ence rainfall”). This is considered a relatively dense network
considering that a previous hydrologic application study of
satellite data by [15] involved much less dense network of 29
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Fig. 2. October 1992 storm event hydrograph and hyetograph in Posina, Italy.

gauges over watersheds larger than 2000 km?. The estimation
of basin-averaged rainfall was based on an inverse distance
weighting technique that had earlier proved to be a reliable
method for similar hydrologic studies over Posina [13], [14],
[16]. The annual precipitation accumulation is estimated to
be in the range of 1600-1800 mm. Posina is 68% forested,
thereby saturation-excess is the main rainfall-runoff generation
mechanism of the basin. A major storm event that took place
in October 1992 and was associated with catastrophic flooding
in the area was selected for this paper [13]. Fig. 2 shows the
storm hydrograph (lower axis) and the corresponding hourly
basin-averaged gauge rainfall (upper axis). The rainfall event
lasted 120 h (five days), while the flood wave receded to the
base flow level on the seventh day (after 168 h from the be-
ginning of the storm). The meteorological situation associated
with such a storm system was characterized by cyclogenesis
in the surrounding region, which often occurs over western
Mediterranean in autumn months [17]. Further details about
the study area, including its terrain characteristics and rain
climatology can be found in [13].

The topographic index model (TOPMODEL) [18] was
chosen to simulate the rainfall-runoff processes of the Posina
watershed. This model is a semi distributed watershed model
that can simulate the variable source area mechanism of
storm-runoff generation and incorporates the effect of to-
pography on flow paths. TOPMODEL makes a number of
simplifying assumptions about the runoff generation pro-
cesses that are thought to be reasonably valid in this wet,
humid watershed. The model is premised on the following
two assumptions: 1) the dynamics of the saturated zone can
be approximated by successive steady state representations;
and 2) the hydraulic gradient of the saturated zone can be
approximated by the local surface topographic slope. The
generated runoff is routed to the main channel using an over-
land flow delay function. The main channel routing effects
are considered using an approach based on an average flood
wave velocity for the channel network. Detailed background
information of the model and applications can be found in
[19]. The model has been successfully applied in the study
region by previous hydrologic studies in [13] and [14].
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Fig. 3. Probability of rain detection by PM (TMI) retrievals over Southern

Africa, Amazon and the Southern United States determined using TRMM
Precipitation Radar (PR) surface rainfall estimates as reference. The data
products used for TRMM PR and TMI rain rates were 2A25 and 2A12,
respectively. The period of matched PR/TMI data was January—July 2002.

III. SATELLITE RAINFALL ERROR MODEL

We formulated a satellite rainfall error model (SREM) to
simulate PM and IR satellite rainfall retrievals by corrupting
more accurate sources of “reference” surface rainfall, in this
study provided by a dense rain gauge network. The utility of
this model was then in its ability to mimic basin-averaged rain-
fall retrievals from hypothetical satellite observations over the
Posina basin. Rain retrieval from a satellite observation may ex-
hibit the following possible outcomes.

1) It retrieves nonzero rainfall when reference rainfall is
nonzero (successful rain detection).
2) Itretrieves zero rainfall when reference rainfall is nonzero
(false no-rain detection).
3) It retrieves zero rainfall when reference rainfall is zero
(successful no-rain detection).
4) Ttretrieves nonzero rainfall when reference rainfall is zero
(false rain detection).
We define the successful rain detection probability (first out-
come), P; = Prob(Rsat > O|Rrgr > 0), as function of the
reference rainfall

Py = 1.0 — Ao exp(—ARREF) (D

where Ao and )\ are parameters to be derived from boundary con-
dition values of the rain detection probability. The false no-rain
detection probability (second outcome) is consequently defined
as 1 — P;. The choice for an exponential-type function for P;
was on the basis of real data as shown in Fig. 3, derived from
TRMM radar/TMI radiometer rain product comparisons over
different sites on the globe. Fig. 3 shows that the rain detec-
tion probability of TMI retrieval converges to near 1 when the
reference rain rate (in this case, reference rainfall is inferred
for TRMM precipitation radar [1]) exceeds 5 mm/h. However,
for the IR rain retrieval this threshold rain rate can take a wide
range of values depending on the retrieval algorithm and reso-
lution (in this paper, we assume the value being twice the PM

threshold value, i.e., 10 mm/h). A very low probability of detec-
tion (0.001) is given to the PM rain detection probability, P;py,
when reference rainfall is below 0.2 mm/h, while the corre-
sponding value for IR rain algorithms was set to 0.8 mm/h. The
values of \o(A) satisfying the above boundary conditions were
therefore found to be 1.332 (1.439) and 1.821 (0.751) for PM
and IR retrievals, respectively. In low rain rates (below 1 mm/h),
there is a slight discrepancy between detection probabilities de-
rived from data versus the model of (1). Since the storm of
this paper is associated with rain rates significantly higher of
the above threshold (see Fig. 2, upper axis) we expect this dis-
crepancy to have little effect on the flood prediction uncertainty
assessment. The justification for assigning a significantly less
accurate IR rain detection capability is based on a number of
reasons. First, IR retrievals tend to suffer from a spatial and
temporal offset that often lowers its rain detection probability
at scales relevant to this study [20]. Typically, IR retrievals are
not always suited to detection of very light rain [21]. An algo-
rithm intercomparison study by Negri and Adler [24] found that
IR rain retrievals have poor performance at hourly time scales.
Another study by [22] reported that IR retrievals can have a
rain detection probability of 0.64 for rain rates ranging between
0-2 mm/h, which is quantitatively consistent with the detection
probability derived from (1) using upper and lower IR rain de-
tection thresholds of 0.2 and 10 mm/h, respectively.

We define the successful no-rain detection prob-
ability (third outcome) of the satellite retrieval as
P(] = PI‘Ob(RSAT = 0|RREF = 0), while 1 — PO de-
fines the false rain detection probability (fourth outcome). The
probability Py was defined to be high for PM retrievals (0.98)
as shown in [7], while for IR it was given a lower value (0.90).
The lower value of no rain detection for IR was based on results
from a previous hydrologic study [23] that reported a value
of 0.92 on the basis of comparisons with area-averaged gauge
rainfall over a midlatitude basin in the United States.

Our next step is to assign rainfall rate values in the first and
fourth outcome where the satellite retrieval is nonzero. In the
first outcome, the retrieved satellite rain rate Rgat is statisti-
cally related to the reference surface rainfall Rrgp as

Rsat = RRrEF - €5 (2)

where the multiplicative satellite error parameter e is as-
sumed log-normally distributed. A log transformation of the
log(Rsar) — log(RrEr) statistical relationship transforms the
error €5 to a Gaussian deviate ¢ (hereafter named “log-error’)
with N (1, 0%) statistics (11 — mean; o2 — variance). To compute
the mean (hereafter named “multiplicative bias” — mu) and
variance (S?) of the multiplicative error e, the following
conversion is used in terms of y and o

mu = exp (4 0.507%) 3)
5% =[exp (02) — 1] exp (2u + o?). @)

The log-error can be space and time correlated. Only time cor-
relation was considered due to the nature of this study, i.e.,
the basin-averaged rainfall is represented by a single PM rain
retrieval pixel, which is expected to be of the order of about
10 x 10 km? resolution for GPM [6]. A lag-one autocorrelation
function was used to model the correlated error sequence, which
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TABLE 1
(a) RAIN DETECTION AND NO-RAIN DETECTION PROBABILITIES FOR IR
AND PM RETRIEVALS. (b) RANGES AND DEFAULT VALUES OF ERROR
MODEL PARAMETERS FOR MULTIPLICATIVE ERROR BIAS (mu),
LOG-ERROR STANDARD DEVIATION (0), AND LOG-ERROR TEMPORAL
CORRELATION (p?) FOR PM AND IR SENSOR RETRIEVALS. THE RANGE
R, OF THE UNIFORM DISTRIBUTION U[0, R} ] FOR SAMPLING FALSE
ALARMS WAS SET AT R;, = 0.5 mm/h FOR PM AND IR

Probability of Rain Detection (Py) Probability of No-Rain Detection (Po)

Upper boundary ~ Lower boundary
(P1=1.0) (P1=0.001)
PM 5 mm/hr 0.2 mm/hr 0.98
IR 10 mm/hr 0.8 mm/hr 0.90
()
Multiplicative Bias Standard Deviation Correlation (log-error)
(mu) (log-error) ©)
(@
Default  Range  Default Range  Default Range
PM 1.15 0.25-1.75 0.40 0.10-1.30  0.40 0.10-0.90
IR 1.15 - 0.70 0.5-0.90  0.40 -

Fig. 4. Algorithmic structure of the SREM. r,, is a randomly generated
uniform [0,1] deviate.

for a Gaussian random variable leads to the following equations
for the propagation of x and o2:

pi =p 4 (p)(€i-1 — )

of =0*(1 = (p%)) ®)
where time index i represents discrete hourly time step while p?
is the lag-one autocorrelation of e.

In the fourth outcome (false rain detection), the satellite (PM
and IR) rain retrieval is statistically generated from a uniform
distribution U0, Ry ] representing an acceptable range of low
intensity rainfall estimates usually occurring in false rain detec-
tion. The Ry, parameter was assigned a low value of 0.5 mm/h
for both PM and IR sensor retrievals, which are similar to the
false alarm rain rates suggested by Guetter et al. [15].

As discussed earlier in this section, SREM is used to sta-
tistically simulate multiple realizations of satellite rainfall re-
trievals over Posina basin using observations from a dense rain
gauge network as the basis for reference basin-averaged rain-
fall. The algorithm structure is shown in Fig. 4. The algorithm
is applied at discrete hourly time steps (defined by time index
7). The probabilities of rain detection (P ) and no rain detection
(Py) are modeled through Bernoulli distributions B(1, P;) and
B(1, Py), respectively, in a fashion similar to [15]. Table I sum-
marizes the PM and IR retrieval error characteristics considered
in this paper. The satellite rain and no-rain detection probabil-
ities and the false alarm rain rate parameter values are shown
in Table I(a). The satellite’s multiplicative bias (mu), log-error
standard deviation (o) and autocorrelation parameter (p?) were
varied across a range of values shown in Table I(b). A set of “de-
fault” values was also assigned to facilitate relative comparisons
between the varied error parameter values. These default values

(b)

are deemed error parameters associated with realistic levels of
satellite retrieval accuracies. On the basis of past studies, the
default values of mu(o)(p?) for PM and IR retrievals were as-
signed as 1.15(0.40)(0.40) and 1.15(0.70)(0.40), respectively.
From (3) and (4), it can be shown that our selected default values
are in fact equivalent to a standard error of 45% for PM and 90%
for IR retrievals. Kummerow et al. [9] have shown that PM re-
trievals can be biased in the ranges of 15% to 20% overland,
while Negri and Adler [24] have reported rms error for IR re-
trievals at the range of 100% to 200% at hourly time scale.

The primary distinction between PM and IR retrievals is rep-
resented in this error model through Py, the satellite rain estima-
tion error statistics (in particular the conditional error variance),
and to a lesser effect by Py. By assigning higher upper/lower
rain thresholds for IR in (1), the probability of IR rain (false
no-rain) detection becomes consistently lower (higher) than that
of the PM retrieval. The lower P, will lead to rate of higher false
alarms, which is typical in IR retrievals. Furthermore, the two
times higher standard error adequately characterizes the higher
degree of IR rain estimation uncertainty with respect to PM
retrieval.

IV. SIMULATION FRAMEWORK

The hydrologic model parameters were calibrated based on
the optimization algorithm of Duan et al. [25] for three time res-
olutions (hourly, 3-h, and 6-h time steps) using the rain gauge
basin-averaged rainfall as input to TOPMODEL. The simulated
hydrograph based on the hourly TOPMODEL parameters and
reference rainfall input was considered to represent the most
accurate rainfall-runoff transformation for the basin, and was
used as reference for the subsequent error analysis (henceforth



134

1 HOURLY
2000 T T T T

3 HOURLY

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 42, NO. 1, JANUARY 2004

6 HOURLY

T 2000

— — Median

90% quantiles
—— Reterence runoff

1500 - b "

1000 - - o

Discharge (m3/s)

500 -

1500

v

1000

- 500

0 50 100 150
Duration (hours)

200 0

50 10 150

Duration (hours)

0
200 0 50 10 200

150
Duration (hours)

Fig. 5. Flood prediction uncertainty for hourly, 3-, and 6-h PM retrievals for the October 1992 storm event in Posina. The quantiles shown are the 50% (median),

and the confidence bounds of 5% and 95% (90% area).

called the “reference runoff’). Because the correlation with ob-
served runoff was very high (0.92), comparisons of reference
runoff with runoff predictions driven by different synthetic satel-
lite retrieval inputs would indicate the adequacies of the retrieval
scheme and its impact on flood prediction uncertainty. The sim-
ulation exercise consisted of making multiple runs (i.e., real-
izations) of the hydrologic model, each with a random realiza-
tion of synthetic satellite rain retrievals derived from SREM,
and evaluating error statistics at the level of flood prediction.
Three errors that adequately characterize uncertainty in flood
prediction are evaluated: 1) mean absolute error in peak runoff;
2) mean absolute error in time to peak; and 3) mean absolute
error in runoff volume. The error in these three flood hydro-
graph parameters is defined as

Error in Peak Runoff

1
Nsim
e | peak Runoff; — Peak Runoff,es
p Peak Runoff ¢
Erlror in Time to Peak
" Naim
PN ‘Time to Peak; — Time to Peak,ef
— Time to Peak,qf
Erlror in Runoff Volume
" Naim
. sz ‘Runoff Volume; —Runoff Volume, ¢ ©)
P Runoff Volume,.¢

where Ng;p, is the total number of simulation runs (satellite real-
ization of retrievals); subscript ¢ indicates the simulation index;

and subscript ref signifies the hydrologic parameter was derived
from the reference runoff.

A. Assessment of PM Retrievals

We used the above simulation framework to investigate how
PM sampling and retrieval error characteristics interact in the
runoff transformation process (characterized by the three runoff
error parameters in (6). For each investigated scenario, 20 000
Ngin realizations were performed, and synthetic satellite re-
trievals propagated through the calibrated hydrologic model to
derive ensemble runoff simulations. Our preliminary study with
synthetic satellite retrievals indicated 20 000 model runs to be
the minimum Monte Carlo sample size beyond which the error
statistics in runoff showed insignificant variability. For both the
3- and 6-h scenarios, a second-degree polynomial interpolation
was performed to interpolate the runoff at hourly scales. A point
to note is that a satellite may not overpass a watershed exactly at
the start of a storm event, but may initiate sampling with a delay.
Thus, considering delays rounded off to the nearest hour, there
may be a maximum of 2-h delay for the 3-h sampling, while
for the 6-h sampling the delay can be up to 5 h. To account for
this effect we repeated the simulation exercise for these pos-
sible sampling-initiation patterns (three patterns for the 3-h and
six patterns for 6-h sampling scenarios). The errors in runoff pa-
rameters for the 3- and 6-h sampling scenarios were normalized
by the corresponding runoff simulation error of the hourly sam-
pling scenario to derive error ratios (ERs) for the different error
parameters as follows:

Error in Runoffs_poury
E~R3—hourly =

Error in Runoffy,ouriy
Error in Runoffs_noury

E~R6—hour1y = (7)

Error in Runoffyourly-
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Fig. 6. Effect of PM retrieval bias (multiplicative) on flood prediction uncertainty presented in terms of ERs. (Top) Time ERs: ratio of runoftf error for a given
sampling scenario (3 or 6 h) normalized by the 1-h runoff error derived from the correspondingly varied retrieval error parameters. (Bottom) Default ER: ratio of
runoff error for a given sampling scenario (3 or 6 h) normalized by the 1-h runoff error with the default retrieval error parameters. The upper panels show the effect
of sampling, and the lower panels show the combined effect of sampling and retrieval error on flood prediction uncertainty.

The ERs shown above allow comparison of 3- and 6-h sam-
pling to a common reference of hourly sampling, which is typ-
ically used in hydrologic forecasting of floods. ER sensitivity
to satellite retrieval error parameters (mu, o, and p2) for the 3-
and 6-h sampling scenarios is evaluated to study the effect of
sampling and retrieval error interaction in the runoff transfor-
mation process. Two measures are used, both of which represent
the ratio of runoff simulation errors for the 3- and 6-h sampling
scenarios to those from the hourly sampling scenarios. The De-
fault ER statistics use the varying values of the error measures
in Table I(b) for the 3- and 6-h scenarios, but the default values
for the hourly scenario. This allows the evaluation of the com-
bined effect of retrieval and sampling error on flood prediction
uncertainty. In order to isolate the effect of the sampling error,
the Time ER statistics use the same (varying) values of the error
measures from Table I(b) for both 3- or 6-h and hourly scenarios.

The impact of PM sampling frequency on flood prediction
uncertainty is presented in Fig. 5, which shows the “reference”
hydrograph of the catastrophic flood event with the 5%, 50%,
and 95% quantiles of the satellite predicted hydrographs de-
rived from the simulation exercise run with the default PM re-
trieval error parameters shown in Table I(a) and (b). Compared
to the 6-h scenario, the 3-h has significantly (about half) lower
flood prediction uncertainty, which appears to be comparable to
the hourly sampling scenario. The 6-h sampling scenario would
overestimate peak runoff by up to 1500 m?/s, a magnification
of about eight times the observed value, and underestimate the
time to peak by 15 h. This tremendous overestimation of the
flood wave by 6-h sampling further underscores the importance
of more frequent sampling for storms of such magnitude.

In the subsequent three figures [6]-[8], we demonstrate the
sensitivity of flood prediction uncertainty (Default ER: lower
panels; Time ER: upper panels) to PM retrieval error charac-
terized by varying values of multiplicative bias (mu), standard
deviation of log-error (¢), and lag-one correlation (p2), respec-
tively. In varying one of the error parameters in this sensitivity
experiment, the other PM error parameters are set to their de-
fault value shown in Table I(b).

Several features are worth noting from these figures, starting
with Fig. 6. It is observed that ER generally reaches a minimum
at moderate retrieval bias conditions. The observation that the
minimum ER does not occur at no bias (mwu = 1.0), but at mod-
erate bias condition, is expectable, as random error in rainfall re-
trieval may introduce biases in runoff simulation [14]. The 3-h
sampling exhibits minimum ERs at bias values closer to 1 than
the 6-h counterpart, indicating that sampling can magnify the ef-
fect of retrieval error in runoff. We observe that the Time ER in
runoff volume is nearly insensitive to the retrieval bias, which is
expected as Time ER represents the effect of sampling alone and
runoff volume is a time-integrated hydrologic parameter with a
tendency to compensate for random input errors in time. This in-
dicates that water balance studies for a medium-sized watershed
can be well represented by 3- and 6-h PM observations provided
the retrieval scheme performs at the levels assumed here. Sam-
pling error, though, can significantly affect peak runoff error
(and to a lesser effect time-to-peak error) as Time ER is shown
to reach 2.5 (2.0) for the peak runoff (time-to-peak) in the 6-h
sampling scenario, while for the 3-h scenario the effect is mod-
erate to negligible. Another observation is that the rate of in-
crease of ER (both Time and Default) with increasing bias is
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Fig. 7. Effect of PM retrieval error standard deviation (o) on flood prediction uncertainty presented in terms of ERs. (Top) Time ERs: ratio of runoff error for a
given sampling scenario (3 or 6 h) normalized by the 1-h runoff error derived from the correspondingly varied retrieval error parameters. (Bottom) Default ER:
ratio of runoff error for a given sampling scenario (3 or 6 h) normalized by the 1-h runoff error with the default retrieval error parameters. The upper panels show
the effect of sampling, and the lower panels show the combined effect of sampling and retrieval error on flood prediction uncertainty.

stronger in overestimation (mmu > 1), and again more so for the
6-h sampling scenario, as indicated by the steeper gradients and
the widening difference between 3- and 6-h ER plots. This in-
dicates that there exists a higher degree of error interaction with
sampling when the sensor overestimates rainfall, which is con-
sistent with past findings [26].

In Fig. 7 (upper panels), Time ER indicates that increasing
the retrieval error standard deviation obscures the error due to
sampling on peak runoff prediction. However, this effect is not
apparent at the time-to-peak and runoff volume Time ER plots,
which seem to only slightly increase relative to the retrieval
random error. As with Fig. 6, the 6-h sampling is associated with
higher values of Time ER values than those of the 3-h, which
range from 1 to 1.5 for the time-to-peak and runoff volume pa-
rameters. In the Default ER plots (lower panels of Fig. 7), which
show the combined effect of sampling and retrieval error, we ob-
serve that the 6-h sampling is consistently higher than 3-h sam-
pling error by a factor of 1.2 or higher. The Default ER plot for
peak runoff exhibits a steeper rate of increase in the 6-h sam-
pling scenario relative to the corresponding 3-h scenario.

In Fig. 8 we show that the Default ERs (lower panels) for all
three runoff parameters are nearly insensitive to the temporal
correlation of the retrieval error (p?) for both 3- and 6-h sam-
pling scenarios. This indicates that the time lag (minimum of
3 h) between PM observations is long enough to minimize po-
tential effects from temporally correlated errors. At the hourly
time scale, though, the rain retrieval error correlation can play a
role in runoff prediction error. This is because correlation would
indirectly increase the systematic error in the retrieval, which

would consequently lead to an increase in runoff error param-
eters. This effect is apparent in the Time ER plots of the upper
panels of Fig. 8, which are shown to decrease (peak runoff has
the steepest descent) with increasing the temporal correlation of
the retrieval error.

Fig. 9 presents contour plots of the 7ime ER values for covari-
ations of the retrieval error temporal correlation and standard de-
viation for 3- and 6-h sampling scenarios (left and right panels
of Fig. 9, respectively). The patterns of ER values are the same
in both contour plots, but the magnitudes of the Time ER values
associated with the 6-h sampling are almost double those of the
3-h sampling. The nearly circular nature of contours indicates
that the temporal correlation and standard deviation contribute
roughly equally to the magnitude of the Time ER. A maximum
point (Time ER > 2.00 for 3-h and > 5.00 for 6 h) is ob-
served at standard deviation (o) of 0.3 and lag one correlation
(p?) of 0.1. At high retrieval errors (o > 0.6, and p? > 0.6), we
observe the error ratios reaching lower values (1.1 in 3-h and 2.0
in 6-h). These lower values are caused by relatively higher in-
crease in errors derived from the hourly sampling. This indicates
that the error due to sampling alone tends to become obscured
by the higher error in rainfall retrieval for both 3- and 6-h sam-
pling scenarios. Consequently, at such high levels of retrieval
error, it would not matter what the sampling frequency is—the
algorithm performs too poorly to have any benefit in runoff sim-
ulation accuracy by increased sampling. It is therefore important
to ensure that the PM retrieval algorithms perform at adequate
levels of retrieval accuracy to maximize the benefit achieved in
flood prediction by any increase in sampling frequency.
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Fig. 9. Contours of peak runoff Time ERs in peak runoff as function of PM retrieval log-error’s lag-one correlation (p?) and standard deviation (o) for 3-h (left

panel) and 6-h (right panel) sampling scenarios.

B. Assessment of Combined PM-IR Retrievals

We also used the simulation framework to assess the impact
of combining IR and PM retrievals in flood prediction. Consid-
ering three different levels of IR retrieval error (o1Rr: 0.5, 0.7 and
0.9), the utility of IR merging with PM was studied for varying
levels of PM retrieval error (opyi: 0.1, 0.2, 0.3, 0.4, and 0.5).
In all cases, the retrieval biases and lag-one correlation for both
IR and PM were fixed at their Default value Table I(b). The IR
rainfall was used as input to the hydrologic model at hours with
no PM measurement, while the simulation framework was as
mentioned above. A statistical assessment of the merged IR and
MW rainfall input relative to the MW-only scenario is defined

based on the following error ratios (named Merging ER) for the
3- and 6-h sampling
Error in runoffyergedTR—PM

Merging E.R = :
3hourly Error in runoffs_ pouriypm

Error in runoffyerged TR—PM

Merging E.R = 8
gins Ghourly ™ prror in runoffs _hourlyPM- ®)

The error in runoff indicates the error statistics of each of the
three runoff-parameters, as defined in (6). A Merging ER value
of less than one would indicate that the use of IR rainfall during
hours with no PM observations reduces uncertainty in flood pre-
diction.

Fig. 10 shows the effect of combining IR with PM retrievals
on reduction of flood prediction uncertainty. Merging ER [(8)]
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values shown for runoff volume are presented as function of
PM retrieval error standard deviation for three levels of IR re-
trieval error standard deviations as discussed earlier. The rest of
the parameters of the IR and PM retrieval error model are set
to the default values in Table I(a) and (b). We observe that at
low PM retrieval errors (standard deviation (opyr): 0.20-0.35)
the use of the more erroneous IR retrieval (standard deviation
(o1r): 0.5, 0.7, and 0.9) can actually increase flood prediction
uncertainty for the 3-h sampling scenario (Merging ERs ranging
from 1.25-2.25). This indicates that when the difference be-
tween IR-PM retrieval error standard deviations is within the
range of 0.30-0.55, merging with IR retrievals would generally
fail to achieve any beneficial effect on flood prediction accuracy
for a 3-h PM sampling. As the difference between PM and IR re-
trieval error variances narrows, the use of IR retrievals become
effective in reduction of flood uncertainty for the 3-h case. In
contrast, we observe that the use of IR rainfall jointly with 6-h
PM rainfall retrievals (right panel, Fig. 10) invariably reduces
flood prediction uncertainty at all ranges of IR and PM retrieval
errors considered in this paper. This is explained from the fact
that the error due to infrequent sampling is so high in the 6-h
case (as shown in Fig. 4) that any additional rainfall informa-
tion from an IR sensor at the hourly scale becomes always ben-
eficial in constraining that uncertainty in flood prediction. The
relative reduction in uncertainty for the 6-h sampling scenario
ranges from 50% to 80% (Merging ERs: 0.5-0.2, respectively),
while for the 3-h scenario the reduction of uncertainty can be up
to 50% (Merging ERs: 0.5) for high PM retrieval error. This re-
duction for 3-h PM sampling with the use of hourly IR retrievals
draws the uncertainty level closer to that achieved by hourly PM
sampling when compared with that derived from 3-h PM sam-
pling alone.

V. SUMMARY AND CONCLUSION

This paper studied the sensitivity of satellite retrieval
and sampling error on flood prediction uncertainty for a
week-lasting rainfall event over a medium-sized watershed
of a typical sensor footprint size (~ 100 km?). We showed
that a 3-h PM sampling is comparable to the hourly sampling
in terms of flood prediction uncertainty for the major storm
event, while uncertainty was shown to increase by a factor of
2-3 times for a 6-h sampling. Runoff uncertainty was found
sensitive to both, systematic and random error components
of PM retrievals. Particularly, the 6-h scenario was found to
exhibit much higher sensitivity, especially when rainfall is
overestimated. The effects of temporal correlation of retrieval
error effects alone were not found to be significant for either 3-
or 6-h sampling, but their strong interaction with error variance
was evident. For estimation of runoff volume or water balance
studies at the medium-sized watershed scale from overpassing
PM sensors, the loss in accuracy due to sampling was found
to be minimal. However, this was not the case for estimation
of other flood hydrograph parameters like time-to-peak and
peak runoff. At high errors of PM rainfall retrievals, the runoff
error due effects of sampling alone was shown to become
obscured by the retrieval error. Application of IR retrieved
rainfall jointly with PM retrievals was shown to reduce flood
prediction uncertainty consistently for the 6-h PM sampling
scenario. In the 3-h sampling scenario, the potential runoff
error reduction was shown to depend on the relative accuracy
of IR retrieval with respect to the PM. The reduction in flood
prediction uncertainty was found to range from 50% to 80%
and up to 50% for 6- and 3-h sampling scenarios, respectively.

This study was limited to PM sampling scenarios of fixed
revisit times (3 and 6 h) between successive overpasses. While
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this is an expected sampling scenario for the GPM in the time
frame of 2008 onward, current constellation of PM sensors
(comprising a smaller array of satellites) sample rainfall
events with variable revisit times ranging from 1-10 h [3]. As
ungauged watersheds affected by flood problems are spread
wide within the tropics, it would be necessary to calibrate the
retrieval error parameters based on observed PM and IR sensor
data matched at a more global scale. Our current study has
been conditioned on sensor rain retrieval assumptions based
on previous studies/results. Calibration with real sensor data
is important to verify several of the key assumptions made
during the formulation of SREM including: 1) the probability
distribution of PM rainfall retrievals during false alarms; 2)
the functional form of rain detection probability; and 3) the
magnitudes of retrieval bias, error variances, and temporal
correlation. There is also need to understand the effect of storm
morphology (storm duration, fractional rain coverage, and rain
rate variability) on satellite-based flood prediction uncertainty.
Certainly, this information would be useful in identifying the
potential subset of storm systems not suitable for flood predic-
tion by satellite data. Future research should therefore address
those issues to make a better assessment of satellite rainfall
remote sensing for flood prediction of ungauged watersheds.
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