Understanding the Geophysical Sources of Uncertainty for Satellite Interferometric (SRTM)-Based Discharge Estimation in River Deltas: The Case for Bangladesh

Md. Safat Sikder and Faisal Hossain

I. INTRODUCTION

Bangladesh is a low-lying delta in the foothills of the Himalayan Mountains. Like most river deltas, it represents a geographically small region with numerous crisscrossing rivers. The total number of rivers in Bangladesh exceeds 300, of which 57 rivers are transboundary. Given the widespread unavailability of flow data across the entire river basins of Ganges, Brahmaputra, and Meghna, combined with a declining measurement network and political challenges of sharing the data, satellite remote sensing of discharge has recently become a viable alternative. This study was motivated by the need to understand the geophysical sources of uncertainty in satellite interferometric-based discharge estimation in Bangladesh. A consequential goal of this study was to contextualize the understanding as a function of river’s geophysical characteristics (river width, reach averaging length, and bed/water slope) and also to explore a pragmatic approach to uncertainty reduction using water level climatology. Discharge was estimated according to the slope-area (Manning’s) method using elevation data from Shuttle Radar Topography Mission (SRTM). A high-resolution hydrodynamic (HD) model was accurately calibrated to simulate water level and flow dynamics along the river reaches of the river network and serve as reference for comparison with satellite-based estimates. It was found that satellite interferometric (SRTM)-based discharge estimates yielded estimation error variance an order smaller than the natural flow variability only if the river width was at least three times larger than the width of the native resolution of satellite elevation data. Rivers narrower than this width (for SRTM, this cutoff is 270 m) yielded a coefficient of variation larger than 1 due to contamination of land elevation data in hydraulic parameter calculations. It was also found that water level climatology can be useful in significantly reducing the estimation uncertainty for these narrow rivers. While reach averaging length appeared insensitive to accuracy for wide rivers (width >1 km), a few rivers seemed to have an optimal reach averaging length at which the highest accuracy is obtained. Finally, it was found that if reach-averaged hydraulic parameters (area, slope, and radius) are used for the calculation of reach-averaged discharge, the needed linear (bias) correction factors, although unique and arbitrary for each river reach, can improve accuracy of flow simulations.

Index Terms—Discharge estimation, hydrodynamic (HD) model, interferometry, Manning’s approach, uncertainty.

Q1

Manuscript received February 03, 2014; revised May 06, 2014; accepted May 15, 2014. This work was supported in part by the NASA Physical Oceanography program (NN13AD97G) and in part by the NASA SERVIR program (NNX12A-M85AG). The work of M. S. Sikdar was supported in part by the Ivanhoe Foundation.

The authors are with the Civil and Environmental Engineering Department, University of Washington, Seattle, WA 98195 USA (e-mail: safatbd@gmail.com; fhossain@uw.edu).

Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTARS.2014.2326893
measuring water level of wide rivers [29]. Synthetic aperture radars (SARs) such as ERS-1 [11], JERS-1 [33], and RADAR-SAT [35] are capable of measuring inundation during any weather condition [22], [32].

Discharge, however, cannot be directly measured by any remote sensing technique. As discharge represents the flux of water through a channel cross-sectional area, a combination of spaceborne observables such as water level (h), river width (w), surface water slope (∂h/∂x), sinuosity, and water body area need to be used to estimate discharge [22]. A thorough review of various approaches to determine discharge from space is provided in [1], which has recently been revisited and updated in [28].

For example, discharge can be estimated from the fluvial surface velocity of rivers using airborne data (e.g., [7]) or spaceborne data [26]. Discharge can also be determined by regression analysis of spaceborne measurement of river width or inundated area with in situ discharge data (e.g., [31]) or with estimated shoreline elevation (e.g., [5]). Another approach is regression analysis of radar altimeter and in situ measured discharge (e.g., [17]). Among currently used techniques, one of the more physically grounded approaches is that using Manning’s equation to derive discharge from spaceborne-derived water surface slope and stage data using satellite interferometry (e.g., [9], [15], [19], and [34]).

The water surface slope-based discharge estimation technique using the Manning’s equation has particular importance due to the upcoming Surface Water Ocean Topography (SWOT) mission. The SWOT mission will use a new type of Ka band radar interferometer (KaRIN), which will be mounted on either side of a 10 m long mast and will cover a 120 km wide swath [1] (http://swot.jpl.nasa.gov). With significantly higher quality water surface elevation image data on rivers and water bodies that is anticipated from the SWOT mission on a global and routine scale, it should be possible to improve the skill of the forecasting system for transboundary floods for Bangladesh [2], [13].

The basic inputs in Manning’s equation to calculate discharge from satellite interferometry of elevation are: water surface slope (S_o) instead of friction slope (S_f), cross-sectional area (A), Manning’s n as roughness of the channel and hydraulic radius (R), which can be derived from wetted perimeter (P), and cross-sectional area (A). Stage (h) and slope (S_o) can be derived from radar interferometry and cross-sectional area (A). The flow observations for Mohadevpur are not continuous and are often biweekly.
estimated discharge can depend on various factors ranging from the derived slope, reach averaging length, derived water elevation, and river width. In [34], Woldemichael et al. showed a sensitivity analysis of change of section factor ($AR^{2/3}$) along the river reach. They suggest that the use of minimum water level for low-flow regimes can alleviate the uncertainty that can arise from uncertainty in section factor estimation. In general, a broader understanding is required for these controlling factors, namely the geophysical sources that dictate the accuracy of satellite discharge estimation using the slope-area method of Manning’s equation. This understanding is critical to set the stage for improvement of algorithms during the SWOT era building on existing approaches that do not depend on the need for in situ bathymetry measurements (such as [9] and [20]).

This study is motivated by the need to understand the river’s geophysical sources of uncertainty for satellite interferometric-based discharge estimation in the river delta of Bangladesh. A consequential goal of this study is to contextualize the understanding as a function of river characteristics (river width, flow regime, and bed slope) and also to explore a pragmatic approach of uncertainty reduction using flow climatology. Until SWOT becomes a reality, the only global source of satellite interferometric elevation data of water bodies that is also the closest analog to the SWOT mission is the SRTM, albeit with significant difference in scale, precision, and accuracy. Jung et al. [15] and Woldemichael et al. [34] recently reported a case study on the Brahmaputra river using the SRTM measurements of $\partial h/\partial x$. This one-time SRTM mission (which flew over Bangladesh on February 20, 2000) provided a global coverage of digital elevation data using interferometry. Nevertheless, this study is expected to have value for SWOT if we are mindful of the following caveats (i.e., premise) that apply.
1) If the SRTM elevation data exhibit quantifiable skill in estimating the discharge according to the Manning’s approach at a particular river section or reach, SWOT-era elevation data should have similar or higher skill. This is because the elevation measurements during the SWOT era are expected to be more accurate, more precise, and have a smaller native resolution by an order. In our words, this can be phrased as, if it works for SRTM elevation data, then it must work equally well or better for SWOT-era elevation data. We argue that this knowledge of the circumstances for which discharge estimation is conclusively effective for SRTM data is the logical first step to push the envelope of accuracy for SWOT-era discharge algorithms.

2) Given the coarser resolution and larger uncertainty associated, the performance of SRTM elevation data-based discharge estimation is neither a necessary nor a sufficient condition for identifying the circumstances for which SWOT-era elevation data can be equally ineffective. In our words, this can be phrased as, if SRTM elevation data does not work conclusively for a given case, one cannot make the same claim about SWOT-era elevation data until SWOT data is actually available.

3) Given that observed discharge and water level data are not sampled (in space and time) frequently enough and are also sparsely distributed for a river network (including the Bangladesh Delta), derived discharge estimates and water level dynamics from an accurately calibrated hydrodynamic (HD) model are the acceptable candidates for benchmarking the spaceborne technique of discharge estimation.

This study is organized as follows. Section II provides a summary of the study region (river network) and HD model used. Section III elaborates the Manning’s slope-area method of discharge estimation using spaceborne observables from SRTM. Section IV describes the uncertainty assessment of estimated discharge for various rivers followed by Section V (discussion) on ways to reduce uncertainty. Finally, Section VI addresses key conclusions and the likely way forward in advancing spaceborne discharge estimation.

II. THE HD MODEL

An HD model was used to estimate the water level and discharge dynamics at closely spaced locations along a channel in the vastly intricate river network of Bangladesh. The key motivation that drove the building of this model was the absence of direct measurement of river stage and rated discharge along most river reaches of Bangladesh. The Hydrologic Engineering Centers River Analysis System (HEC-RAS) was used as the HD model by building on an earlier work of [29]. HEC-RAS is a one-dimensional (1-D) HD model which can simulate natural or...
designed open channel network. It can simulate both steady and unsteady flow conditions. The steady flow simulation is based on 1-D energy equation. Here, Manning’s equation is used to calculate the energy loss. HEC-RAS can generate flow and stage hydrographs at each cross section in unsteady flow condition. An earlier setup of HEC-RAS model comprising only three major rivers (Ganges, Brahmaputra, and Meghna) [29] was updated to include the numerous (and smaller dendritic) rivers (Fig. 1). For further details on the HEC-RAS setup, the reader is referred to [29].

A total of 124 rivers with over 2200 river bathymetric cross sections were used to create a comprehensive HEC-RAS model setup (Fig. 1). This updated setup has a total of 56 boundaries (48 upstream and 8 downstream). The setup is as stable “as is” during the Monsoon period. During the dry period of the year (October to May), the ephemeral streams, which become dry, require to be switched off to achieve numerical stability in the unsteady simulations. The calibration period for the model covered 2000–2002 (i.e., 3 years). Fig. 1 provides a summary of the calibrated and acceptable water level simulations during this period that are compared against observations. The RMSE of the calibrated water level with observed water level ranged from 0.45 to 1.33 m. Fig. 1 indicates that the calibrated model is quite satisfactory during the dry period for use as a reference for water level dynamics along the river reaches.
III. DISCHARGE ESTIMATION FROM SATELLITE-DERIVED ELEVATION DATA

A. General Methodology

Most of the studies using SRTM data to estimate discharge are performed with the Manning’s approach (e.g., [15] and [34]). This technique of discharge estimation is based on the Manning’s equation. The Manning’s equation can be rearranged as follows considering that the flow is uniform, so that the friction slope S_f can be replaced by surface water slope S_w:

$$ Q = \frac{1}{n} AR^{2/3}(\partial h/\partial x)^{1/2} \tag{1} $$

where n is Manning’s roughness parameter, A is the cross-sectional area of flow, R is the hydraulic radius, and $\partial h/\partial x$ is the surface water slope. Here, stage and slope can be determined using SRTM data. If the in situ section data are available, cross-sectional area and hydraulic radius are also derivable.

SRTM data provide water surface elevation data for water bodies and rivers alongside land surface elevation. To extract the water surface elevation data to determine the stage and slope from SRTM data, a land–water mask is needed as the simplest methodology. So the steps to determine the spaceborne discharge using the Manning’s approach with in situ bathymetry are:

1. creation of a land–water classification mask; 2) extraction of water surface elevation from SRTM data using the mask to determine the slope and water level; 3) calculation of cross-sectional area and hydraulic radius; and 4) applying Manning’s equation to determine discharge. A flowchart of these steps to discharge estimation is provided in Fig. 2.

B. Classification of Land–Water Mask

In this study, water bodies were classified from available LANDSAT image using an unsupervised process reported in [21]. According to [21], water can be classified from land using the following simple rule of using bands 4 and 5 imagery of the Thematic Mapper (TM) sensor of LANDSAT:

- Band 4 (0.76 – 0.90 μm) < 45 value of digital image [= water]
- Band 5 (1.55 – 1.75 μm) < 35 value of digital image [= water].

Because the band 4 of ETM+ and TM uses same wavelength range while band 5 uses almost same wavelength range to take images, the unsupervised rule suggested by [21] for Landsat-TM imagery is also applicable for Landsat-ETM+ imagery. The quality of the land–water classification from LANDSAT image was verified by an independent SAR image of water bodies from RADARSAT [14], which is immune to cloud cover problems. For verification of land–water classification from LANDSAT image, a classified RADARSAT image of the study area was collected for August 3, 2007. The nearest LANDSAT-7 image (August 10, 2007) corresponding to the RADARSAT image had 17% cloud cover. Fig. 3 shows that the unsupervised scheme used for LANDSAT image classification into water and non-water pixels yielded 80% of the pixels correctly classified even with a fairly high cloud coverage (of 17%).

For extracting the water level data from SRTM, LANDSAT-7 imagery that was as close as possible to the SRTM overpass (February 20, 2000) was used. There are four such LANDSAT scenes that are available near February 20 (on February 19 and 28, 2000) with fairly low cloud cover (less than 10%; Fig. 4). All four images were classified as water and land and merged to create a mosaic over Bangladesh river networks (see Fig. 5) using the simple rule suggest by [21].

C. Estimation of Water Level and Slope

The water surface elevation data of February 20, 2000 from SRTM data were extracted using LANDSAT water–land classified image and a GIS technique as follows. To simplify the extraction process, a line shapefile of the target river reach was used. Using this line shape, a buffer polygon of the river was created to extract only the river area. The buffer width was broad enough to cover the maximum width of a river reach and include the water areas of a river. The water surface elevation grid of the target river reach from SRTM data was extracted using the land–water mask of the reach. The extracted water surface elevation grid was then converted into point shapefile with grid values.

Chainage (i.e., distance from upstream along river centerline) of each cell was calculated along the river. The slope was then determined from the relationship between the water surface elevation change and the horizontal distance of cells from the upstream end of the river. An example of water elevation extraction and slope calculation for the Arial Khan River (see Fig. 1 for its location) is shown in Fig. 6.

D. Estimation of Discharge

The water level at a particular river cross section was derived from the regression equation of derived slope from SRTM elevation data. Another set of discharge was estimated using the water level directly extracted from SRTM data at in situ section’s location. There are two approaches to estimate discharge that were followed, with the former approach (using slope information to derive water level) being used in the hope that it would make the discharge estimates less sensitive to the noise in SRTM elevation data. The datum of SRTM-derived water elevation is an ellipsoid. But the datum of the available in situ cross sections/bathymetry is called “mPWD” and is set by the public work department (PWD) of the country. Thus, the SRTM-derived water level data were adjusted to the mPWD datum. The area and wetted perimeter of the available in situ cross section were calculated using simple geometric calculations.

Table I

<table>
<thead>
<tr>
<th>River name</th>
<th>Study reach length (km)</th>
<th>Average top width (from LANDSAT image) (m)</th>
<th>Location in Bangladesh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrai</td>
<td>150</td>
<td>66</td>
<td>North-West</td>
</tr>
<tr>
<td>Baulai</td>
<td>92</td>
<td>170</td>
<td>North-East</td>
</tr>
<tr>
<td>Mohananda</td>
<td>70</td>
<td>171</td>
<td>North-West</td>
</tr>
<tr>
<td>Lakhiya</td>
<td>112.5</td>
<td>182</td>
<td>North-Central</td>
</tr>
<tr>
<td>Arial-Khan</td>
<td>100</td>
<td>266</td>
<td>South-West</td>
</tr>
<tr>
<td>Ganges</td>
<td>124</td>
<td>1095</td>
<td>Major-River</td>
</tr>
</tbody>
</table>
hydraulic radius was derived from the area and wetted perimeter of the cross section. The derived area \((A)\), hydraulic radius \((R)\), water surface slope \((\partial h/\partial x)\), and approximated Manning’s roughness \((n)\) were used to determine the discharge through Manning’s equation (1).

IV. UNCERTAINTY ANALYSIS

A. Error Metrics for Uncertainty Analysis

The uncertainty of the spaceborne estimated discharge with the calibrated model-simulated discharge was calculated by the coefficient of variation of the root-mean-square error of \(CV(RMSE)\), which can be defined by the following equation:

\[
CV(RMSE) = \frac{RMSE}{Q}
\]

where \(RMSE\) is the root-mean-square error of the estimated discharge relative to the model (HEC-RAS) discharge and \(Q\) is the average of reference (i.e., HD modeled) discharge.

Root-mean-square error of the estimated discharge was determined using

\[
RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (Q_{e,i} - Q_{r,i})^2}
\]

where \(Q_{e,i}\) represents estimated discharge, \(Q_{r,i}\) is the reference discharge at same location, and \(n\) is the number of total cross sections, where discharge were estimated.

\(CV(RMSE)\) indicates the variation of estimated discharge relative to the reference (i.e., HEC-RAS model output in this case). In other words, a low \(CV\) smaller than 1 indicates that the error variability is an order smaller than the natural variability of (measured) flow and thus quite reliable.

Six rivers were selected to carry out the accuracy analysis of discharge estimation (Fig. 1). The reaches are selected to afford variability in width, bed slope, and topographic regions (flat versus mountainous) of Bangladesh. The selected reaches, in order of increasing river width, were: Atrai, Baulai, Mohananda, F7:1
Lakshya, Arial Khan, and Ganges. General characteristics of the selected river reaches are shown in Table I.

B. SRTM-based Discharge Estimation of Rivers

Discharge was estimated for all six study reaches with varying Manning’s n (Fig. 7). In this scenario, water level at each in situ cross section was determined using the first-order polynomial regression equation of the derived slope. Fig. 7 shows that the accuracy of estimated discharge generally increases with the use of higher assumed Manning’s n. The estimated discharge of the Ganges and the Arial Khan rivers were closest to the reference (model-HEC RAS)-simulated discharge. Both rivers are wider than 250 m. The Atrai River, which was the narrowest river of the six, yielded the highest uncertainty in discharge estimation. Calculated discharge at each section of the Atrai River is found to be at least one order higher than the reference discharge from the HD model, indicating that the Manning’s approach using SRTM data is inappropriate without further corrections.

Next, the best-fitted Manning’s n, among the evaluated Manning’s n, was selected for the next set of analyses. The discharge was estimated for different reach averaging lengths with the best-fitted Manning’s n (shown in Fig. 8). Two reach averaging lengths of each river were selected based on available total length of the river reach and the slope of the river. The accuracy of the estimated discharge generally seemed insensitive, particularly for the wider rivers such as Ganges and Arial Khan. However, for Baulai and Lakshya rivers, where discharge was estimated for more than two reach-averaged lengths, there appeared to be an “optimal” reach averaging length. For Baulai and Lakshya rivers, this optimal length appears to be about 40 km. A point to note is that the discharges estimated herein used only the reach-averaged slope, whereas all other hydraulic parameters were derived for each in situ cross section. Later in Section V, we revisit this issue by performing a truly reach-averaged discharge estimation using reach averaging for all hydraulic parameters.

A sensitivity analysis was also done to compare the discharge estimated using water level extracted by the two contrasting...
Fig. 9. Estimated discharge with optimized reach-averaged length and best-fitted Manning’s n for different approaches of water level acquired. “Model” refers to flow simulated by HEC RAS HD model.

TABLE II

<table>
<thead>
<tr>
<th>River name</th>
<th>Reach (km)</th>
<th>Avg. width from LANDSAT (m)</th>
<th>Avg. slope (cm/km)</th>
<th>Bed slope (cm/km)</th>
<th>CV (RMSE)</th>
<th>Acceptable (Y if CV<1; N if CV>1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrai</td>
<td>0–50</td>
<td>90</td>
<td>-7.0</td>
<td>-2.2</td>
<td>21.96</td>
<td>N</td>
</tr>
<tr>
<td>Atrai</td>
<td>50–100</td>
<td>64</td>
<td>-4.0</td>
<td>-10.3</td>
<td>16.96</td>
<td>N</td>
</tr>
<tr>
<td>Atrai</td>
<td>100–150</td>
<td>44</td>
<td>-2.3</td>
<td>-1.6</td>
<td>17.71</td>
<td>N</td>
</tr>
<tr>
<td>Atrai</td>
<td>0–150</td>
<td>66</td>
<td>-4.0</td>
<td>-6.8</td>
<td>23.92</td>
<td>N</td>
</tr>
<tr>
<td>Arial-Khan</td>
<td>0–100</td>
<td>266</td>
<td>-1.9</td>
<td>-8.1</td>
<td>0.47</td>
<td>Y</td>
</tr>
<tr>
<td>Arial-Khan</td>
<td>0–50</td>
<td>264</td>
<td>-0.3</td>
<td>-4.6</td>
<td>0.69</td>
<td>Y</td>
</tr>
<tr>
<td>Arial-Khan</td>
<td>50–100</td>
<td>268</td>
<td>-0.6</td>
<td>-4.2</td>
<td>0.36</td>
<td>Y</td>
</tr>
<tr>
<td>Lakhya</td>
<td>0–112.5</td>
<td>182</td>
<td>-5.6</td>
<td>0.7</td>
<td>5.12</td>
<td>N</td>
</tr>
<tr>
<td>Lakhya</td>
<td>0–61</td>
<td>152</td>
<td>-2.8</td>
<td>-2.4</td>
<td>12.65</td>
<td>N</td>
</tr>
<tr>
<td>Lakhya</td>
<td>61–98</td>
<td>207</td>
<td>-6.9</td>
<td>1.2</td>
<td>3.26</td>
<td>N</td>
</tr>
<tr>
<td>Lakhya</td>
<td>98–112.5</td>
<td>239</td>
<td>-1.6</td>
<td>-11.8</td>
<td>0.55</td>
<td>N</td>
</tr>
<tr>
<td>Baulai</td>
<td>0–92</td>
<td>170</td>
<td>-2.1</td>
<td>-5.2</td>
<td>3.00</td>
<td>N</td>
</tr>
<tr>
<td>Baulai</td>
<td>0–30</td>
<td>125</td>
<td>-5.1</td>
<td>8.6</td>
<td>6.58</td>
<td>N</td>
</tr>
<tr>
<td>Baulai</td>
<td>30–60</td>
<td>180</td>
<td>-4.6</td>
<td>1.4</td>
<td>3.04</td>
<td>N</td>
</tr>
<tr>
<td>Baulai</td>
<td>60–92</td>
<td>203</td>
<td>-4.6</td>
<td>10.2</td>
<td>1.98</td>
<td>N</td>
</tr>
<tr>
<td>Mohananda</td>
<td>0–70</td>
<td>171</td>
<td>-3.0</td>
<td>4.0</td>
<td>5.46</td>
<td>N</td>
</tr>
<tr>
<td>Mohananda</td>
<td>0–38</td>
<td>179</td>
<td>-0.8</td>
<td>12.7</td>
<td>2.63</td>
<td>N</td>
</tr>
<tr>
<td>Mohananda</td>
<td>38–70</td>
<td>157</td>
<td>-3.0</td>
<td>-3.5</td>
<td>4.08</td>
<td>N</td>
</tr>
<tr>
<td>Ganges</td>
<td>0–31</td>
<td>1051</td>
<td>-5.3</td>
<td>0.0</td>
<td>0.11</td>
<td>Y</td>
</tr>
<tr>
<td>Ganges</td>
<td>62.5–93</td>
<td>1207</td>
<td>-11.7</td>
<td>-21.0</td>
<td>0.49</td>
<td>Y</td>
</tr>
<tr>
<td>Ganges</td>
<td>93.5–124</td>
<td>906</td>
<td>-16.9</td>
<td>-361.6</td>
<td>0.60</td>
<td>Y</td>
</tr>
</tbody>
</table>
approaches mentioned earlier (Fig. 9). The first approach of water level derivation was simply to use the regression equation (first order polynomial) of water slope. For this approach, the minimum water level was estimated along each river reach, and river cross section was used. The second approach was directly...
extracted water level from SRTM data at *in situ* section location. In this case, discharge was determined using both minimum and average water level at each cross section of reaches as suggested in [17]. Fig. 9 shows that the discharge calculations using the slope-derived water level are very similar to that obtained through minimum water level directly acquired from SRTM data. For Atrai and Ganges rivers, the slope-derived water level yields marginally better accuracy than that using the directly estimated minimum water level.

C. Assessment of Uncertainty

Accuracy of satellite-based discharge estimation was calculated by \(CV(RMSE) \) (2). Calculated values of \(CV(RMSE) \) for

different rivers with varying average width (i.e., average top
width from classified LANDSAT image), water surface slopes,
and bed slopes are shown in Table II. A point to note herein is that
negative bed slope means a downward slope along the down-
stream direction downstream and positive bed slope means
upward slope to downstream.

The plots of $CV(RMSE)$ versus average width, average slope,
average bed slope, and reach averaging length are shown in
Fig. 10. The $CV(RMSE)$ versus average width plot [Fig. 10(a)]
appears to follow a logarithmic function with CV decaying
rapidly at river widths larger than 250 m. In relative terms, this
equates to about three times the native spatial resolution of the
spaceborne elevation data. While this rule cannot and should not
be generalized for the SWOT-era elevation data, given the
corresponding scale, accuracy, and precision, it is fair to claim that
SWOT data should be able to improve on this rule and yield more
accurate discharge estimates for rivers that are narrower than
three times the native resolution of SWOT elevation data. An
issue to keep in mind is the science requirement of the SWOT
mission (at the time of writing this manuscript) is that height

<table>
<thead>
<tr>
<th>River name</th>
<th>Reach averaging length (km)</th>
<th>Manning’s n</th>
<th>Slope derived WL</th>
<th>Minimum WL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>CV(RMSE)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unadjusted</td>
<td>Adjusted</td>
</tr>
<tr>
<td>Atrai</td>
<td>50</td>
<td>0.04</td>
<td>20.18</td>
<td>6.16</td>
</tr>
<tr>
<td>Baulai</td>
<td>45</td>
<td>1.19</td>
<td>2.80</td>
<td>2.13</td>
</tr>
<tr>
<td>Lakhya</td>
<td>40</td>
<td>1.35</td>
<td>4.17</td>
<td>1.80</td>
</tr>
</tbody>
</table>

Table V

Comparison of $CV(RMSE)$ between discharge derived from climatology-adjusted and unadjusted SRTM water level.
accuracy (sigma) will be 10 cm or lower when averaged over an area that is 1 km². For a river that is 100 m wide, this translates to a reach length of 10 km, and seems quite promising during the SWOT era for the narrow rivers (width < 270 m) that were found not as promising using SRTM data.

For CV(RMSE) versus average surface water slope plot [Fig. 10(b)], two extreme water surface slopes of the Ganges river (11.7 and 16.9 cm/km) were excluded as outlier. The plot shows that the CV(RMSE) generally follows a weakly decreasing trend with decreasing surface water slope and in general the trend is rather inconclusive (note: negative slope means the slope is downhill). The plot of CV(RMSE) versus average bed slope shows a similarly weak but increasing trend of CV(RMSE) with decreasing bed slope (compared to water surface slope) [Fig. 10(c)].

Another accuracy analysis was performed with reach averaging length. Table III shows the CV(RMSE) for different reach averaging lengths in different rivers. The sensitivity to accuracy of discharge estimation with change of reach averaging length is shown in Fig. 10(d). The Baulai and the Lakshya rivers, where more than two reach averaging lengths were used to determine the discharge, showed an optimal reach averaging length. Thus, too much or too little reach averaging length can increase uncertainty in discharge estimation for such rivers with medium width (between 100 and 250 m).

V. Reducing Uncertainty of Discharge Estimation

A. Key Sources of Uncertainty

Analysis according to [10] shows that uncertainty can arise from change in cross-sectional area (ΔA), width (W), slope (S_w), cross-sectional area at lowest stage, and Manning’s n (A_0 and n). A study reported in [18] analyzed the Ohio River and showed that 95% uncertainty in discharge calculation occurred due to roughness coefficient and friction slope. In our study, in situ bathymetry data were used. Therefore, it is directly measurable and uncertainty from should be less significant. Furthermore, optimal Manning’s n was used to find the best-fit with observed discharge to reduce uncertainty from Manning’s n (Fig. 7). Finally, discharge was estimated for various slopes estimated from reach-averaged lengths (Fig. 8) to minimize the uncertainty from slope. Thus, the major source of uncertainty is likely to be contributed by the error in estimation of cross-sectional area and hydraulic radius due to erroneous estimation of river stage from SRTM data.

To verify whether the erroneous estimation of river stage is the key source of uncertainty, Fig. 11 shows the comparison of extracted water level from SRTM with HD model simulated and observed water level measurement for Lakshya River. In this river reach, a large error in elevation measurement occurred at upstream locations, where top width of the river (from LANDSAT image) was about 150 m. This top width of the river is seen to increase along the downstream direction, as discharge estimation error decreases. Another example of Arial Khan River (Fig. 11) shows that the error in stage measurement is relatively large at upstream locations. The error becomes minimum and almost constant beyond a 250-m river top width. The Ganges River is the widest river among all the study reaches and width is considerably higher than 250 m at each section. Accuracy of water level estimation from SRTM was significantly higher and closer to the observed data for the Ganges River (see Fig. 11).

From Fig. 11, it is clear that the accuracy of water level measurement using SRTM data depends mostly on the width of the river that consequently dictates the likelihood of contamination by land elevation data and overestimation of section factor and discharge. The accuracy is relatively high and almost constant for river width larger than 250 m, which is almost equal to width of three times the native spatial resolution (90 m) of SRTM data (noted earlier in Section IV).

B. Using Flow Climatology to Reduce Estimation Uncertainty

A statistical climatology-driven correction approach was applied to reduce the high levels of uncertainty that was found to occur in the narrower rivers. First, a simple regression analysis (mapping) was established between SRTM-derived water level and a 10-year climatology of water level for the month of February for the three rivers with width less than 270 m: Lakshya, Baulai, and Atrai. Here, a 10-year water level climatology was used instead of daily water level (for February 20, 2000) to correlate with SRTM data. Daily data may contain reading error, as it represent only a single measurement. Climatology is a long-time average of data where the RMSE is expected to minimize significantly.

In Table IV, water level climatology shows the daily average for the month of February over 10 years at each station. Both slope-derived (Table IV, column 5) and directly extracted...
minimum (Table IV, column 7) water level from SRTM data were correlated with observed water level climatology (Table IV, column 3). The observed climatology and SRTM water level correlation are found to follow a second-order polynomial trend. Fig. 12 (upper panel) shows the correlation and regression equation for both slope-derived and directly extracted SRTM water level. Using these regression equations, the SRTM water elevation data were "mapped" to the climatology (Table IV, column 6 and 8). Fig. 12 (lower panel) shows the impact of this climatology adjustment when compared to reference (HD model)-derived water level. Next, discharge was reestimated using the climatology-adjusted SRTM water level for both slope-derived and directly extracted elevation scenarios. Fig. 13 and Table V show the improvement in discharge estimation accuracy for the Atrai, Baulai, and Lakshya rivers using climatology-adjusted corrections. It is quite evident from the figure and table that the climatology-based adjustment of satellite elevation data can significantly enhance the skill of discharge estimates in rivers narrower than three times the native spatial resolution.

C. Using Correction Factor in Reach-Averaged Discharge to Reduce Uncertainty

As was noted earlier in Section IV, the discharges estimated up to this point used only the reach-averaged slope in the Manning's equation, while all other hydraulic parameters were derived as "point" values at each in situ cross section. Thus for two rivers of contrasting widths (Atrai and Atrial Khan), discharge was

<table>
<thead>
<tr>
<th>River name</th>
<th>Reach (km)</th>
<th>Manning's n</th>
<th>Avg. width (m)</th>
<th>Avg. slope (cm/km)</th>
<th>Bed slope (cm/km)</th>
<th>CV (RMSE) for SRTM WL derived flow</th>
<th>CV (RMSE) for HEC-RAS WL derived flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrai</td>
<td>0–50</td>
<td>0.04</td>
<td>90</td>
<td>–7.0</td>
<td>–2.2</td>
<td>21.96</td>
<td>1.82</td>
</tr>
<tr>
<td>Atrai</td>
<td>50–100</td>
<td>0.04</td>
<td>64</td>
<td>–4.0</td>
<td>–10.3</td>
<td>16.96</td>
<td>1.26</td>
</tr>
<tr>
<td>Atrai</td>
<td>100–150</td>
<td>0.04</td>
<td>44</td>
<td>–2.3</td>
<td>–1.6</td>
<td>17.71</td>
<td>1.10</td>
</tr>
<tr>
<td>Baulai</td>
<td>0–45</td>
<td>0.055</td>
<td>136</td>
<td>–4.9</td>
<td>–10.0</td>
<td>5.58</td>
<td>2.39</td>
</tr>
<tr>
<td>Baulai</td>
<td>45–92</td>
<td>0.055</td>
<td>200</td>
<td>–2.3</td>
<td>–10.3</td>
<td>1.86</td>
<td>1.86</td>
</tr>
<tr>
<td>Mohananda</td>
<td>0–38</td>
<td>0.055</td>
<td>179</td>
<td>–0.8</td>
<td>12.7</td>
<td>2.63</td>
<td>1.01</td>
</tr>
<tr>
<td>Mohananda</td>
<td>38–70</td>
<td>0.055</td>
<td>157</td>
<td>–3.0</td>
<td>–3.5</td>
<td>4.08</td>
<td>2.84</td>
</tr>
<tr>
<td>Lakhya</td>
<td>0–61</td>
<td>0.05</td>
<td>152</td>
<td>–2.8</td>
<td>–2.4</td>
<td>12.65</td>
<td>5.29</td>
</tr>
<tr>
<td>Lakhya</td>
<td>61–98</td>
<td>0.05</td>
<td>207</td>
<td>–6.9</td>
<td>1.2</td>
<td>3.26</td>
<td>1.20</td>
</tr>
<tr>
<td>Lakhya</td>
<td>98–112.5</td>
<td>0.05</td>
<td>239</td>
<td>–1.6</td>
<td>–11.8</td>
<td>0.55</td>
<td>0.53</td>
</tr>
</tbody>
</table>
A native resolution of elevation data. It was also found that water the river width was at least three times larger the width of the variance an order smaller than the natural SRTM-derived discharge estimation that has been shown, to ask (SRTM)-based discharge estimates yielded estimation error 571 calculated for various arbitrary k factors for Attrai (upper panel) and Arial Khan rivers (lower panel). It is evident that an arbitrary and river-specific k factor can yield reach-averaged discharge that matches closely with model-derived discharge. However, the consistency of this correction factor for other times and diverse flow regimes remain untested due to SRTM sampling only for 1 day in February 20, 2000.

D. Inherent Uncertainty of the Manning’s Approach

It is important at this stage, given the range of uncertainty in SRTM-derived discharge estimation that has been shown, to ask what could be the baseline or inherent uncertainty of the Manning’s approach. The Manning’s equation is essentially a grossly simplified form of the full HD flow equation, where it is assumed that the energy gradient line, the river bed and water surface are all parallel and thus the water surface slope is an acceptable proxy for driving discharge. Since we have treated HEC-RAS-derived water level as our reference, we, therefore, chose to recalculate the Manning’s discharge using HEC-RAS-derived water level and compare it with that obtained from SRTM-derived water level. Fig. 15 and Table VI show that the inherent uncertainty of the Manning’s approach can range from 10% to 30% depending on the river reach and flow conditions. This is an important issue to keep in mind as a key limitation of the Manning’s approach when assessing the potential of satellite-based water elevation data that is expected from the SWOT mission. Other discharge algorithms beyond the Manning’s approach should be considered when creating SWOT discharge products.

VI. CONCLUSION

This study was motivated by the need to understand the uncertainty of discharge estimation using the slope-area (Manning’s equation) method using satellite interferometric elevation data. The study tried to contextualize the understanding as a function of river’s geophysical characteristics (river width, reach length, and bed/water slope) of a riverine country in a humid deltaic environment (Bangladesh). The study also explored a pragmatic approach to uncertainty reduction using flow climatology. A high-resolution HD model was accurately calibrated to simulate water level and flow dynamics along the river reaches of the river network and serves as reference for comparison with satellite-based estimates. It was found that satellite interferometric (SRTM)-based discharge estimates yielded estimation error variance an order smaller than the natural flow variability only if the river width was at least three times larger the width of the native resolution of elevation data. It was also found that water level climatology can be useful in significantly reducing the estimation uncertainty for these narrow rivers. While reach averaging length appeared relatively insensitive to accuracy for wide rivers (width > 1 km), a few rivers seemed to have an optimal length at which the highest accuracy is obtained. Finally, it was found that if reach-averaged hydraulic parameters (area, slope, and radius) are used for calculation of reach-averaged discharge, then the necessary linear (bias) correction factors needed are not only unique but also arbitrary for each river.

While the study findings are conditioned on the scale, accuracy, and precision aspects of SRTM data, the conclusions that emerge can provide guidance to the further development of discharge algorithms for the SWOT era. The typical 22-day (maximum) repeat sampling for the proposed mission at the planned 78° inclination will provide at least two observations in 3 weeks over the humid tropics and delta environments such as Bangladesh. Yet, when it comes to rigorous assessment of the potential of satellite remote sensing of fresh water fluxes, ungauged riverine deltas have remained a rather poorly studied region. This study has shown the scenarios for which SWOT-era elevation may be expected to provide skill in discharge estimation and perhaps with considerably lower uncertainty than that obtained using SRTM data. Furthermore, the study has shown that the use of water level climatology and correction factors have promise for improving the quality of discharge estimates.

A key limitation of the study, due to the nature of the SRTM, was the reliance on a single day (February 20, 2000) for assessing the uncertainty of satellite-based discharge estimation. A natural extension of this study is, therefore, to overcome this sampling limitation through the use of a simulator that can mimic SWOT-like interferograms, albeit with SWOT-like precision, orbit, sampling, and accuracy, from accurately measured water elevation maps. A first task for authors in the use of the SWOT simulator is to assess the minimum river top width for which reliable estimates of discharge can be obtained consistently during Monsoon and non-Monsoon seasons. Work is underway to use such a simulator and the findings will be reported in a forthcoming publication.

ACKNOWLEDGMENT

The Institute of Water Modeling, Dhaka, Bangladesh, is gratefully acknowledged for their generous support with data acquisition and hydrodynamic modeling as part of a 5-year memorandum of understanding with the Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA. The authors also acknowledge the critique from the anonymous reviewers and the editor that helped improve the quality of the manuscript.

REFERENCES

Md. Safat Sikder received the B.S. degree in water resources engineering from Bangladesh University of Engineering and Technology, Dhaka, Bangladesh, and the M.S. degree from Tennessee Technological University, Cookeville, TN, USA, in 2013. Currently, he is pursuing the Ph.D. degree in civil and environmental engineering from the University of Washington, Seattle, WA, USA. His research interests include hydrologic and hydrodynamic modeling and application of remote sensing for surface water and flood forecasting.

Faisal Hossain received the B.S. and M.S. degrees from the Indian Institute of Technology, Varanasi, UP, India, and National University of Singapore, Singapore, respectively, and the Ph.D. degree from the University of Connecticut, Storrs, CT, USA, in 2004. Currently, he is an Associate Professor with the Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA. He has published over 100 peer-reviewed journal articles, authored an undergraduate-level textbook, edited two book volumes, and contributed eight book chapters. His research interests include hydrologic remote sensing, uncertainty modeling of water cycle variables, human modification of extreme hydro-climatology, sustainable water resources engineering, spaceborne transboundary water resources management, engineering education, and public outreach.

Dr. Hossain is also a recipient of awards such as NASA New Investigator Award in 2008, National Association of Environmental Professionals Education Excellence Award in 2010, US Fulbright Faculty Award in 2012, Graduate Of the Last Decade (G.O.L.D.) award from the University of Connecticut in 2012, and American Geophysical Union (AGU) Charles Falkenberg Award in 2012.