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Abstract 7 

This research explored the operational feasibility of quantitative precipitation forecasting (QPF) 8 

using high resolution numerical weather prediction models at the urban landscape scale for flood 9 

inundation forecasting in the city of Houston for Harris County Flood Control District (HCFCD). 10 

The authors propose and test a rapid-refresh technique for generating forecasted flood inundation 11 

maps. The time required to process such maps for an urban flood management agency is 12 

controlled only by the time required for generating high resolution QPF. The study investigated 13 

hurricane (e.g. Harvey) and non-hurricane type storms. Using the dense gauge network operated 14 

by the HCFCD, it was found that hurricane type storms are generally more challenging for 15 

precipitation forecasting than the less intense and more frequent winter storm events. The 16 

investigation of gauge-based water level measurements indicated that it is possible to forecast 17 

inundation level at water level gauging points based on rainfall forecast using pre-developed 18 

rating curves between forecast rainfall and expected increase in water level. Using this rating 19 

curve approach, it was found that the median of relative RMSE (percentage) and correlation of 20 

forecasted water level at gauge locations are consistently below 10% and higher than 0.7, 21 

respectively for up to 4 day of lead-time, subject to availability of adequate computational 22 
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resources. In terms of spatial detection of flooded (non-flooded) areas, our technique yields 23 

qualitative consistency during peak inundation episodes in Houston at 1 day of lead-time when 24 

compared against satellite radar imagery or in-situ based technique. In general, it is found that 25 

flood inundation forecast accuracy during peak episodes is not as compromised as QPF skill for 26 

hurricane-strength storms, indicating that the highly urbanized nature of Houston is more ideally 27 

suited for inundation mapping using the rating curve approach.  28 

Keywords: Houston, urban flooding, hurricane, Harris County, Harvey, forecasting, WRF 29 

 30 

  31 



3 
 

1. INTRODUCTION 32 

 Houston has frequently experienced the nation’s worst urban flooding events (Zelinski 33 

and Zaveri 2018). With its flat and saucer-like terrain, highly urbanizing landscape, inadequate 34 

storm drainage capacity and intense precipitation events, there is no doubt that Houston will 35 

experience urban flooding in the foreseeable future. For example, in one study using remote 36 

sensing imagery of land cover, asphalt and concrete increased 21% during 1984–1994, 39% in 37 

1994–2000 and 114%, from 2000 to 2003, while vegetation suffered an overall decrease (Khan 38 

2005). Such rapidly urbanizing landscape appears more alarming when considered in the context 39 

of recent studies on projected trends of extreme rainfall for the state of Texas. One study 40 

estimated that the annual probability of a 500 mm of area-integrated rainfall was about 1% in the 41 

period 1981–2000 and that this is likely to increase to 18% over the period 2081–2100 under 42 

Intergovernmental Panel on Climate Change (IPCC) AR5 representative concentration pathway 43 

8.5 (Emanuel 2017). Furthermore, if it was assumed that the frequency of such events increases 44 

linearly in time, then an event like Hurricane Harvey probably had a 6% chance of occurrence in 45 

2017, which is a six-fold increase since the late 20th century (Emanuel 2017). 46 

Given this increasing propensity for Houston to frequently experience more catastrophic 47 

urban flooding, it is opportune time to explore the operational potential of quantitative 48 

precipitation forecast (QPF) from numerical weather prediction (NWP) models for real-time 49 

urban flood management. QPF can be considered a low-hanging fruit that is freely available to 50 

any agency for real-time forecasting of weather events (e.g. Liguori et al. 2012, Liu et al. 2015). 51 

The goal here was to understand the operational sustainability of using the publicly available and 52 

real-time QPF produced by the National Oceanic and Atmospheric Administration (NOAA) 53 

Global Forecasting system (GFS). This research studied the hurricane strength extreme storm 54 
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Harvey and lesser magnitude events. Since, GFS-based weather forecasts available at a high 55 

frequency are available at a coarse spatial resolution of 0.25 degree (25 km), dynamic 56 

downscaling to higher spatial resolution (1 km) using a cloud resolving NWP model is necessary 57 

for flood forecasting at the urban landscape scale (Chen and Hossain 2016, Sikder and Hossain 58 

2016).  59 

 In order to explore a sustainable operational strategy for rapid forecasting of flood 60 

inundation, the authors engaged closely with Harris County Flood Control District (HCFCD), 61 

which is the main agency with the mandate for urban flood management for the city of Houston. 62 

Towards this goal, this study posed the following research questions: 63 

1. How does skill of high resolution QPF vary as a function of lead time for Harvey and 64 

non-Harvey type extreme storm events over Houston? 65 

2. Can high resolution QPF be used for water level/inundation forecasting? 66 

3. What is a feasible and sustainable approach for HCFCD (and similar agencies) to take 67 

advantage of high resolution QPF in urban flood disaster management?  68 

2. THE SELECTED STORMS 69 

Two storm events were selected in this study. The first storm was Hurricane Harvey, 70 

while the second one was of a lesser magnitude (with a typical 2-year return period). In both 71 

cases, the specific date was selected, when rainfall (hereafter interchangeably used with 72 

precipitation) total was maximum as the target date for forecasting up to 96 hours ahead of time 73 

(i.e., 4-day lead-time). The specific peak rainfall dates for the storms are: 74 

Harvey storm – August 26, 2017 (daily and areal averaged rainfall total= 276 mm) 75 

Non-Harvey Class storm – February 21, 2018 (daily and areal averaged rainfall total= 25 mm) 76 
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Another Non-Harvey storm event was selected for further analysis in this study, which had the 77 

maximum magnitude on January 18, 2017 (daily and areal averaged rainfall total= 65 mm). This 78 

storm event along with the above two events were used to develop the precipitation-water level 79 

rise relation (i.e., rating curve), which later used to generate the water level forecast. 80 

3. DATA AND MODELS 81 

3.1 In-Situ Rainfall and Water Level Data 82 

Harris County Flood Control District has a very dense rainfall gauge and water level 83 

monitoring network. For ground rainfall data, the authors had access to 139 recording gauges 84 

distributed in the county with an average density of 1 gauge in a 5X5km grid. Figure 1 shows the 85 

location of these gauges that transmitted rainfall and water level every 5 minutes to HCFCD 86 

headquarters via a telemetered network. 87 

 88 

Fig. 1. Location of HCFCD rainfall and water level gauges in the county where Houston is 89 

located. The larger grids are 25 km in size and typical size for NOAA’s QPF (GFS). Location of 90 

two selected gages are shown as green to demonstrate the response of water level change to 91 

precipitation spells in figure 5. 92 

Gage 1 
Gage 2 
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  3.2 The Global Forecasting System (GFS) for NWP Forecasts 93 

The Global Forecasting System (GFS) developed by the National Oceanic and 94 

Atmospheric Administration (NOAA) was used as the key source of NWP model based QPF. 95 

GFS produces global-scale weather forecast up to 16 days lead time at a spatial resolution 96 

ranging from 0.25 degree to 1 degree. This is perhaps the only publicly available weather 97 

forecast at a global scale for operational use. The motivation for exploring the GFS forecast is 98 

further based on the authors’ previous experience and success in operational flow forecasting for 99 

South and Southeast Asian agencies (Sikder and Hossain 2018, Sikder and Hossain 2016). As a 100 

publicly available and real-time product for the world, GFS is therefore ideal for short-term 101 

weather prediction applications, particularly in urban flood management agencies that 102 

traditionally do not use such modern atmospheric science based solutions. The historical and 103 

real-time data are available from National Center for Environmental Information (NCEI) at 104 

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs. 105 

For first 10 days of lead time, the GFS provides forecasts for every 3 hours, and the outputs are 106 

available at 0.25, 0.5, 1.0, and 2.5 degree resolutions.  107 

 3.3 The Weather Research and Forecasting (WRF) Model  108 

 The Weather Research and Forecasting (WRF) model V3.7.1 was used for dynamic 109 

downscaling of coarse resolution global NWP weather forecasts, such as from GFS. Such 110 

physical downscaling can generate high resolution precipitation forecast over an urban landscape 111 

that requires flood inundation model at a very high spatial resolution (in this case 1 km grids). 112 

WRF is a mesoscale cloud resolving NWP model, which is the successor of the MM5 model. It 113 

uses non-hydrostatic Euler equations, which are fully compressible in nature. WRF offers 114 

various features like advanced dynamics, physics, and numerical schemes. For computation, the 115 
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model uses Arakawa-C grid staggering for horizontal discretization, and second or third order 116 

Runge-Kutta integration scheme for time separation. WRF uses terrain-flowing pressure 117 

coordinate system. Thus, the upper boundary of the model maintained by a constant pressure 118 

level. Further description of WRF physics and dynamics can be found in Skamarock et al. 2008. 119 

Since the focus in this study was on urban scale flooding triggered by extreme storm 120 

events, the initial WRF setup used in this study was based on a previous study optimized for 121 

simulating urban precipitation event during the Nashville 2010 flood (Chen et al. 2017a). 122 

Previous studies suggest that WRF performance is mostly affected by the choices of cloud 123 

microphysics and cumulus parameterization schemes (Chen et al. 2017a). Model resolution and 124 

initial/boundary conditions (IC/BC) also affect the simulation quality. However in this case, as 125 

the goal is to enable real-time forecasting, the GFS forecast fields were used as Initial and 126 

boundary conditions. The initial model configuration further refined in this study, based on 127 

extensive sensitivity studies for various parameterizations, carried out earlier for heavy storms in 128 

the US (reported in Chen and Hossain 2016). Based on these extensive sensitivity studies to 129 

identify the optimal WRF configuration, a two-way nesting with three domains (9km-3km-1km) 130 

was selected with Morrison microphysics and Kain-Fritsch cumulus schemes (Figure 2).  131 
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 132 

Fig. 2. WRF nested domain set up over Houston and Harris County. The inner domain has a grid 133 

spacing of 1 km and covers all of HCFCD’s jurisdiction, while the outer domain has spacing of 134 

3km.  135 

 136 

4. CPU RESOURCES AND COMPUTATIONAL RUN TIME 137 

For operational (real-time) urban flood management, time is of the essence for any 138 

agency. Any forecast must be generated significantly faster than the natural evolution of the 139 

flooding so that the forecasts can be analyzed, processed and disseminated with considerable 140 

lead time to make appropriate decisions. Since, QPF generation using high-resolution NWP 141 

models can be computationally prohibitive; this study was performed on affordable CPU 142 

resources of varying hardware configurations that are likely to be operationally sustainable in the 143 
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HCFCD work environment. In particular, the computational run time was tested on the following 144 

CPU configurations: 145 

MACHINE 1 (price: 4000 USD): 32 core Intel Xeon 2.4 GHz Linux Workstation 146 

MACHINE 2 (price: 3000 USD): 24 core Intel Xeon 2.4 GHz Linux Workstation 147 

MACHINE 3 (price: 2000 USD): 12 core Intel Xeon 2.4 GHz Linux Workstation 148 

The CPU run time on various machines are shown in Table 1 as a function of lead time. 149 

Table 1. The CPU run time for 1 day and 4 day (96 hour) lead times 150 

Lead MACHINE 1 MACHINE 2 MACHINE 3 

1 day only 7 hrs  7.5 hrs  20 hrs 
4 days (96 hrs) total 28 hrs  30 hrs  80 hrs 
 151 

 Assuming that a CPU machine worth 4000 USD with 32 cores can be sustainably 152 

maintained by a flood agency like HCFCD, it appears that generating forecasts only for the 72 153 

hour lead time (or longer) would be meaningful due to the runtime of 7 hours per lead day. It 154 

should be noted that the computational efficiency of the WRF downscaling can be optimized 155 

further through a Graphics Processor Unit (GPU) or parallel version of WRF that runs an order 156 

faster. In addition, the inner domain resolution of 1km and outer domain resolution of 3km could 157 

be relaxed and assessed of the precipitation forecast skill in a manner similar to the author’s 158 

previous studies with Nashville 2010 flood (Chen et al. 2017a) or other extreme events studied 159 

for Probable Maximum Precipitation in Chen and Hossain (2016). Finally, if flood control 160 

districts like HCFCD are willing to invest modestly in cloud-based high performance based 161 

computing infrastructure (with some of the costs transferred to users of forecasts), it is quite 162 
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feasible to generate these forecasts in timescales of 30 minutes to an hour each instant an update 163 

is needed. 164 

5. SKILL OF HIGH RESOLUTION QUANTITATIVE PRECIPITATION FORECAST 165 

5.1 HURRICANE HARVEY (AUGUST 2017) 166 

Figure 3 shows the rainfall forecast up to 4 day lead time at 25 km (GFS) and 1 km 167 

(WRF downscaled) resolution over Harris County. Table 2 summarizes the performance metrics 168 

of the forecasted rainfall.  It is clear from the assessment that hurricane-strength storms like 169 

Harvey are somewhat challenging to forecast unless adequate attention is given to the storm-170 

specific WRF set up. Dynamic downscaling with WRF does not seem to add value to GFS 171 

forecast. This is not entirely surprising as past studies have reported on the general difficulty of 172 

simulating precipitation during Hurricanes (Emanuel 2017, Rotunno et al. 2008).  However, it 173 

appears that given sufficient investigation of the choice of WRF model variants, one might be 174 

able to simulate high-resolution precipitation forecast at the urban scale for Hurricane events. For 175 

example, Dodla et al. 2011 had studied the life cycle of Hurricane Katrina using three variations 176 

of the high-resolution WRF model. One particular variation was Hurricane WRF (HWRF) 177 

designed specifically for hurricane studies while the other two WRF models had different 178 

dynamic cores. For Katrina, the HWRF exhibited superior performance in tracking the evolution 179 

of the Hurricane.   180 

The specific WRF high resolution NWP model used in this study was derived based on 181 

an atmospheric river event (Durkee et al. 2012) that flooded Nashville city in 2010. Due to 182 

differing dynamics behind the precipitation process, the choice of cumulus and cloud 183 
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microphysics parameterizations need to be revisited and calibrated uniquely for Harvey class 184 

storms within perhaps HWRF if the forecast skill is to be further improved.  185 

 186 

Fig. 3. Rainfall forecast for Hurricane Harvey on August 26, 2017; Left panel is the downscaled 187 

forecast using WRF at 1 km while right panel is the 25 km scale GFS forecast. The in-situ 188 

rainfall map is shown on the rightmost side and is based on all the gauges of HCFCD.  189 

Table 2. Skill metrics for rainfall forecast of Hurricane Harvey on August 26, 2017. The metrics 190 

were calculated over the inner domain of WRF that included all 139 gauges. The % is the RMSE 191 

normalized by total precipitation and expressed as a percentage. 192 

Lead 
time 
(hrs) 

RMSE (mm) Correlation Rainfall Total (mm) 
WRF GFS WRF      GFS WRF GFS In-situ 

Total 
24 96.84 

(35%) 
172.01 
(63%) 

-0.012 -0.346  269.50 140.42 276.00 

48 222.14 
(79%) 

178.62 
(64%) 

-0.282 -0.364 75.58 126.18 276.00 

72 275.74 
(100%) 

222.91 
(80%) 

0.264 -0.005  8.41  64.46 276.00 

96 262.20 
(95%) 

114.80 
(42%) 

-0.302 0.112 35.52 274.98 276.00 

 193 

 194 
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5.2 NON-HARVEY STORM (FEBRUARY 2018) 195 

Figure 4 with Table 3 show the rainfall forecast and skill metrics, respectively for a non-196 

Harvey type storm that registered peak rainfall on February 21, 2018. It is clear that non-197 

Hurricane (that are less intense and more frequent) storms have better skill in forecasting using 198 

the WRF set up ‘as is’ from Chen et al. 2017a. Furthermore, dynamic downscaling using WRF 199 

clearly adds value to GFS forecast. Strong correlation, acceptable percentage RMSE and 200 

Probability of Detection at 72 hours lead-time appear to indicate the 72-hour lead-time is an ideal 201 

time horizon for forecasting for HCFCD. With further calibration of WRF model similar to Chen 202 

and Hossain 2016 or Chen et al. 2017b by selecting appropriate parameterizations for winter 203 

precipitation, the WRF setup for Houston should yield skill improvement.  204 

 205 

Fig. 4. Same as Figure 3, but for a non-hurricane storm that took place February 21, 2018.  206 

 207 

 208 

 209 
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Table 3. Skill metrics for rainfall forecast of non-Harvey storm date of February 21, 2018. The 210 

metrics were calculated over the inner domain of WRF that included all 139 gauges. The 211 

percentage for RMSE is the RMSE normalized by in-situ precipitation total and expressed as a 212 

percentage.  213 

Lead 
time 
(hrs) 

RMSE (mm) Correlation Rainfall Total (mm) 
WRF GFS WRF      GFS WRF GFS In-situ 

Total 
24 14.95 

(59%) 
21.02 
(84%) 

0.38 0.66 26.74 43.24 25.00 

48 19.75 
(79%) 

39.24 
(150%) 

-0.011 -0.34 17.28 34.84 25.00 

72 15.62 
(62%) 

21.23 
(84%) 

0.62 -0.14 22.40 14.73 25.00 

96 22.26 
(89%) 

17.78 
(71%) 

0.20 -0.19 7.59 20.57 25.00 

 214 

6. RAPID FLOOD INUNDATON FORECASTING 215 

Using the current WRF set up, water level forecasting based on rainfall forecast was 216 

explored. Since, each rainfall gauge also had a water level gauge, the response of water level to 217 

rainfall spells in the same region was studied. Assuming that almost all the rainfall transforms as 218 

urban runoff due to the highly impervious landscape and high rainfall rates, the water level 219 

should in principle be forecastable based on precipitation forecast alone. To explore this idea, 220 

two gauge locations were randomly selected to study the rainfall-water level change co-221 

variability for nowcast and forecast rainfall (Figure 5; see figure 1 for location). The rainfall here 222 

is the accumulation over the specific WRF 1X1km grid cell and not the drainage area of the 223 

gauge location.  224 
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225 

 226 

Fig. 5. Water level (right axis) variation against precipitation spells (in-situ and forecast for 227 

August 26 2017 (Hurricane Harvey). Locations of gages 1 and 2 can be found in Figure 1. 228 

 229 

It is clear from Figure 5 that water level rise at a point in a stream is triggered strongly by 230 

the short precipitation spells at that location, and it is most likely due to most of the rainfall 231 

transforming as urban runoff. To explore this phenomenon further for the entire city of Houston, 232 

the rainfall and water level changes were analyzed at all the locations over multiple storms. 233 

Figure 6 shows a map of correlation between in-situ rainfall and in-situ water level increase in 234 

water level for the 139 locations in Houston. Figure 7 shows empirical rainfall versus water level 235 

increase response at select locations of Figure 6 shown as red triangles. 236 

 237 
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 238 

 239 

Fig. 6. Correlation between in-situ rainfall and water level increase (from in-situ gauges) at all 240 

the gauge locations of HCFCD over multiple storms. The size of the circle is proportional to the 241 

correlation. The empirical rainfall versus water level increase relationship are shown for 242 

locations shown as red triangles in Figure 7. 243 

 244 

Since, almost every gauge location showed strong covariance between rainfall and 245 

runoff, rating curves were established for each location using in-situ record. This rating curve 246 

essentially predicted the water level increase for a given amount of rainfall. The initial 247 

investigation revealed that a non-linear regression model (such as the logistic or polynomial 248 

equation) was more robust than a linear rating curve in capturing the expected water level  249 
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 250 

Fig. 7. Empirical relationship between in-situ rainfall and water level increase at in-situ gauges 251 

for selection locations in Houston. 252 

 253 
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increase at a location. Using these rating curve relationships developed for each of the 139 254 

locations based on in-situ data, the forecasted rainfall was used to forecast corresponding water 255 

level increase (forecast) for Harvey and non-Harvey storms. The forecasted water level increase 256 

from the rating curves was added with the latest available in-situ water level to predict the water 257 

level at that location for different lead times (i.e., 1-4 day lead). The forecasted water levels were 258 

then assessed of its skill against in-situ water level. For example, to forecast the water level after 259 

24 hours, the forecasted water level change within the next 24 hours was added to the in-situ 260 

nowcast water level at the beginning of 24 hours. Similarly, to forecast the water level after 48 261 

hours, the forecasted water level change within the next 24-48 hours was added to the forecasted 262 

water level after 24 hours, and so on for 72 and 96 hours of lead-times. This approach of 263 

applying a rating curve to generate forecasted water level is summarized in Figure 8 as a 264 

flowchart. It was assumed that the water level will only increase in a location if there is any 265 

precipitation, otherwise the change in water level will be zero. Therefore, this approach is only 266 

valid of a storm event as the storm is intensifying and not when precipitation has already ended, 267 

since there is no decrease in water level.  268 

 269 

Fig. 8. Workflow for generating forecasted water level at each of the 139 locations using the pre-270 

developed rating curves and QPF. 271 
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Figures 9 and 10 show the skill of water level forecast as a function of lead time and 272 

choice of equation for rating curve for Harvey and non-Harvey storms in terms of correlation and 273 

normalized RMSE, respectively. High skill at correlation (> 0.7) and low NRMSE (< 10%) is 274 

maintained even after lead-time of 96 hours (4 days) although the spread or variability across the 275 

139 gauges is often wider. The fact that forecast water level is better than forecast rainfall even 276 

for hurricane type storms should not be entirely surprising. The contributing runoff leading to the 277 

water level at a location benefits from a highly urbanized drainage where almost all rainfall 278 

becomes runoff and likely cancels the errors in precipitation forecast. For a flood control district 279 

like HCFCD, this is a welcome finding as the proposed rating curve approach to forecasting 280 

inundation is rapid as it can be completed as soon as QPF runs are complete and converted into 281 

maps. Since, the application of a CPU-intensive two dimensional flood inundation model (like 282 

HEC RAS 2D) is not needed, an agency like HCFCD can generate such forecasted inundation 283 

maps as frequently as needed when new precipitation forecasts are available. 284 

 285 
Fig. 9. Correlation of forecasted water level as a function of lead time and rating curve equation 286 

type (logistic and polynomial) for 3 storms. The correlation is aggregated over all the 139 gauge 287 

locations. 288 
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 289 
Fig. 10. Normalized RMSE of forecasted water level (normalized to actual water level) as a 290 

function of lead time and rating curve equation type (logistic and polynomial) for 3 storms. The 291 

correlation is aggregated over all the 139 gauge locations. 292 

 293 

 In Figure 11 the forecasted inundation map is compared with a satellite radar imagery 294 

from Sentinel-1 that overpassed Houston a day later. The same map is also compared with the 295 

map produced using in-situ water levels from HCFCD. The idea here is to explore the spatial 296 

consistency and value of the inundation that is being forecasted here while recognizing that the 297 

flood maps produced in this way are limited to the density of water level gauges. In general, the 298 

spatial consistency seems reasonable when compared with Sentinel-1 or in-situ mapping 299 

technique. 300 

  301 
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Fig. 11. Comparison of forecasted flood inundation map for Jan 18, 2017 at 1 day lead time 302 

(topmost pane) with observed in-situ gauge based inundation map (middle panel) and satellite 303 

radar imagery from Sentinel-1 (overpass on Jan 19, 2017) 304 
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7. CONCLUSIONS AND RECOMMENDATIONS FOR HCFCD 305 

HCFCD has currently developed a system that predicts inundation extent of riverine 306 

flooding on real-time basis based on observed gage water surface elevation and effective HEC-307 

RAS model products. This real-time prediction is available for public on Harris County Flood 308 

Warning System website (https://www.harriscountyfws.org) to notify the people about the extent 309 

of the flood during storm event.  Therefore, having forecasted water surface elevation can 310 

improve decision making involving inundation-forecasting by HCFCD using the existing Flood 311 

Inundation Mapping System (FIMS), which is developed for the real-time inundation prediction 312 

based on now cast of water levels by gauges.  The rating curve based approach yields acceptable 313 

skill at 1-4 day lead times and does not require CPU or time-intensive procedures. Thus, these 314 

inundation maps can be generated and continuously updated as soon as a new QPF run is 315 

complete and provide HCFCD an additional source of information for risk assessment and 316 

decision making.  317 

In addition to the key finding on the feasibility of the rapid inundation forecasting 318 

technique, this research makes the following conclusions for urban flood forecasting: 319 

1. Affordable CPU resources in the range of 3000-4000 USD should be invested as they are 320 

sufficient for quantitative precipitation forecasting up to 72 hours or more. An alternate 321 

option is to leverage the power of cloud computing services now being offered by various 322 

vendors such as Google Earth engine and Amazon web services at a low price. 323 

2. Since, hurricane strength storm forecasting using GFS downscaling is challenging 324 

without adequate calibration and parameterizations, agencies like HCFCD should also 325 

look at rapid refresh cloud motion IR imagery with WRF/GFS forecast for storms while 326 

appropriate WRF set up is developed using HWRF. 327 
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3. Moderately intense storms can be forecast by GFS and WRF with much higher skill. 328 

4. To further improve QPF skill, WRF set up should be calibrated with appropriate 329 

parameterization selection for Houston – and season (summer and winter) and hurricanes 330 

using HWRF. In other words, agencies like HCFCD should explore unique WRF setups 331 

at 1km resolution with differing choice of parameterizations for each flood season. 332 

5. To further improve water level forecasting skill, unique rating curve between 333 

precipitation and water level change at a location should be developed for small, 334 

moderate and heavy storms that trigger differing runoff hydraulics.  335 

The goal in this study was to explore the operational feasibility and skill of high-336 

resolution QPF using NWP models for rapid (real-time) urban flood management for the Harris 337 

County Flood Control District. Based on a very systematic study using WRF over hurricane and 338 

non-hurricane storms using dense gauge network, a path forward for this operational 339 

sustainability for HCFCD has been identified. The authors believe that with continued work 340 

based on the key conclusions of the study, a flood management agency like HCFCD should be 341 

able to add forecast functionality to its inundation mapping capability in a sustainable manner. 342 

Consequently, this new functionality should considerably improve decision making to save lives 343 

and protect property without adding considerably to operational overhead of the agency. 344 
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