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7 [1] In this study, we investigate the fundamental open
8 question facing the satellite rainfall data community today -
9 If ‘‘error’’ is defined on the basis of independent ground
10 validation (GV) rainfall data, how are these error metrics
11 estimated for a satellite rainfall data product without the
12 need for much extensive GV data? Using a six-year database
13 of high resolution (0.25 degree and 3 hourly) satellite rainfall
14 data over the United States and an optimal spatial
15 interpolation method (ordinary kriging), we demonstrate
16 that certain error metrics (such as bias and probability of
17 detection) are more amenable for ‘transfer’ from gaged to
18 ungaged locations than others. Our findings also indicate that
19 a continuously-calibrated and regionalized error transfer
20 scheme is technically feasible within the neighborhood of a
21 gaged region if more research is carried out on the role played
22 by different interpolation methods and the temporal structure
23 of error. Citation: Tang, L., and F. Hossain (2009), Transfer of

24 satellite rainfall error from gaged to ungaged locations: How

25 realistic will it be for the Global Precipitation Mission?, Geophys.

26 Res. Lett., 36, LXXXXX, doi:10.1029/2009GL037965.

28 1. Introduction

29 [2] NASA’s planned Global Precipitation Measurement
30 (GPM) mission, in collaboration with other international
31 space partners, will represent a unique constellation of rain
32 measuring satellites comprising passive microwave (PMW)
33 sensors, augmented by a Tropical Rainfall Measuring
34 Mission (TRMM)-like dual-frequency precipitation radar
35 (DPR) [Hou et al., 2008]. GPM is currently scheduled for
36 launch in 2013 (source: gpm.gsfc.nasa.gov) and it will
37 provide high resolution global precipitation products (i.e.,
38 snow and rainfall) with temporal sampling rates ranging from
39 three to six hours and spatial resolution of 25–100 km2.
40 Hence, among the various uses, hydrologic application over
41 land will comprise a major avenue through which GPM will
42 be able to demonstrate tangible benefits to society. In
43 particular, the global nature of coherent and more accurate
44 satellite precipitation products (from PMW sensors [see Turk
45 and Miller, 2005]) anticipated from GPM should offer
46 hydrologists tremendous opportunities to improve water
47 resources monitoring in large river basins where rainfall
48 (hereafter used synonymously with ‘precipitation’) is
49 abundant but in situ measurement networks are generally
50 inadequate or declining [Shiklomanov et al., 2002].
51 [3] While the benefits from GPM are conceptually
52 apparent, hydrologists and other users, to varying degrees,

53need to know the errors of the satellite rainfall data sets
54across the range of time/space scales over the whole domain
55of the data set prior to real-world applications [Hossain and
56Huffman, 2008]. Representing the error structure of satellite
57rainfall against quality-controlled ground validation (GV)
58precipitation datasets is therefore a critical research problem.
59Recent work has shown that the error structure of satellite
60precipitation estimates is increasingly complex at smaller
61scales at which data is now becoming more available
62[Hossain and Huffman, 2008; Ebert, 2008].
63[4] Hence, the error of satellite rainfall data represents a
64paradox that has remained unresolved until today. Satellite
65rainfall error estimation requires GV rainfall data. On the
66other hand, satellite data will be most useful over the vast
67ungaged regions that are lacking in GV data. Depending on
68how we define GV data, there can be several types of GV
69‘voids’ where error information will be difficult to be
70estimated. For example, if we rely on the ‘conventional’
71ground source for GV data, voids will be represented by
72large regions having little or no instrumentation. On the
73other hand, if a ‘proxy’ for GV is defined, such as the
74TRMM PR or the proposed GPM DPR, then voids will be
75numerous grid boxes changing in location with the time-
76varying satellite overpasses. We are therefore faced with
77the following unanswered question for GPM- if ‘‘error’’ is
78defined on the basis of GV data, then how are these error
79metrics estimated for a global data product without the need
80for extensive GV data?
81[5] A middle ground to resolve the above paradox could
82be to extract error information from a sensor of the highest
83accuracy currently in orbit (such as the TRMM-like PR on
84board the GPM) or from nearby sparsely-gaged regions and
85devise calibrated statistical methods for ‘transfer’ of this
86error information to the neighboring ungaged regions (see
87Figure 1 for a conceptual rendition). However, the ‘transfer’
88of error information from gaged to ungaged location is
89clearly an untested idea that needs to be assessed if the
90benefit of GPM is to be maximized. In this study, our goal is
91to identify the level to which error can be ‘transferred’ from
92a gaged (GV) location to a nearby ungaged (non-GV)
93location. If the idea is found realistic, then the work already
94accomplished on global classification of precipitation sys-
95tems [Petersen and Rutledge, 2002] will consequently hold
96promise for development of a real-time and regionalized
97error metric scheme for GPM products and their users.

982. Study Region, Data, and Spatial Interpolation
99Method

100[6] The study region for testing our idea of error ‘transfer’
101was the Central United States (US). The geolocation of the
102four corners of this region are provided in Table 1. Hereafter,
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103 the word ‘transfer’ will be frequently interchanged with
104 ‘spatial interpolation’. In order to minimize the error of the
105 GV data in our investigation, we used the National Center
106 for Environmental Prediction’s (NCEP) 4 km Stage IV
107 NEXRAD rainfall data that is adjusted to gages over the
108 US [Fulton et al., 1998; Y. Lin and K. Mitchell, The
109 NCEP Stage II/IV hourly precipitation analyses: Develop-
110 ment and applications, paper presented at the 19th AMS
111 Conference on Hydrology, American Meteorological
112 Society, San Diego, California, 2005]. NASA’s near real-
113 time satellite rainfall data-products from PMW calibrated
114 Infrared (IR) and merged PMW-IR estimates and labeled
115 as 3B41RT and 3B42RT, respectively, were used as the
116 satellite rainfall data [Huffman et al., 2007]. These are
117 globally available on a near real-time basis at 0.25 degree and
118 1–3 hourly resolution from the world wide web (see ftp://
119 trmmopen.gsfc.nasa.gov). The data for GV and satellite
120 rainfall data spanned the period of 2002–2007 (6 years). A
121 point to note is that there also exists research-grade satellite
122 product 3B42 (V6) that is produced byNASA retrospectively
123 by adjusting the bias using gage rainfall. Although the
124 research grade product of 3B42 (V6) is known to have lower
125 levels of uncertainty, this study focused on the testing the
126 concept of transfer in the operational mode using real-time
127 (RT) products.
128 [7] The method of ordinary kriging (OK) was used for
129 testing the ‘transfer’ of error metrics from a gaged to an
130 ungaged location. Ordinary kriging is the most common
131 spatial interpolation estimator Ẑ(x0) used to find the best
132 linear unbiased estimate of a second-order stationary random
133 field with an unknown constant mean as follows:

Ẑ x0ð Þ ¼
Xn
i¼1

liZ xið Þ ð1Þ

135where Ẑ(x0) = kriging estimate at location x0; Z(xi) = sampled
136value at location xi; and li = weighting factor for Z(xi). For
137further details on the method of OK, the reader is referred
138to Deutsch and Journel [1992].

1393. Methodology

140[8] The NEXRAD Stage IV GV rainfall data was first
141remapped to 0.25 degree 3 hourly resolution for consistency
142with the native scale of the satellite rainfall products. Four
143widely-used error metrics were then computed for 3B41RT
144and 3B42RT products over the 6 year period to derive a
145relatively stationary spatial field of ‘climatologic’ error
146metrics for the study region. These metrics were: Bias
147(BIAS), Root Mean Squared Error (RMSE), Probability of
148Detection (POD) and False Alarm Ratio (FAR). The reader
149is referred to Ebert et al. [2007] for the formulation of these
150error metrics.
151[9] Spatial correlograms for each error metric were
152derived and the correlation length (CL), where the auto-
153correlation dropped to 1/e (e-folding distance), was then
154computed. Next, the empirical semi-variograms were derived
155and then idealized as exponential semi-variogram functions
156prior to the kriging interpolation as follows,

g hð Þ ¼ c0 þ c 1� e�h=a
� �

ð2Þ

158where g(h) is the semi-variance at spatial lag ‘h’, c0
159represents the nugget variance (i.e., the minimum variability
160observed or the ‘noise’ level at the smallest separating
161distance equals 0; c is the sill variance – when spatial lag is
162infinite; and a is the correlation length. Figure 2 provides a
163summary of the ‘climatologic’ correlation length (e-folding
164distance) by season for various error metrics of the satellite
165rainfall products.
166[10] Assuming that only 50% of the region was gaged
167(having access to GV data), kriging was implemented to
168estimate error metrics at the other 50% of the ungaged
169region (lacking in GV data; see Figure 1). This is analogous
170to a data withholding exercise using the dependent data.
171Selection of gaged grid boxes was random and hence each
172kriging realization was repeated 10 times in a Monte Carlo
173(MC) fashion to derive an average scenario of the ensemble.
174The semi-variogram and correlation length were computed
175on the basis of the 50% of the assumed ‘available’ data. To
176keep the matrix computations of kriging efficient, spatial
177interpolation was performed using a smaller square-sized
178‘window’ around the ungaged grid box in place of the entire
179collection of gaged grid boxes in the whole region. The
180sides of this square window were equal to the correlation
181length of the error metric being ‘transferred’. Preliminary

Figure 1. Conceptual rendition of the idea of ‘transfer’ of
error information from a gaged (GV) location to an ungaged
(non-GV) location. (top) Notion of ‘error’ of satellite
rainfall data (in this case, the scalar deviation of magnitudes
is termed ‘error’ although there are many other types of
error). (bottom) How the known error (derived from GV
sites shown (middle) in black) would be ‘transferred’ to the
non-GV (ungaged) sites shown (right) in blue.

t1.1Table 1. Geolocation of the Four Corners of the Study Region

Shown in Figure 3

Longitude (West) Latitude (North) t1.2

Upper left corner �104.5 43.5 t1.3
Upper right corner �88.25 43.5 t1.4
Lower left corner �104.5 33.5 t1.5
Lower right corner �88.5 33.5 t1.6
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182 analyses showed that such a moving window based kriging
183 was justified as the interpolation weights li (equation (1))
184 due to grid boxes farther than one correlation length were
185 found to be zero.

186 4. Results

187 [11] Figure 3 shows the performance of kriging at
188 non-GV grid boxes for the BIAS of 3B41RT. It appears
189 that the transfer of bias via kriging does not lead to whole-
190 sale changes in the pattern of the error field when compared
191 to the true climatologic error field (see Figure 3, left).
192 However, a more rigorous assessment can be obtained
193 through the comparison of the histograms (probability dis-
194 tribution) of kriging error with the marginal distribution of
195 the kriging estimate. Herein, the kriging error is defined as the
196 scalar difference between the kriged error metric and the true
197 error metric. If indeed the transfer or error metric is robust
198 then the kriging error distribution should have a near-zero
199 mean (for unbiasedness) and a lower spread (minimum error
200 variance) compared to the marginal distribution of the

201estimated error. Figures 4 and 5show the comparison of the
202histograms for 3B41RT and 3B41RT for BIAS and POD,
203respectively. It is seen that for BIAS, the error histogram due
204to kriging has smaller variance compared to the marginal
205histogram of kriging estimates. Table 2 summarizes the
206correlation between kriging estimated error and true value
207of error for different error metrics.
208[12] As a preliminary analysis, the use of an optimal spatial
209interpolation method, such as ordinary kriging, for the
210transfer of error metrics appears promising at ungaged
211locations. Of the four error metrics studied, Bias, followed
212by POD, was found to be most amenable for transfer. Across
213satellite data products, kriging appears more effective for
214the IR-based 3B41RT than the multi-sensor PMW-IR-based
2153B42RT. This is not unexpected because of the lower
216correlation length and spatial dependency of error metrics
217for 3B4R2T. The grid boxes pertaining to non-PMW over-
218passes for the 3B42Rt product are essentially supplied from
219the 3B41RT product. This simple style of mosaicing a dataset
220from two different spatial random fields, while improving the
221quality of rainfall estimate in terms of bias and RMSE,

Figure 2. Correlation length of error metrics for (top) 3B41RT and (bottom) 3B42RT shown as a function of season. Note
the distance unit is 0.25 degree grid boxes (�25 km). The vertical bars are shown in order from left to right as ‘Bias’,
‘RMSE’, ‘POD rain’, ‘POD no-rain’, ‘FAR’.
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Figure 4. Comparison of histograms of kriging errors and kriging values for 3B41RT (top) BIAS and (bottom) POD.

Figure 3. Transfer of BIAS of 3B41RT from gaged to ungaged locations. (top left) True field of error on bias based on 6
years of data. (bottom left) The randomly selected 50% of the region for computation of the empirical variogram and
correlation length. (bottom middle) The other 50% of the region that is assumed to be non-GV grid boxes. (bottom right)
The estimation of the bias at the non-GV grid boxes using kriging.
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222 actually lowers the spatial structure by adding more spatial
223 randomness to the data.

224 5. Discussion

225 [13] Overall, our assessment indicates that it is indeed
226 technically possible to transfer error metrics from a gaged to
227 an ungaged location for certain error metrics and that a
228 regionalized error metric scheme for GPM may one day be
229 possible. However, our work has also opened a much wider
230 range of issues that require research before such a system
231 can be implemented for GPM. First, the choice of randomly
232 selected 50% of grid boxes may be somewhat unrealistic
233 during the GPM era. Such a randomly selected combination
234 of grid boxes is perhaps realistic if the use of the orbiting
235 GPM PR is considered as the only source for GV data for
236 the transfer of error metrics. The role played by the fraction
237 of a region missing in GV data on the effectiveness of
238 transfer or error also needs to be investigated. Another aspect
239 that needs to be studied is the assumption of stationarity of
240 error metrics that is critical for kriging. If a system is desired
241 that can routinely provide an estimate of time-varying error
242 metrics at ungaged locations in lieu of ‘climatologic’ values
243 for a region, then the temporal structure of errors would need
244 to be analyzed first.
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Figure 5. Comparison of histograms of kriging errors and kriging values for 3B42RT (top) BIAS and (bottom) POD.

t2.1 Table 2. Correlation Between Kriged Estimate of an Error Metric

and the True Climatologic Value

Error Metrics Bias RMSE POD FARt2.2

3B41RT 0.5752 0.1647 0.5076 0.2004t2.3
3B42RT 0.4864 0.1465 0.5134 0.2902t2.4
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