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11 [1] In this study, we investigate the significance of using an
12 improved error modeling strategy to characterize the spatio-
13 temporal characteristics of uncertainty in simulation of soil
14 moisture fields from an off-line land surface model forced
15 with satellite rainfall data. We coupled a Two-Dimensional
16 Satellite Rainfall Error Model (SREM2D) with the Common
17 Land Model to propagate ensembles of simulated satellite
18 rain fields for the prediction of soil moisture at depths of 5 cm
19 (near surface) and 50 cm (root zone). Our investigations
20 revealed that multi-dimensional error modeling captures the
21 spatio-temporal characteristics of soil moisture uncertainty
22 with higher consistency than simpler bi-dimensional error
23 modeling strategies. The proposed error modeling strategy
24 appears to have the potential for delineating a more robust
25 framework for the optimal integration of satellite rainfall
26 data into models towards the study of global water and
27 energy cycle. Citation: Hossain, F., and E. N. Anagnostou

28 (2005), Using a multi-dimensional satellite rainfall error model to

29 characterize uncertainty in soil moisture fields simulated by an

30 offline land surface model, Geophys. Res. Lett., 32, LXXXXX,

31 doi:10.1029/2005GL023122.

33 1. Introduction

34 [2] Space-borne earth observations are increasingly
35 becoming the prime source of hydro-meteorological forcing
36 data for off-line land surface models (LSM) used to charac-
37 terize land-vegetation-atmosphere interactions. Two widely
38 used systems that rely on off-line LSMs and satellite data to
39 provide high-resolution estimates of the land surface hydro-
40 logic state are the Global Land Data Assimilation System
41 (LDAS [Roddell et al., 2004]) and the Land Information
42 System (LIS (S. V. Kumar et al., LIS—An interoperable
43 framework for high resolution land surface modeling, sub-
44 mitted to Environmental Modelling and Software, 2004)). A
45 recent study by Syed et al. [2004] has shown that most
46 of the variability (70%–80%) of terrestrial hydrology is
47 attributable to precipitation. Consequently, satellite rainfall
48 estimation at regional and global scales and its error inter-
49 action with LSMs demand proper attention as being some of
50 the most important input components dictating LDAS/LIS
51 prediction accuracy.
52 [3] Satellite rainfall data takes greater importance when
53 we consider the anticipated increased availability of passive

54microwave (PM) satellite sensor observations from the
55Global Precipitation Measurement mission (GPM [Bidwell
56et al., 2002; Yuter et al., 2003]). GPM observations com-
57bined with high-frequency rainfall estimates available from
58Geostationary IR sensors [Joyce et al., 2004; Tapiador et
59al., 2004; Huffman et al., 2003] are expected to yield high-
60resolution global rainfall products of improved accuracy
61and consequentially expanded levels of utility. Another
62anticipated mission, the Hydrospheric State Mission—
63HyDROS (http://hydros.gsfc.nasa.gov)—is expected to
64provide soil moisture estimates at the 5-cm level with high
65accuracy. This mission therefore bears potential for con-
66straining soil moisture predictions from off-line LSMs
67driven by satellite rainfall data.
68[4] Although satellites provide the means for measuring
69rainfall over large-scale regions, their estimates are associ-
70ated with error that is of complex nature [Hossain and
71Anagnostou, 2004, 2005a, 2005b]. Proper characterization
72of the error and its non-linear propagation in LSMs
73is therefore a critical priority. Developing probabilistic
74(ensemble) representations of the error propagation from
75satellite rainfall products to high-resolution hydrologic
76models can form the basis for studying the criteria for the
77optimal use of satellite rainfall data in the study of conti-
78nental water and energy cycle [Hossain and Anagnostou,
792004, 2005a, 2005b].
80[5] For the accurate modeling of satellite rain retrieval
81error, it is important to recognize that the desired progres-
82sion to finer space-time scales in satellite rain estimation is
83counter-balanced by the increasing multi-dimensionality of
84the retrieval error. This scale dependence of rain retrieval
85error is associated with complex error propagation in
86hydrologic modeling through highly non-linear and fast-
87evolving land-atmosphere processes [Anagnostou, 2005;
88Hossain and Anagnostou, 2004, 2005a; Hossain et al.,
892004]. Hossain and Anagnostou [2005b] have recently
90provided evidence, on the basis of their Two Dimensional
91Satellite Rainfall Error Model (SREM2D), that a multi-
92dimensional decomposition of the satellite rainfall error
93structure with explicit formalization of the uncertainty in
94rainy/non-rainy area delineation can preserve the error
95structure of satellite rainfall estimates at higher scales of
96aggregation with significantly greater accuracy compared to
97simpler approaches.
98[6] In this study we seek to quantify the significance of
99this improved satellite rainfall error modeling strategy in
100terms of uncertainty in soil moisture fields derived from an
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101 off-line LSM driven by satellite rainfall data. Soil moisture
102 is the main variable that controls water and energy fluxes
103 between land surface and the atmosphere. Yet, little is
104 known about the complex dependence of soil moisture
105 accuracy on the error characteristics of precipitation. A
106 point to note is that in this investigation we are not
107 concerned with the absolute accuracy of soil moisture
108 simulation per se, which is an entirely independent topic
109 related to modeling structure and process conceptualization.
110 We rather concentrate on the role of satellite rain retrieval
111 error relative to the most definitive rainfall source (i.e.,
112 rainfall data from a rain gauge-calibrated ground weather
113 radar system).

114 2. Data, Study Region and Methods

115 [7] The Two Dimensional Satellite Rainfall Error Model
116 (SREM2D) of Hossain and Anagnostou [2005b] is used
117 to model the multi-dimensional satellite retrieval error
118 characteristics. This is currently the most detailed and
119 modular error model comprising nine dimensions available
120 for fine-scale assessment of satellite rainfall algorithms. The
121 major algorithm components are: (1) the joint probability
122 density function for characterizing the spatial structure
123 of the successful delineation of rainy and non-rainy areas;
124 (2) the temporal dynamics of rain estimation bias; and
125 (3) the spatial structure of the random rain rate estimation
126 error. We stress that satellite rain retrieval uncertainty is
127 associated with correlated rain/no-rain detection and false
128 alarm error characteristics, as well as systematic and random
129 rain rate error components with long spatio-temporal
130 correlation lengths. These components are explicitly char-
131 acterized in SREM2D.
132 [8] In this study we used hourly IR rainfall data products
133 as our satellite rainfall source, and coincident hourly radar
134 rainfall fields as ground ‘‘truth’’ reference in SREM2D. In
135 terms of IR retrievals, we selected the operational NASA
136 product IR-3B41RT [Huffman et al., 2003] available at
137 0.25 deg and hourly. Radar rainfall fields were derived
138 from WSR-88D observations using National Weather
139 Service precipitation estimation algorithm with real-time
140 adjustments based on mean-field radar-rain gauge hourly
141 accumulation comparisons [Fulton et al., 1998]. To mini-
142 mize effects due to complex terrain the calibration exercise
143 was performed over the region of Oklahoma bounded by
144 �100�W–95�W and 37�N–34�N (Figure 1). We selected a
145 study period of four months (May 1, 2002 to August 31,

1462002; 2952 hourly time steps each with 20 � 12 pixels at
1470.25 degree resolution) to determine the SREM2D error
148parameters. The error modeling performance of SREM2D
149was compared against two simpler, but widely used,
150approaches of error modeling [see for example Walker
151and Houser, 2004]. We name those error-modeling
152approaches as N1 and N2. In N1, we modeled the rain rate
153estimation error (assuming perfect delineation of rainy and
154non-rainy areas) without any coherent spatio-temporal
155structure. The systematic (mean) and random (variance)
156error parameters are the same with those used in SREM2D
157[Hossain and Anagnostou, 2005b]. In N2 we also assume
158perfect delineation of rainy and non-rainy areas, but the rain
159rate estimation error was modeled with spatially and tem-
160porally correlated structure similar to that conceptualized in
161SREM2D. Hossain and Anagnostou [2005b] showed that
162both of these simpler approaches fare poorly with regards to
163preserving the error structure across scales. They under-
164estimated the true sensor retrieval error standard deviation
165by more than 100% upon aggregation to coarser resolution,
166which, for SREM2D, was found to be less than 30%.
167Further details on the SREM2D calibration of error param-
168eters are given by Hossain and Anagnostou [2005b].
169[9] For simulation of soil moisture at two depths (near-
170surface - 5 cm and root zone �50 cm) we used the Common
171Land Model (CLM [Dai et al., 2003]) over a 2-deg � 2-deg
172domain (Figure 1, smaller domain). All requisite hydro-
173meteorological data were derived from hourly in-situ meas-
174urements from the Oklahoma Mesonet network ([Elliot et
175al., 1994] available at http://www.mesonet.ou.edu) or the
176NCEP reanalysis database. CLM was spun-up with
17716 months of prior hydro-meteorological data to reach to
178an equilibrium state [Cosgrove et al., 2003]. In each
179simulation run CLM was initialized with the equilibrium
180state variables, and subsequently run over the 4-month
181study period based on the rainfall fields derived from
182various sources: the WSR-88D and IR-3B41RT rain esti-
183mates, and the synthetic fields simulated by SREM2D, N1
184and N2 satellite rainfall error models.
185[10] For the error characterization of soil moisture fields
186we used as ‘‘reference’’ the CLM soil moisture simulations
187forced by the most definitive WSR-88D rainfall data. The
188assumption made here is that CLM may adequately repre-
189sent the land surface hydrologic processes of the study area.
190Deviations of the ‘‘reference’’ soil moisture fields from
191those derived using satellite rainfall input define the satellite
192error propagation in soil moisture. The satellite error prop-
193agation in soil moisture prediction (defined as ‘‘true’’ error)
194is determined here for the 3B41RT rainfall dataset. We
195compare the spatio-temporal characteristics of the ‘‘true’’
196soil moisture error fields to those stochastically derived
197from synthetic satellite rainfall fields generated by the
198different error-modeling approaches. Specifically, the afore-
199mentioned satellite error models are used to generate
200multiple realizations of synthetic satellite rainfall fields by
201corrupting the most accurate WSR88D rainfall fields over a
2022-deg area (Figure 1). The synthetic rainfall fields are then
203used to force CLM and produce synthetic soil moisture
204fields. In total, we generated 15 Monte Carlo (MC) realiza-
205tions of SREM2D, N1 and N2 through CLM to understand
206the soil moisture prediction uncertainty. Numerical consis-
207tency checks conducted by Hossain and Anagnostou

Figure 1. Study domain over the Oklahoma Mesonet
(stations shown in circles). The larger box represents the
domain used in SREM2D calibration, while the smaller
domain is the effective area for CLM simulation of soil
moisture fields.
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208 [2005b] have shown that 15 realizations are adequate to
209 converge to the true error statistics in the case of long time
210 series (2952 time-steps).

211 3. Results and Discussion

212 [11] Statistical comparisons of the marginal soil moisture
213 error statistics (standard deviation) of the three error models
214 with those of the ‘‘true’’ soil moisture error are shown for
215 three scales (0.25, 0.5 and 1.0 degree) in Table 1. It is
216 observed that the marginal error statistics in terms of
217 standard deviation are comparatively similar across the
218 three different error models and reasonably consistent with
219 the scaling behavior of ‘‘true’’ error. In Figures 2a and 2b we
220 show the temporal correlogram (auto-covariance function)
221 of soil moisture error at depths of 5 and 50 cm for scales of
222 aggregation up to one degree. The dashed lines represent the
223 range of variability associated with the 15 realizations. It is
224 evident from Figures 2a and 2b that SREM2D-derived soil
225 moisture error fields have higher consistency in enveloping

226the spatio-temporal dependency (solid line) of the satellite-
227derived soil moisture error characteristics. The simpler error
228propagation schemes (N1 and N2) have a tendency to
229systematically underestimate the pattern of spatio-temporal
230variability of error at all examined scales. In addition, they
231appear to predict a faster rate of dissipation of soil moisture
232error than what is indicated by the ‘‘true’’ error statistics. In
233terms of spatial error correlation, Figure 3 shows a similar
234behavior. Namely, the spatial error correlation of actual
235satellite rain retrievals is bounded reasonably well by the
236SREM2D synthetic fields, while the two simpler methods
237significantly underestimate the spatial error auto-correlation.
238[12] The demonstrated differences between multi-
239dimensional and simpler (bi-dimensional) error modeling
240strategies impact the assessment of satellite rainfall algo-
241rithms (current or proposed) with regard to their optimal
242integration in off-line LSMs. For example, a SREM2D based
243error propagation study can delineate more accurately the
244updating (or assimilation) frequency required for an LSM
245forced by a current (or proposed) satellite rainfall product.
246More specifically, SREM2D can identify the time required
247for simulated soil moisture error to decorrelate to the white
248noise level. A longer decorrelation time (and hence slower
249dissipation of error) would be indicative of greater diver-
250gence in LSM predictions due to continued accumulation of

t1.1 Table 1. Standard Deviation of Error for Simulated Soil Moisture

Fields by Various Rainfall Input Scenariosa

Rainfall
Input

Std. Deviation
(cm3/cm3)
0.25 degree

Std. Deviation
(cm3/cm3)
0.5 degree

Std. Deviation
(cm3/cm3)
1.0 degreet1.2

IR-3B41RT 0.037 0.035 0.031t1.3
SREM2D 0.036 0.028 0.022t1.4
N1 0.037 0.026 0.019t1.5
N2 0.037 0.029 0.024t1.6

aNote: For error modeling strategies (SREM2D, N1, N2) we report the
mean of the 15 Monte Carlo realizations.t1.7

Figure 2a. Temporal correlogram of simulated near sur-
face (5 cm) soil moisture error fields at three scales–0.25
degree (Uppermost panel), 0.5 degree (middle panel) and
1.0 degree (lowermost panel). The solid lines show the
correlograms of ‘‘true’’ error determined from actual
satellite data; dashed lines represent the upper and lower
bounds of error correlograms derived from the 15 MC
realizations of simulated satellite error fields.

Figure 2b. Same as in Figure 2a, but for simulated root
zone (50 cm) soil moisture fields.

Figure 3. Same as in Figure 2, but for the spatial
correlogram of near-surface (5 cm) soil moisture error
fields at daily temporal aggregation.
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251 bias in the model predictions. This in turn would demand
252 more frequent updating of soil moisture with observations
253 to constrain the model predictions to realistic levels. Conse-
254 quently, SREM2D’s improved capability to provide a
255 more accurate characterization of the spatio-temporal error
256 structure would strengthen our ability to define optimality
257 requirements for integration of satellite rainfall data in
258 LDAS.

259 4. Conclusions

260 [13] Our preliminary investigations show that a multi-
261 dimensional error modeling strategy such as the one for-
262 malized by Hossain and Anagnostou [2005b] can provide a
263 more accurate assessment of the spatio-temporal make-up
264 of uncertainty in soil moisture fields derived from LSM
265 forced with satellite rainfall data. This greater accuracy was
266 manifested in our study as a consistent ability of the
267 generated error propagation ensembles to envelope the
268 observed uncertainty characteristics from real sensor data.
269 On the other hand simpler error modeling strategies such as
270 the two bi-dimensional methods assessed herein, which are
271 the backbone of conventional error propagation studies,
272 revealed a systematic underestimation in predicting the
273 spatio-temporal patterns of soil moisture simulation error.
274 In anticipation of future water cycle and climate missions
275 such as GPM and HyDROS, it is hoped that our proposed
276 multi-dimensional error modeling strategy will trigger, at
277 least in concept, detailed investigations to study the optimal
278 integration of space-based rainfall and near-surface soil
279 moisture retrievals in LDAS/LIS systems.
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