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With the advent of the Global Precipitation Measurement (GPM) in 2009, satellite rainfall measurements are expected

to become globally available at space–time scales relevant for flood prediction of un-gauged watersheds. For uncertainty

assessment of such retrievals in flood prediction, error models need to be developed that can characterize the satellite’s

retrieval error structure. A full-scale assessment would require a large number of Monte Carlo (MC) runs of the satellite

error model realizations, each passed through a hydrologic model, in order to derive the probability distribution in runoff.

However, for slow running hydrologic models this can be computationally expensive and sometimes prohibitive. In this

study, Latin Hypercube Sampling (LHS) was implemented in a satellite rainfall error model to explore the degree of

computational efficiency that could be achieved with a complex hydrologic model. It was found that the LHS method is

particularly suited for storms with moderate rainfall. For assessment of errors in time to peak, peak runoff, and runoff

volume no significant computational advantage of LHS over the MC method was observed. However, the LHS was able to

produce the 80% and higher confidence limits in runoff simulation with the same degree of reliability as MC, but with

almost two orders of magnitude fewer simulations. Results from this study indicate that a LHS constrained sampling

scheme has the potential to achieve computational efficiency for hydrologic assessment of satellite rainfall retrievals

involving: (1) slow running models (such as distributed hydrologic models and land surface models); (2) large study

regions; and (3) long study periods; provided the assessment is confined to analysis of the large error bounds of the runoff

distribution.

r 2005 Elsevier Ltd. All rights reserved.
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UNC1. Introduction

The Global Precipitation Measurement (GPM),
which is a mission to be launched by the interna-
tional community by 2009, envisions a large
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constellation of Passive Microwave (PM) sensors
to provide global rainfall products at scales ranging
from 3 to 6 h, and spatial resolution of 100 km2

(Smith, 2001; Bidwell et al., 2002; Flaming, 2002;
Yuter et al., 2003). These resolutions offer tremen-
dous opportunities to address the problem of flood
prediction in un-gauged watersheds over the globe.
Nevertheless, satellite rainfall retrieval is subject to
errors caused by various factors ranging from
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sampling error to high complexity and variability in
the relationship of the measurement to precipitation
parameters. The presence of such errors in remote
sensing of rainfall can potentially lead to high
uncertainties in runoff simulation (Winchell et al.,
1998; Borga et al., 2000; Hossain et al., 2004a).
Thus, it is important to assess the uncertainty in
satellite rainfall observations in order to better
evaluate the utility of the GPM for flood prediction.

Conventional uncertainty assessment of such
space-based rainfall observations requires the deri-
vation of the probability distribution of runoff by
combining the following three components: (1) a
probabilistically formulated satellite rainfall error
model; (2) a deterministic or probabilistic hydro-
logic model for the rainfall-runoff transformation;
and (3) Monte Carlo (MC) framework linking (1)
and (2)—see papers by Hossain et al. (2004a,b) and
Hossain and Anagnostou (2004) describing this
problem. The MC sampling technique, due to
absence of restrictive assumptions and completeness
in sampling the input error structure, is generally
considered the preferred method for uncertainty
assessment (Beck, 1987; Kremer, 1983; Isukapalli
and Georgopoulos, 1999). Recent satellite rainfall
error studies in hydrologic prediction have utilized
the MC technique to conduct random simulations
on error propagation. Hossain et al. (2004b) and
Hossain and Anagnostou (2004) have devised a MC
technique on the basis of a Satellite Rainfall Error
Model (SREM) and a topographically driven
hydrologic model (TOPMODEL) to assess PM’s
retrieval and sampling error on flood prediction
uncertainty. The SREM statistically characterized
the sensor’s success in discriminating rain from no-
rain, and quantified the structure of the sensor’s
rainfall retrieval error at the sensor resolution using
‘reference’ rainfall data from more definitive sources
(see also, Hossain and Anagnostou, 2005a,b). This
MC technique involving the SREM can work in
conjunction with any deterministic hydrologic
model without imposing on that model any
structural or distributional assumptions. Another
study by Nijssen and Lettenmaier (2004), which
focused primarily on satellite rainfall sampling
error, used an error model proposed by Steiner et
al. (2003) and a macro-scale hydrologic model
(Variable Infiltration Capacity, VIC model) within
a MC-based random experiment to evaluate the
GPM rain retrieval error propagation in hydrologic
predictions.
TED P
ROOF

However, definitive rules for determining the
number of simulations required for convergence of
the MC technique are not available (Melching,
1995) and are strongly dependent on the nature of
the problem (Beck, 1987). Siddall (1983) suggested
that MC simulations should require at least
5000–20,000 repetitive model runs. For slow run-
ning hydrologic models such as fully distributed and
physically based models and macro-scale land
surface models which simultaneously balance the
water and energy budgets, such MC assessment can
be computationally prohibitive. This makes the
hydrologic assessment of satellite rainfall data
limited to mainly fast running conceptually lumped
hydrologic models or to regions that are either small
in size (o500 km2) or involve a short study period
(o500 time steps). For example, the study by
Nijssen and Lettenmaier (2004) was restricted to
1000 MC simulations of the VIC model at a large
scale (4500 km2) spanning 6 years at the daily time
step (4500 time steps).

Therefore, a broader uncertainty assessment of
satellite rainfall observations across increasing levels
of hydrologic model complexity warrants the
investigation of computationally more efficient
sampling schemes. Such schemes could potentially
achieve greater flexibility in the following: (1) design
of simulation experiments to assess satellite rainfall
retrievals; (2) choice of hydrologic and land surface
models; and (3) choice of study regions and time
period. A broad-based assessment of satellite rain-
fall observations may also have long-term implica-
tions for the well-known argument proposed by
Krzysztofowicz (1999, 2001) that in short-term
forecasting of floods, the principal source of
uncertainty is the unknown future rainfall, which
should therefore be treated as a random input. The
recent methodologies developed for quantifying
predictive uncertainty of remote sensing retrievals
(Grecu and Krajewski, 2000; Seo et al., 2000, among
others) now offer tremendous opportunities to
explore the development of probabilistic forecasting
schemes for surface hydrologic processes that have
been argued as the way forward to reduce the
inherent uncertainty in our geosystems. Because
probabilistic schemes are usually based on MC
model runs, any computationally efficient statistical
sampling scheme for rainfall will always be in
contention for incorporation into an operational
probabilistic technique.

Latin Hypercube Sampling (LHS) is one such
technique that offers promise in reducing the
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computational burden of MC uncertainty assess-
ment. The LHS technique is a constrained sampling
technique usually known to simulate uncertainty as
accurately as a MC sampling method while using an
order of magnitude fewer samples (McKay et al.,
1979; Iman and Conover, 1980; Loh, 1996). LHS
has therefore found application in a wide range of
uncertainty assessment problems in environmental
modeling. Isukapalli and Georgopoulos (1999) have
summarized previous work on the application of
LHS. However, like most complex sampling tech-
niques, LHS is based on the assumption of
monotonicity of model output in terms of input
parameters, in order to be unconditionally guaran-
teed of accuracy with an order of magnitude fewer
runs than MC sampling (McKay et al., 1979; Iman
et al., 1981). Previous simulation studies by Hossain
et al. (2004b) have clearly demonstrated that the
response surface of the runoff simulation error (in
terms of peak runoff, runoff volume and time to
peak) is not always a monotonic function of the
satellite’s retrieval error parameters (such as bias or
error variance). Thus, for any new application, such
as flood prediction uncertainty based on satellite
rainfall observations, LHS needs to be carefully
verified of its effectiveness, before the method can
be used confidently.
UNCORREC

Fig. 1. Geographic location of Posina Watershed (right panel), and wa

locations (in solid circles) within 25 and 10 km grids that are equivalen
ED P
ROOF

This study aims at investigating the use of LHS
for efficient uncertainty analyses of satellite rainfall
measurements for flood prediction. The specific
question that this study seeks to answer is—is it

possible to infer similar uncertainty statistics in runoff

using a LHS scheme as those derived with MC

sampling but with fewer simulations? The study is
organized in the following manner. We first describe
the watershed, data, and hydrologic model (Section
2). Section 3 describes the satellite error model and
is followed by the description of the LHS scheme in
Section 4. In Section 5, we present the simulation
framework, while the last two sections (6 and 7)
discuss the results and conclusions of this study.

2. Watershed, data and hydrologic model

The watershed chosen for this study (the Posina
Watershed) is located in northern Italy, close to the
city of Venice (Fig. 1, right panel). Posina has an
area of 116 km2 and altitudes ranging from 2230 to
390m at the outlet (Fig. 1, left panel). Within a
radius of 10 km from the center of the watershed
there exists a network of 7 rain gauges providing
representative estimates of the basin-averaged
hourly rainfall (hereafter referred to as ‘reference

rainfall’). The estimation of basin-averaged rainfall
was based on an inverse distance weighting techni-
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103tershed elevation map (left panel) overlaid by rain gauge network

t to a typical satellite footprint.
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Table 1

Morphological summary of two selected storm cases over Posina Watershed

Storm no. Date Duration (h) Total rainfall

(mm)

Maximum rainrate

(mm/h)

Fraction of

rain (%)

Peak discharge

(m3/s)

1 August 1987 72 127.4 26.7 34.0 54.4

2 October 1992 120 440.3 18.0 86.7 192.5

Fig. 2. Two selected storm cases for LHS study. Left panel—Storm 1 (August 1987); right panel—Storm 2 (October 1992). Upper axis

represents basin averaged rainfall hyetograph measured by gauge network. Reference runoff (solid line) represents the simulated

hydrograph using reference rainfall (gauge). Long dashed lines represent runoff uncertainty at 90% confidence limits using 20,000 MC

simulations of SREM passed through TOPMODEL.

F. Hossain et al. / Computers & Geosciences ] (]]]]) ]]]–]]]4
UNque that had earlier proved to be a reliable method
for similar hydrologic studies over Posina (Borga et
al., 2000; Dinku et al., 2002; Hossain et al., 2004a).
The annual precipitation accumulation is estimated
to be in the range of 1600–1800mm. The Posina
Watershed is 68% forested, thereby rendering
saturation-excess the main rainfall-runoff genera-
tion mechanism of the basin.

Two storm events of contrasting morphological
properties were chosen for this study (Fig. 2). The
first storm (referred to as Storm 1) represents a mild
event that took place in August 1987 and produced
moderate flooding (peak discharge was 54.4m3/s). It
was associated with an isolated precipitation pattern
where the basin witnessed rain during 34% of the
total hours (referred to as % Rainy in Table 1). The
second storm (referred to as Storm 2) was a major
storm event that took place in October 1992 and
was associated with catastrophic flooding (peak
discharge was 192.5m3/s). It was associated with a
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widespread precipitation pattern (% Rainy—86.7).
Fig. 2 shows the storm hydrographs (lower axis)
and the corresponding hourly basin-averaged gauge
rainfall hyetograph (upper axis). The gauge-derived
runoff simulation (referred to as reference runoff) is
shown in solid lines. In Table 1, we summarize the
morphological features of the two storm events.
Further details about the study area, including its
terrain characteristics and rain climatology can be
found in Borga et al. (2000) and Bacchi et al. (1996).

The Topographic Index Model (TOPMODEL)
(Beven and Kirkby, 1979) was chosen to simulate
the rainfall–runoff processes of the Posina wa-
tershed. TOPMODEL is a semi-distributed wa-
tershed model that can simulate the variable source
area mechanism of storm-runoff generation and
incorporates the effect of topography on flow paths.
TOPMODEL makes a number of simplifying
assumptions about the runoff generation processes
that are thought to be reasonably valid in this wet,
humid watershed. The model is premised on the
following two assumptions: (1) the dynamics of the
saturated zone can be approximated by successive
steady state representations; and (2) the hydraulic
gradient of the saturated zone can be approximated
by the local surface topographic slope. The topo-
graphic index ln(a/tan b) is used as an index of
hydrologic similarity, where a is the area draining
through a point, and tan b is the local surface slope.
The use of this form of topographic index implies an
effective transmissivity profile that declines expo-
nentially with increasing storage deficits. In this
study, the derivation of the topographic index from
a 20m grid size catchment digital terrain model
utilized the multiple flow direction algorithm by
Quinn et al. (1991, 1995). For the case of
unsaturated zone drainage, a simple gravity-con-
trolled approach is adopted in the TOPMODEL
version used here, where a vertical drainage flux is
calculated for each topographic index class using a
time delay based on local storage deficit. The
generated runoff is routed to the main channel
using an overland flow delay function. The main
channel routing effects are considered using an
approach based on an average flood wave velocity
for the channel network. The model was run at
hourly time steps for the rainfall–runoff transfor-
mation. The model has been applied in the study
region by previous work of Borga et al. (2000).
Model parameters were calibrated using reference
rainfall and the optimization routine of Duan et al.
(1992). Detailed background information of the
TED P
ROOF

model and applications can be found in Beven et al.
(1995). The model has been successfully applied in
the study region as demonstrated by previous
hydrologic studies (Borga et al., 2000; Hossain et
al., 2004a,b).

3. Satellite rainfall error model

The motivation for the formulation of a SREM
comes from the need to fully characterize the
retrieval error of satellite sensors at high resolutions
so that it can be linked to a hydrologic model to
assess the retrieval error propagation in runoff. In
this study we adopted a probabilistic error model
originally developed by Hossain et al. (2004b) and
subsequently applied by Hossain and Anagnostou
(2004) for point (1-D, lumped in space) error
propagation studies. Very recently, Hossain and
Anagnostou (2005a) formulated a fully two-dimen-
sional (2D) Space–Time Error Model for SREM
(called SREM2D) for distributed (spatial) error
propagation studies (e.g., Hossain and Anagnostou,
2005b). The 1D error model is schematically
presented as a flow chart in Fig. 3 and details are
discussed below.

The approach is to simulate equally likely
statistical realizations of satellite rainfall (PM)
retrievals by corrupting a more accurate measure-
ment of rainfall. In this study, the most accurate
measurement of rainfall constituted the basin-
averaged hourly rainfall rate derived from a dense
network of rain gauges in the vicinity of the Posina
basin (earlier labeled as reference rainfall). At any
time during a storm event a satellite rain retrieval
may exhibit the following possible outcomes: it can
be zero (false no-rain detection) or non-zero
(successful rain detection) when it actually rains,
whereas when it does not rain the satellite retrieval
can be zero (successful no-rain detection) or non-
zero (false rain detection).

We define the successful rain detection probabil-
ity, P1, as a function of the reference rainfall.
Therefore, the false no-rain detection is 1�P1. The
successful no-rain detection, P0, is the unitary
probability that satellite retrieval is zero when
reference rainfall is zero. The false rain detection
probability is then 1�P0. A probability density
function (Dfalse) is introduced to characterize the
probability distribution of the satellite rain rate
retrieval in false rain detection. The study reported
by Hossain and Anagnostou (2004, 2005a) to
characterize the error structure of PM and Infrared
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Fig. 3. Satellite Rainfall Error Model (SREM) algorithmic structure (after Hossain et al., 2004b). rn is a randomly generated number from

a uniform [0–1] probability distribution.
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UNCOR(IR) sensors based on real sensor data, had found
Dfalse to be exponentially distributed. Hence, Dfalse

was modeled as an exponential probability distribu-
tion function, DfalseðRSAT Þ ¼ l expf�lRSAT g:

The non-zero satellite rain retrieval, RSAT, is
statistically related to the corresponding non-zero
reference rainfall, RREF, by

RSAT ¼ RREF eS, (1)

where the multiplicative satellite error parameter, es,
is assumed log-normally distributed. A multiplica-
tive error model is used on the basis of the
assumption that the retrieval error variance varies
as a function of the rainfall rate. Such an assump-
tion has been found to be representative of the
retrieval error analyses reported earlier by Hossain
and Anagnostou (2004, 2005a). The log-normality
of the distribution is suggested by the non-negative
property of es (Hossain and Anagnostou, 2005a). A
logarithmic transformation of the log(RSAT)–log(R-

REF) statistical relationship transforms the error es

to a Gaussian deviate e with N(m,s) statistics, where
m and s are the mean and standard deviation,
respectively. To determine the multiplicative mean
(mu) and standard deviation (S) of es the following
conversion is used in terms of m and s,

mu ¼ expðmþ 0:5s2Þ; (2)

S2 ¼ ½expðs2Þ � 1� expð2mþ s2Þ: (3)

The error parameter e (hereafter also referred to as
‘log-error’) can be spatially and temporally auto-
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Table 2

Mean error model parameters calibrated for PM sensor retrievals

on basis of coincident TRMM precipitation radar rainfall fields

(after Hossain and Anagnostou, 2004)

Retrieval error parameter Value

A 1.0

B 3.5

l 0.9

Bias (mu) 1.27

Std. dev of log-error (S) 0.94

No rain detection probability (P0) 0.93
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correlated. Only temporal autocorrelation is con-
sidered in this study because the watershed scale is
represented by a single satellite retrieval pixel
(E100 km2). The reader is referred to the study of
Hossain et al. (2004b) for further details on the
mathematical formulation and the hydrologic as-
sessment of temporal autocorrelation of precipita-
tion retrieval error on runoff simulation
uncertainty.

The SREM operation is summarized in the flow
chart of Fig. 3. When at a certain time (hour) the
reference rainfall is non-zero (RREF40.0) the model
decides as to whether the satellite rainfall is non-
zero or zero through Bernoulli trials as follows.
First, a uniformly distributed random number, rn, is
generated from U[0–1]. If rn is less than P1 (which is
determined as function of RREF) then the satellite
retrieval RSAT is non-zero and modeled through Eq.
1. Otherwise, RSAT is assigned a zero value.
Similarly, at a non-rainy time (RREF ¼ 0.0) a
Bernoulli trial is used again to decide whether the
satellite rainfall will be zero or non-zero. If the
uniformly distributed random deviate rn is less than
P0, then RSAT is assigned a zero value. Otherwise,
the non-zero satellite rainfall value is determined
through random sampling on the basis of the false
alarm probability density (Dfalse) function.

In this study, we considered only PM sensors as
they will comprise the major backbone of the GPM
plan. Furthermore, we did not consider any PM
sampling error and assumed that satellite overpasses
are available every hour over the Posina Watershed
during a storm event. This may be an optimistic
assumption, but is deemed acceptable, as the main
purpose of this study is to assess the performance of
the LHS scheme in runoff error simulation. The
relevant PM retrieval error parameters used in this
study were obtained from the calibration exercise
reported by Hossain and Anagnostou (2004) that
used the Tropical Rainfall Measuring Mission’s
Microwave Image (TRMM-TMI) as the primary
PM sensor for GPM. The probability of rain
detection, P1, was modeled as a sigmoidal function
of RREF as follows:

P1ðRREF Þ ¼
1

Aþ expð�BRREF Þ
. (4)

Table 2 summarizes the PM sensor’s retrieval error
parameters.
103
TED P
ROOF4. The LHS technique

4.1. LHS formulation on the SREM

The LHS technique is a constrained sampling
technique whereby the input parameter range is
divided into equi-probable non-overlapping inter-
vals. This way, we try to explore the parameter
space as completely and with as few samples as
possible. For example, if a parameter is uniformly
distributed U[A–B], we could divide its range (from
A to B) into N intervals and perform a LHS as
follows:

Pm ¼ ½Uð0; 1Þ � ððA� BÞ=NÞ�

þ ½ðm� 1Þ � ððA� BÞ=NÞ�,

m ¼ 1; 2; 3; . . . ;N. ð5Þ

Here Pm is the cumulative probability value used
with the inverse distribution to produce the specific
parameter value to be used with LHS. Fig. 4 shows
an example of such constrained sampling for N ¼ 5
along with a comparison with the Monte Carlo
(simple random) sampling. The LHS technique can
handle a wide variety of complexity such as
parameter correlation and random pairing of
parameter sets. For further details about the LHS
technique the reader is referred to McKay et al.
(1979), Iman and Shortencarier (1984), Stein (1987),
and Isukapalli and Georgopoulos (1999).

We first explored the use of LHS at all possible
sampling instances in the SREM algorithm where
MC random sampling was used. These instances
included (see flow-chart Fig. 3): (1) modeling the
probabilities of successful detection for rain and no-
rain events by random Bernoulli trials; (2) sampling
from false alarm distribution during false alarms
(false no-rain detection); (3) sampling from satellite
rainfall retrieval error distribution (Eqs. (2) and (3))
during successful rain detection. However, given the
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Fig. 4. Intervals used with a Latin Hypercube sample (left panels) and Monte Carlo (simple random) sample of size N ¼ 5 in terms of the

density function (upper panels) and cumulative distribution function (lower panels) for a uniform random variable U[A–B].
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complex nature of the SREM algorithm for which
the probability of rain detection varies temporally
according to the reference rainfall rate, our pre-
liminary investigations have revealed that con-
strained sampling of the Bernoulli trials by the
LHS technique was most notable aspect that yielded
results consistent with the MC simulations. At this
stage of our work, we do not fully know the reasons
for LHS failing at other instances. While this limited
use of LHS may raise concerns, which are under-
standable, we would also like to emphasize that
there is no convincing reason not to explore the
efficacy of LHS in this manner that has not been
attempted before in literature concerning satellite-
based hydrology to the best of our knowledge.
Consequently, we used the concept of constrained
sampling by LHS (Eq. (5)) in SREM for efficient
modeling of rain and no-rain detection (see Fig. 3
for SREM flowchart). For rain detection
(RREF40.0), the uniformly distributed U[0–1] ran-
dom number, rn, was divided into non-overlapping
intervals equal to the number of rainy hours (i.e., 25
and 104 for Storms 1 and 2, respectively). Similarly,
for no rain detection (RREF ¼ 0.0), the number of
Tnon-overlapping intervals within the U[0�1] rn was
equal to the number of non-rainy hours (i.e., 47 and
16 for Storms 1 and 2, respectively). Given that the
number of times Bernoulli trials are conducted for
modeling rain and no-rain events are equal to the
number of rainy and non-rainy hours, respectively,
such a discretization ensures the complete sampling
of the U[0–1] space within each satellite realization
of a storm event (refer to Fig. 4 for a conceptual
elaboration).

4.2. LHS technique validation

Using 30 independent sets of seed numbers for
random number generation, we compared the
performance of the LHS technique with MC
sampling on the rainfall retrieval aspect (i.e.,
excluding the use of hydrologic model). The use of
a large number of seeds allowed us to analyze the
variability in simulations and defuse any bias due to
the choice of a specific set of seeds. The number of
SREM runs varied from 10 to 20,000 in regular
increments. For a given number of SREM realiza-
tions, the retrieval error parameters were derived
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inversely for each sampling method (i.e., MC and
LHS). This means that the ensembles of satellite-
like rainfall observations generated by MC or LHS
embedded SREM realizations were used to compute
independently the retrieval error parameters using
the reference rainfall as the truth. Because the mean
and standard deviation of an exponential distribu-
tion have value (1/l), inverse derivation of the mean
and standard deviation was considered sufficient to
test for the physical nature of the distribution of
false alarm rates. Figs. 5a and b present the
performance of the LHS and MC technique in their
ability to preserve the satellite retrieval error
structure (Table 2) for Storms 1 and 2, respectively
as a function of simulation runs. We observe a less
degree of variability in modeling the probabilities of
rain and no-rain detection for the LHS technique
compared to MC (upper two panels, Figs. 5a and
b). This is expected as LHS was applied in the
constrained sampling of the Bernoulli trials for
detecting rain and no rain events. Fig. 5 demon-
strates this point further by comparing the coeffi-
cient of variation (CV) for each sampling method
(see uppermost two panels). For modeling the
probabilities of rain and no rain, the LHS technique
achieves a very low CV two orders faster than the
MC scheme. There is a significant reduction in CV
of the LHS technique compared to the MC scheme
at simulation runs ranging from orders 1 to 3 (i.e.,
10–1000). For other satellite error parameters, we
observe that the CV of the LHS technique as a
function of sample size is almost equal to that of the
MC scheme (Fig. 6, lower three panels). Thus, the
LHS technique is able to preserve the satellite
rainfall error structure as accurately as the MC.

It is noted that the strong non-linearities in the
surface hydrological process can cause the input
errors to be amplified or dampened depending on
the specific nature of the error structure. For
example, Hossain et al. (2004a,b) have reported
runoff simulation error to be more sensitive to
overestimation of rainfall (bias greater than 1.0)
than underestimation (bias less than 1.0). Fig. 7
presents the mean rainfall volume (as simulated by
the PM sensor) as a function of SREM simulation
runs for both MC and LHS techniques. The
purpose was to identify whether LHS had any
significant dependence (bias) on storm morphologi-
cal properties and to understand the propagation of
this bias in runoff simulation error. While no clear
bias was observed for Storm 1, the LHS under-
estimated the rainfall volume (compared to the MC)
TED P
ROOF

for Storm 2 by 2.3%. This is attributable to the
higher percentage of rain coverage (% Rainy, Table
1) in Storm 2 (87.6%) which meant that a
significantly higher number of Bernoulli trials were
conducted for Storm 2 for modeling rain detection
P1, than Storm 1. In the constrained and systematic
sampling framework of the Latin Hypercube
scheme, this consequently resulted in an equally
higher number of non-overlapping intervals where
the rn uniform deviate value sampled was higher
than P1 (i.e., unsuccessful Bernoulli trials to detect
rain). This 2.3% underestimation in rainfall volume
by LHS needs to be assessed in runoff simulation
error before any clear conclusion can be drawn of its
significance (which is discussed next).

5. Simulation framework

We now assess the performance of the LHS
scheme (versus MC) in terms of runoff simulation
error by passing each of the LHS (and MC)-based
SREM realizations through TOPMODEL using the
same set of 30 independent seeds. The hydrologic
uncertainty was assessed in terms of three runoff
error statistics: mean relative errors in peak runoff
(PR), time to peak (TP), and runoff volume (RV).
We define relative error (eX) as

eX ¼
X sim � X ref

X ref

, (6)

where X is defined as one of the simulated runoff
parameters (RV, PR, TP). The subscript ‘ref’ refers
to the runoff parameter derived from reference

runoff. The gauge rainfall-based simulated hydro-
graph was considered reference runoff, which offers
acceptable fit to the observed runoff data of both
storm cases (see Fig. 2). For a given simulation size,
N, the mean of eX is calculated as the arithmetic
average over the N SREM realizations, each passed
through TOPMODEL. Two approaches are fol-
lowed to evaluate the LHS scheme’s performance
(in comparison with the MC technique) for various
increasing levels of simulation sample sizes, in a way
similar to that described in Section 4.2.

In the first approach we employ a statistic named
‘% Change in Error’ to evaluate LHS and MC
adequacy for different simulation sample sizes using
as reference the MC simulation results derived on
the basis of a large sample size. From Figs. 5 and 6
we note that a sample size of 20,000 runs could
adequately represent the rainfall error structure, so
it is chosen as the reference sample size for runoff
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Fig. 5. (a) Comparison of MC (left panels) and LHS (right panels) techniques in preserving properties of rainfall retrieval error structure

as a function of SREM simulation runs for Storm 1. Error bars represent one standard deviation of variability among 30 sets of

independent seeds used. Bias is multiplicative as in Table 2. FA—false alarms; SD—standard deviation; Prain is probability of rain

detection averaged over storm duration (similar to P1 in Table 2); Pnorain is probability of no rain detection (P0 in Table 2). (b) Same as

Fig. 5a for Storm 2.
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Fig. 6. Comparison of MC (solid) and LHS (dashed) schemes in modeling error structure of satellite rainfall as a function of simulation

runs for Storm 1 (left panels) and Storm 2 (right panels). Coefficient of variation (CV) for a given sampling scheme is expressed as error

parameter standard deviation of 30 seeds normalized by mean (true) error parameter in Table 2.
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follows:

% Change in error at N for LHS

¼
eNMC

X MC � eN
X LHS

eNMC

X MC

,

% Change in error at N for MC

¼
eNMC

X MC � eN
X MC

eNMC

X MC

. ð7Þ

Subscripts MC and LHS refer to the MC and LHS
techniques, while superscripts N and NMC refer to
the varying sample size and the reference sample
size (20,000 runs), respectively.

The second approach is to compare the tails of
the distribution of runoff simulations derived from
the LHS and MC random experiments for varying
sample sizes. The tails are evaluated using the
confidence levels ranging from 90% (5% upper,
95% lower) to 60% (20% upper, 80% lower) in
10% increments. Fig. 2 shows an example of the
runoff simulation quantiles at the 90% confidence
limits based on the reference MC simulation
experiment (20,000 runs). It has been previously
reported (Stein, 1987, for example) that LHS gives
an estimator with lower variance than MC when the
number of simulations is larger than the number of
input parameters provided that the condition of
monotonicity holds. Because the retrieval error in
SREM is multiplicative (i.e., error variance is
proportional to rainfall rate according to Eq. (1)),
higher error in the retrieval (arising from either
higher or lower magnitudes of error parameters
such as bias, random error variance, false alarm
rates and probabilities of successful rain/no-rain
detection) would cause elongated tails in runoff
uncertainty distribution. Thus, the runoff uncer-
tainty (tails) at strict confidence levels (460% error
quantiles) form an ideal candidate for assessing the
reliability of the LHS technique, because of its
expected monotonic relationship with retrieval error
parameters. It is noted, however, that the same may
not apply unconditionally for the calculated runoff
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Fig. 7. Comparison of MC (left panel) with LHS (right panel) in simulating sensor retrieved rainfall volume as a function of SREM

simulation runs. Storms 1 and 2 are represented in upper and lower panels, respectively. Dashed red line represents retrieved rainfall

volume by MC at 20,000 runs (i.e., reference sensor retrieved rainfall volume).
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using the first approach. We quantify the runoff
uncertainty at a selected confidence level as the
distance between the upper and lower quantiles
integrated over the whole storm-runoff duration.
This is hereafter referred to as Runoff Uncertainty
Volume (RUV). Thus, wider confidence levels would
be associated with higher RUV values, and vice
versa.

6. Results and discussion

Figs. 8a and b present performance comparisons
between the MC and LHS techniques in terms of
runoff simulation uncertainty for PR, RV and TP
for Storms 1 and 2, respectively. For Storm 1, the
mean of % Change in error statistic for LHS
appears similar to that for MC. However, the
variability among seeds (i.e., the evaluated standard
deviation) is clearly smaller for LHS. The variability
across seeds is an indication of how reliable the
uncertainty estimation for a given technique is, since
in a real world application only one set of seeds will
T
be typically employed. However, due to the non-
linearities in the runoff transformation process, this
variability does not converge for PR and TP. For
RV, we observe a clear convergence at 20,000
simulations (Figs. 8a and b). This is expected since
RV is a hydrologic parameter integrated over time
and therefore random retrieval errors that propa-
gate in runoff transformation can balance each
other. For Storm 2, we observe a similar pattern,
but with less apparent differences between LHS and
MC. Also, there is a distinct negative bias (under-
estimation) observed in error simulation for PR and
TP for the LHS scheme (Fig. 8b, uppermost and
lowermost right panels). We attribute this to the
negative bias in simulating the retrieved rainfall
volume by the LHS for Storm 2 (Fig. 7, lower right
panel). The 2.3% negative bias in retrieval of
rainfall volume of the LHS technique has propa-
gated to a slightly higher (3.0%) negative bias in
Peak Runoff with respect to the MC scheme. It
appears that this bias in rainfall volume has a strong
effect on PR and TP runoff simulation error, but a
negligible effect on RV. The overall picture emer-
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Fig. 8. (a) Comparison of MC (left panels) with LHS (right panels) in simulation uncertainty of Peak Runoff (uppermost panels), Runoff

Volume (middle panels) and Time to Peak (lowermost panels) as a function of simulation runs for Storm 1. % Change in Error represents

relative change in error with respect to reference runoff error (MC at 20,000, Eq. (7)). Solid line and error bars represent mean and one

standard deviation for 30 realization/seeds. (b) Same as Fig. 8a, for Storm 2.
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Fig. 9. Comparison of coefficient of variation (CV) of simulation runoff error bars (tails, quantified as runoff uncertainty volume, RUV)

at given confidence limits for MC (solid) and LHS (dashed) as a function of simulation runs for Storm 1 (left panels) and Storm 2 (right

panels). CV is computed with 30 sets of independent seeds.
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ging from these two figures (8a and b) is that LHS
offers moderate computational benefit in compar-
ison with the MC technique for assessing errors in
bulk PR, RV and TP runoff parameters. Further-
more, the LHS performance, as applied in the
context of accelerating Bernoulli trials for rain and
no rain discrimination, seems to be sensitive to the
storm morphological properties. Storms with wide-
spread rainfall patterns appear to be inducing an
underestimation in rainfall volume by LHS and this
bias persists in its propagation as bias in PR and TP
runoff parameters.

In Fig. 9, we present the CV of the RUV at
specified confidence levels ranging from 90% (5%
upper and 95% lower) to 60% (20% upper and
80% lower). The mean values of the RUV derived
from LHS were found to match accurately those
from MC sampling for any given simulation size.
The mean value of RUV was found to show
insignificant sensitivity to simulation runs exceeding
sample size of 100. Hence these results are not
reported herein. We further observed that, for
Storm 1, LHS yields significantly lower variability
in RUV values for 80% and higher confidence
levels. In fact, LHS attains the level of low CV
(o0.05) at almost 2 orders of magnitude of
simulation runs less than what MC requires (Fig.
9 first two upper left panels). This indicates that
LHS can estimate the runoff simulation uncertainty
bounds for high (480%) confidence levels with the
same degree of reliability as MC, but for almost two
orders of magnitude of fewer runs. For lower
confidence levels we observe no clear computational
benefit of LHS. This is probably because as
confidence levels in runoff simulation become
narrower, the condition of monotonicity is gradu-
ally violated. In fact, one can argue that as
confidence levels narrow significantly, the ensemble
of simulated runoff realizations converges towards
an ideal single hydrograph realization, whereby the
conditions of monotonicity cannot be expected to
hold. For Storm 2, we still observe LHS to be an
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effective estimator of RUV, but the computational
advantage over MC is not exemplified as for Storm
1. Again, this demonstrates an inherent sensitivity
of the LHS scheme to the type of storm, with storms
with widespread and heavy rainfall patterns making
the LHS technique to not be as accurate as MC
sampling.

It is appropriate to highlight, at this stage, a few
words of caution on the use of LHS. While the LHS
technique generally never performs worse than the
MC technique in terms of computational efficiency,
there are circumstances where the opposite may be
observed (see Figs. 6 and 9). This is particularly so
when the number of simulations is less than 100.
Also, such situations seem to be more pronounced
for Storm 2 than Storm 1 (mild storm event). This
raises an interesting open-ended question as to
whether it is due to the potential ‘‘limitation’’ of the
LHS technique when the number of simulations is
less or it is due to the type of ‘‘data’’ (storm) or it is
due to combination of both (?). We stress that
seeking an answer to this question in future research
endeavours is important because it may have much
wider implication as to the usefulness of the LHS
technique in error propagation studies on satellite-
based hydrology.
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7. Conclusion

This study presented an assessment of Latin
Hypercube Sampling for uncertainty estimation of
satellite rainfall observations in flood prediction for
two storm cases of contrasting morphological
properties. A Satellite Rainfall Error Model
(SREM), calibrated for Passive Microwave sensors,
was linked with a hydrologic model in a Monte
Carlo framework to study and understand the error
propagation of retrieval error in runoff simulation.
The concept of LHS was applied in the constrained
sampling of Bernoulli trials to achieve higher
computational efficiency in modeling sensor’s rain
and no rain detection probabilities. It was observed
that LHS offered no additional computational
benefit over MC in assessing runoff simulation
error. Furthermore, LHS appeared sensitive to
storm morphology, namely its accuracy was under-
mined for storms with widespread rainfall patterns.
However, the LHS was able to predict the 80% and
higher confidence limits in runoff simulation with
the same degree of reliability as MC with almost
two orders of magnitude fewer simulations.
TED P
ROOF

Results from this LHS assessment study have
implications for wide scale assessment of satellite
rainfall retrievals for flood prediction and other
land surface processes. While LHS, as applied in the
present context of discrimination of rain and no rain
events, offers no computational advantage for
assessing simulation errors in peak runoff, time to
peak and runoff volume, it can serve as a very useful
tool for assessing the bounds of the runoff simula-
tion distribution at large confidence limits. This
knowledge therefore allows the efficient use of a
LHS modified sampling scheme on a satellite
rainfall error model (such as SREM) involving: (1)
slow running models (such as distributed hydrologic
models and land surface models); (2) larger regions;
and (3) longer study periods; provided the study is
confined to analysis of bounds of the simulated
runoff distribution.

Findings from this study also indicate that LHS
could be potentially useful for a small-scale proto-
type end-to-end probabilistic flood prediction sys-
tem that was implemented by the National Weather
Service, known as the Ensemble Stream flow
Prediction (ESP) system (Day, 1985; Schaake et
al., 2001). The ESP system amounts to generating a
number of ensembles of traces of future precipita-
tion on the basis of an uncertainty framework and
running them numerically through a hydrologic
model. From the resulting multiple hydrographs,
several probabilistic statements are then drawn
about the future river stage (Schaake and Larson,
1998). However, Krzysztofowicz (1999) argued that
the ESP typically under-represents uncertainty
estimation in river stage (runoff) as it does not
incorporate hydrologic prediction uncertainty as a
random process. Thus, a better application of ESP
would require an enhanced ensemble simulation
(MC) framework that combines both precipitation
uncertainty and hydrologic prediction uncertainty.
As this combined input-prediction uncertainty
would require computationally prohibitive runs for
the MC simulation, LHS can play an important
role, at least in principle, in reducing the number of
ensemble runs of precipitation inputs by a few
orders of magnitude. This consequently frees up
computational power to incorporate a sufficient
ensemble of hydrologic prediction scenarios to be
combined with the precipitation input realizations.
Work is currently in progress to assess how useful
LHS can be in the runoff simulation uncertainty
assessment that accounts for both input uncertainty
and hydrologic prediction uncertainty.
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