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Abstract

This study assesses a stochastic interpolation based parameter sampling scheme for efficient uncertainty analyses of

stream flow prediction by hydrologic models. The sampling scheme is evaluated within the generalised likelihood

uncertainty estimation (GLUE; Beven and Binley, 1992) methodology. A primary limitation in using the GLUE

method as an uncertainty tool is the prohibitive computational burden imposed by uniform random sampling of the

model’s parameter distributions. Sampling is improved in the proposed scheme by stochastic modeling of the

parameters’ response surface that recognizes the inherent non-linear parameter interactions. Uncertainty in discharge

prediction (model output) is approximated through a Hermite polynomial chaos approximation of normal random

variables that represent the model’s parameter (model input) uncertainty. The unknown coefficients of the

approximated polynomial are calculated using limited number of model simulation runs. The calibrated Hermite

polynomial is then used as a fast-running proxy to the slower-running hydrologic model to predict the degree of

representativeness of a randomly sampled model parameter set. An evaluation of the scheme’s improvement in

sampling is made over a medium-sized watershed in Italy using the TOPMODEL (Beven and Kirkby, 1979). Even for a

very high (8) dimensional parameter uncertainty domain the scheme was consistently able to reduce computational

burden of uniform sampling for GLUE by at least 15–25%. It was also found to have significantly higher degree of

consistency in sampling accuracy than the nearest neighborhood sampling method. The GLUE based on the proposed

sampling scheme preserved the essential features of the uncertainty structure in discharge simulation. The scheme

demonstrates the potential for increasing efficiency of GLUE uncertainty estimation for rainfall–runoff models as it

does not impose any additional structural or distributional assumptions.

r 2004 Elsevier Ltd. All rights reserved.

Keywords: Uncertainty estimation; Hydrologic models; Stochastic interpolation; Hermite polynomial chaos expansion; Parameter

sampling; GLUE
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1. Introduction

Due to ever-increasing computing power, the fully

random Monte Carlo (MC) sampling is nowadays

considered the preferred method for uncertainty analy-
63d.

www.elsevier.com/locate/cageo


1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

ARTICLE IN PRESS
CAGEO : 1456

F. Hossain, E.N. Anagnostou / Computers & Geosciences ] (]]]]) ]]]–]]]2
UNCORREC

sis. Other reasons for the wide-spread preference of MC

techniques are their lack of restrictive assumptions and

completeness in sampling the error structure of the

random variables (Beven and Freer, 2001; Beck, 1987;

Kremer, 1983). MC sampling can also bypass several

limitations of analytical techniques (such as first-order

approximation methods; Bras and Rodriguez-Iturbe,

1993). An uncertainty estimation technique called

Generalised Likelihood Uncertainty Estimation

(GLUE) (Beven and Binley, 1992) is one such MC-

based tool that can be employed to assess a hydrologic

model’s predictive uncertainty. This method evaluates

the simulation results for each randomly sampled model

parameter set against some observed data through a

likelihood value. The method is originally founded on

the principles of generalized sensitivity analysis (GSA)

of Spear and Hornberger (1980). Because its structure is

rooted in Bayesian theory, GLUE also allows blending

of prior and current information for improved a

posteriori inferences. While GLUE is not the only

uncertainty assessment tool (Misirli et al., 2003;

Thiemann et al., 2001; Tyagi and Haan, 2001; Krzysz-

tofowicz, 2000; Young and Beven, 1994), it is one of the

few convenient techniques currently available (Beven

and Freer, 2001). GLUE has therefore found extensive

application in the assessment of predictive uncertainty of

many hydrologic variables like stream flow, flood

inundation, ground water flow, land surface fluxes, etc.

(Schulz and Beven, 2003; Christaens and Feyen, 2002;

Beven and Freer, 2001; Schulz et al., 2001; Romanowicz

and Beven, 1998; Franks et al., 1998; Franks and Beven,

1997; Freer et al., 1996; among many others). Recently,

the GLUE technique has also proved to be a powerful

tool in understanding the implications of remotely

sensed rainfall error adjustment on flood prediction

uncertainty (Hossain et al., 2004).

However, the GLUE method requires analysis of

multiple simulation scenarios based on uniform random

sampling of the model parameter hyperspace. This is

considered a significant drawback of the scheme, as this

requirement can be computationally prohibitive for

physically complex hydrologic models that are distrib-

uted (Bates and Campbell, 2001; Beven and Binley,

1992). Beven and Binley (1992) have argued in detail

that the assumption of uniform distribution is unlikely

to prove critical for GLUE. Freer et al. (1996) have

further justified uniform random sampling because it

makes the GLUE procedure simple to implement and

avoids the necessity to sample from some multivariate

set of correlated distributions which is often very

difficult to justify from observed data.

Nevertheless, the drawback of uniformity assumption

in GLUE magnifies tremendously for hydrologic models

when large number of parameters are involved. This is

particularly evident if we consider the fact that, as

computing power increases, the agenda for scientific
TED P
ROOF

inquiry correspondingly widens to take advantage of

this increased power. Over the last decade, a review of

the progression of literature reveals to us the following

the realities: (1) more complex, physically-based and

slow-running models are on the rise; (2) the time period

and time step of scientific investigations are increasing

and decreasing, respectively; (3) study regions are

becoming larger (from small-sized basins to continental

and global studies). For example, in an uncertainty

assessment study involving an event-based distributed

hydrologic model applied to a very small (3.9 km2)

watershed with only four parameters, Beven and Binley

(1992) reported the computing burden of GLUE to be

‘significant’ (with respect to the computing power that

was available a decade ago). For 500 realizations of the

model, 30–60 h of computing time were required by a

large parallel computing system. With more increased

computational power, GLUE has recently been applied

to a fully-distributed and physically-based hydrologic

model MIKE-SHE (Abbott et al., 1986; Christaens and

Feyen, 2002). Yet, Christaens and Feyen (2002) reported

therein a 50% loss in computing time due to model

execution of unacceptable runs by uniform sampling.

In response to the computational burden imposed by

MC-type uncertainty techniques (such as GLUE),

researchers have strived to develop numerical schemes

for efficient parameter sampling of hydrologic models.

Kuczera and Parent (1998) and Bates and Campbell

(2001) have explored the use of Markov Chain Monte

Carlo (MCMC) methods for more efficient parameter

uncertainty analyses. Bates and Campbell (2001) how-

ever reported that MCMC methods cannot be used as a

blackbox—considerable care is required in its imple-

mentation when models have large number of para-

meters. A further criticism made by Beven and Freer

(2001) was that MCMC methods can rarely be useful in

making considerable savings in computing time when

the model response surface with respect to parameters is

not well defined and has the presence of multiple local

maxima or plateux. Christaens and Feyen (2002)

employed the Latin Hypercube Sampling (LHS) method

to accelerate parameter sampling for MIKE-SHE

model. However, LHS is based on the assumption of

monotonicity of model output in terms of input

parameters, in order to be unconditionally guaranteed

of accuracy with an order of magnitude fewer runs than

uniform random sampling (McKay et al., 1979; Iman et

al., 1981). Hence, for hydrologic models, which are

replete with multiple minima and maxima in the

response surface (Duan et al., 1992), LHS can rarely

be expected to perform to its full potential.

The present study is therefore motivated by the need

to make the GLUE parameter sampling more efficient

for hydrologic (i.e., rainfall–runoff) models. Such a

technique should not impose additional structural or

distributional assumptions that may otherwise compro-
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mise the inherent simplicity and validity of the GLUE

method. We hypothesize that the presence of a complex

parameter-output response surface is a manifestation of

the inherent non-linear deterministic (chaotic) dynamics

commonly observed in natural systems. Recently, much

convincing evidence has been provided in this regard to

promote this hypothesis (see Faybishenko, 2004; and

Sivakumar 2004, for a review). In the current state of the

art, GLUE would therefore require a stochastic and

non-linear interpolator (hereafter called interpolator) for

the model’s complex parameter-output response surface.

This interpolator could then act as a proxy to the slow

running model and potentially identify the regions of

high likelihood values of the parameter-output response

surface. In this study we have chosen to develop a

parameter sampling scheme that stochastically inter-

polates (non-linearly) the complex parameter-output

response surface. Interpolation is based on ‘Hermite

Polynomial’ (HP) chaos expansion that follows from the

‘‘Theory of Homogeneous Chaos’’ (Wiener, 1938). We do

not demonstrate the presence or absence of chaotic

behavior in this study. However, we are encouraged by

the recent well-documented discovery of chaos in both

streamflow and rainfall processes (Sivakumar et al.,

2001a,b; Sivakumar 2000; Jayawardena and Lai, 1994).

Basic concepts of our proposed scheme are derived from

an uncertainty estimation tool originally developed by

Isukapalli and Georgopoulos (1999). The evaluation of

the interpolator within the GLUE framework is con-

sidered an unexplored topic in current literature on

uncertainty estimation of rainfall–runoff models. An

application is demonstrated on a medium-sized wa-

tershed in Northern Italy called Posina involving a 3-

month-long hydrologic time series of rainfall and stream

flow.

The study is organized in the following manner. In

Section 2, a brief description of the watershed, data and
UNCORR

Fig. 1. Geographic location of Posina watershed (right panel), and

network locations (in solid circles).
the hydrologic model used in this study are discussed.

Section 3 describes the GLUE method based on uniform

parameter sampling. Section 4 provides the theoretical

formulation of the interpolator and its method of

employment with GLUE. Section 5 describes the

simulation framework for assessing the interpolator.

Section 6 provides comparisons of the interpolator based

GLUE (hereafter called interpolator-GLUE) with tradi-

tional uniform sampling based GLUE (hereafter called

uniform-GLUE). The interpolator sampling scheme is

also compared with the nearest-neighborhood para-

meter sampling technique proposed earlier by Beven and

Binley (1992) for computationally-challenged situations.

Finally Section 7 presents the conclusions and further

extensions that may extend capabilities of the inter-

polator.
TED P
ROO

2. Watershed, data and hydrologic model

The watershed chosen for this study (named Posina) is

located in Northern Italy, close to Venice (Fig. 1, right

panel). Posina has an area of 116 km2 and altitudes

ranging from 2230 to 390m at the outlet (Fig. 1, left

panel). Within a radius of 10 km from the center of the

watershed there is a network of seven rain gauges

providing representative estimates of the basin-averaged

hourly rainfall. Posina is 68% forested thereby satura-

tion-excess is the main rainfall–runoff generation

mechanism of the basin.

The hydrologic data comprising rainfall and stream-

flow for Posina spanned a period from August 1, 1992 to

October 31, 1992 totaling 2208 time steps at the hourly

interval (Fig. 2). For estimation of potential evapo-

transpiration from the watershed, coincident meteor-

ological data were available from a weather station

located within 50 km of the watershed. A major storm
95

97

99

101

103

105

107

109

111watershed elevation map (left panel) overlaid by rain gauge



ROOF

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

ARTICLE IN PRESS
CAGEO : 1456

Fig. 2. Streamflow hydrograph (lower axis) and rainfall hyetograph (upper axis) for Posina from August 1 to October 31, 1992.
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event took place from October 2 to October 7, 1992 and

was associated with catastrophic flooding in the

surrounding area (Fig. 2). The hydrologic data is

considered particularly appropriate for the study of

parameter sampling of hydrologic models because the

period spans both dry (unsaturated) and wet (saturated)

conditions of the watershed. Since baseflow (about 80%

of timeseries) and surface runoff (about 20% of time-

series) are adequately represented, the hydrologic data

can be considered sufficiently long to characterize the

complete structure of a model’s parameter uncertainty

for the watershed. The entire period of the hydrologic

time-series was considered for rainfall–runoff simulation

in this study.

The topographic index model (TOPMODEL) (Beven

and Kirkby, 1979) was chosen to simulate the rain-

fall–runoff processes of the Posina watershed. This

model makes a number of simplifying assumptions

about the runoff generation processes that are thought

to be reasonably valid in this wet, humid watershed.

TOPMODEL is a semi-distributed watershed model

that can simulate the saturation-excess mechanism of

storm-runoff generation and incorporates the effect of

topography on flow paths. The model is premised on the

following two assumptions: (1) the dynamics of the

saturated zone can be approximated by successive

steady state representations; and (2) the hydraulic

gradient of the saturated zone can be approximated by

the local surface topographic slope. The generated

runoff is routed to the main channel using an overland

flow delay function. The main channel routing effects

are considered using an approach based on an average
TED Pflood wave velocity for the channel network (Beven and

Kirkby, 1979; Beven et al., 1995). The major parameters

of TOPMODEL are as follows: (1) SZM—the expo-

nential decay rate of soil hydraulic properties with

depth, (m); (2) SR0—the initial value of root zone

deficit, (m); (3) SRMAX—the maximum storage capa-

city of the root zone, interpreted here as the soil

moisture at field capacity, (m); (4) XK0—the vertical

hydraulic conductivity, (mh�1); (5) T0—the lateral

transmissivity, interpreted here as the mean of ln(T0),

ln(m2 h�1); (6) TD—the time delay parameter used to

simulate the vertical unsaturated drainage flux, (hm�1);

(7) CHV—the main channel flow velocity (mh�1); and

(8) RV—the overland flow velocity (mh�1). The model

was run at hourly intervals using basin-averaged rainfall

input and considering homogeneous soils all over the

watershed. We justify soil homogeneity considering the

insignificant size of the watershed (o500 km2) compared

to the scale at which regional geology is expected to

vary. TOPMODEL was initialized for the study period

assuming that the first observed discharge is baseflow

(see Fig. 2) and proportional to the initial subsurface

storage deficit of the watershed (i.e., SR0). It should be

noted that TOPMODEL, being a conceptual-type

model, not all parameters are physically meaningful to

be derived directly from in situ measurements. Hence the

majority of the parameters were determined through

calibration with rainfall-stream flow data, which is a

common practice for hydrologic models today (Duan et

al., 2003). Further information on the model can be

found in (Beven et al., 1995) while previous TOPMO-
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DEL applications on the Posina watershed are docu-

mented in Hossain et al. (2004).
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3. Generalised likelihood uncertainty estimation (GLUE)

GLUE is based on Monte Carlo simulation: a large

number of model runs are made, each with random

parameter values selected from probability distributions

for each parameter. GLUE assumes uniform probability

distribution of all model parameters for reasons already

alluded in Section 1. The acceptability of each run is

assessed by comparing predicted to observed hydrologic

measurement through some chosen likelihood measure.

Runs that achieve a likelihood below a certain threshold

may then be rejected as ‘non-behavioral’ (accepted runs

are referred to as ‘behavioral’). The likelihoods of these

non-behavioral parameters are set to zero and are

thereby removed from the subsequent analysis. Follow-

ing the rejection of non-behavioral runs, the likelihood

weights of the retained (behavioral) runs are rescaled so

that their cumulative total is one (Freer et al., 1996). In

this study the GLUE method was applied to uncertainty

estimation of discharge (streamflow) prediction by

TOPMODEL at the basin outlet. Thus at each time

step the predicted discharge from the retained runs are

likelihood weighted and ranked to form a likelihood-

weighted cumulative distribution function of discharge

from which chosen quantiles can be selected to represent

model uncertainty. While GLUE is based on a Bayesian

conditioning approach, the likelihood measure is

achieved through a goodness of fit criterion as a

substitute for a more traditional likelihood function.

The likelihood associated with a particular parameter

value may therefore be expected to vary depending on

the values of the other parameters, and there may be no

clear optimum parameter set.

Because GLUE allows the choice to be subjective, two

likelihood measures were employed in this study for

evaluating the proposed interpolator sampling scheme.

These are (1) the classical index of efficiency (Nash and

Sutcliffe, 1970), hereafter referred to as Efficiency index;

and (2) a weighted peak runoff–runoff volume index

(hereafter referred to as PR–RV Index). We define the

Efficiency Index as follows:

Efficiency index ¼ 1�
s2e
s2o

� �
; (1)

where, se is the variance of errors and so; the variance of
observations. The PR–RV Index is defined as the

weighted average of percentage error in Peak Runoff

(PR) and Runoff Volume (RV) where 60% weight is

given to PR error and 40% to RV error. Because the

discharge data had only one major storm event spanning

20% of the total timeseries, we observed the error in
TED P
ROOF

Time to Peak (TP) to be relatively less sensitive to the

goodness of fit (i.e., root mean square of error) of

simulations. Hence error in TP was not considered

herein. The error in the hydrologic parameters (PR and

RV) is defined as follows:

PR errorð%Þ

¼
Peak runoffobs � Peak runoffsim

Peak runoffobs

����
����� 100; ð2aÞ

RV errorð%Þ

¼
Runoff volumeobs �Runoff volumesim

Runoff volumeobs

����
����� 100;

ð2bÞ

Subscripts ‘obs’ and ‘sim’ imply the observed and

simulated hydrologic parameters, respectively. The

PR–RV Index is now defined as,

PR2RV Indexð%Þ ¼ 0:6ðPR ErrorÞ þ 0:4ðRV ErrorÞ:

(3)

Both likelihood measures (Eqs. (1) and (3)) are

consistent with the requirements of the GLUE, as they

change monotonically with increasing similarity of

behavior in discharge simulation. Note that, the

Efficiency Index increases while the PR–RV Index

decreases monotonically with more accurate simula-

tions. Hence, we considered the reciprocal (inverse) of

the PR–RV Index as the GLUE-required likelihood

measure in the rescaling of likelihood weights. It is

appropriate to note, at this stage, that the choice of

relative weights assigned to PR and RV was arbitrary.

The purpose of having a PR–RV index was to assess the

performance of the proposed sampling across two

widely different likelihood measures. Hence, this study

does not address how the assignment of relative weights

to PR and RV would affect the performance of the

sampling scheme. Using the hydrologic parameter

calibration algorithm of Duan et al. (1992) we found

the highest Efficiency index to be 0.975 and the lowest

PR–RV index as 1.9%. Due to unknown complexities in

the parameter-response surface and limitations of

current non-linear optimization algorithms (Duan et

al., 1992) the two optimized parameter sets (for each

index) however did not match.

To implement the GLUE methodology, each para-

meter of TOPMODEL was specified a range of possible

values. Table 1 lists the ranges assigned to all eight

TOPMODEL parameters used for GLUE. For a

rigorous assessment of the interpolator, we considered

it important to assume all eight parameters potentially

sensitive and having highly non-linear interactions in

simulation of discharge.
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Table 1

Parameter value ranges used for GLUE sampling

Minimum value (p) Maximum value (q)

1 SZM (m) 0.0001 0.2

2 SR0 (m) 0.0001 1.0

3 SRMAX (m) 0.0001 1.0

4 XK0 (mh�1) 0.0001 10.0

5 T0 ln(m2 h�1) 0.0001 15.0

6 TD (hm�1) 0.0001 5.0

7 CHV (mh�1) 500.0 5000.0

8 RV (mh�1) 50.0 2500.0

F. Hossain, E.N. Anagnostou / Computers & Geosciences ] (]]]]) ]]]–]]]6
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4. Formulation of the stochastic interpolator

The principle of the interpolator is founded on the

Theory of Homogeneous Chaos (Wiener, 1938). Wiener

(1938) had shown that if a deterministic dynamical

model (where model output is random) bears a highly

non-linear relationship with model inputs (and with a

tendency to exhibit chaotic behavior), then it is possible

to approximate both inputs and outputs (treated here as

random processes) of the uncertain model through series

expansion of standard random variables using Hermite

polynomials (HP). Although the presence of chaotic

behavior in the hydrologic system under study is not

addressed herein, recent literature supports the wisdom

of choosing the Theory of Homogeneous Chaos as a basis

for formulation of the interpolator. We cite a few

examples from literature as follows: (1) Both rainfall and

streamflow have been observed to exhibit chaotic

behavior over long-time scales (Jayawardena and Lai,

1994; Sivakumar et al., 2001a,b); (2) Sivakumar et al.

(2001a) have demonstrated the presence of chaos in the

rainfall–runoff transformation process (also see Sivaku-

mar (2004) for a general overview). It is however

worthwhile to mention that the sampling interval

(hourly) chosen for this study may have unknown

effects on the outcome of the proposed sampling method

as most studies (cited herein) have investigated chaos in

data at much coarser scales (4 hourly).

There are three major steps involved in the algorithm

formulation of the interpolator. We describe these steps

below. For more details on the mathematical theory, one

is referred to Isukapalli and Georgopolous (1999) and

Ghanem and Spanos (1991).

Step 1: Transformation of parameter distributions.

Our TOPMODEL model input parameter uncertainty

domain is represented by an 8-D hypercube (Table 1)

with the distribution of each parameter being uniform

(the norm for GLUE). It is defined as follows:

X i � Uðpi; qiÞ; i ¼ 1; . . . . . . ; 8; (4)

where p and q form the lower and upper parameter

ranges (columns 2 and 3 of Table 1). Subscript ‘i’ refers
TED P
ROOF

to the specific parameter type (from 1 to 8 as listed in

Table 1). ‘X’ represents the parameter value. These

uniformly distributed parameters are then expressed as a

series of a standard normal random variable (srv) as,

xi;j ¼ pi þ ðqi � piÞ
1

2
þ

1

2
erf ð�i;j=

ffiffiffi
2

p
Þ

� �
;

i ¼ 1; . . . . . . ; 8; ð5Þ

where e is a srv � Nð0; 1Þ and ‘j’ denotes the index for a

random realization. erf (xx) is the error function defined

by the following integral:

erf ðxxÞ ¼
2ffiffiffi
p

p

Z xx

0

e�w2

dw: (6)

In Eq. (6), xx is the srv and ww an intrinsic independent

variable of the error function.

We have now expressed the random inputs (uniformly

distributed model parameters) via srvs as f�gn
i¼1 (where,

n ¼ 8). The choice of transforming the model para-

meters to the normal srvs is justified by mathematical

tractability of functions of these srvs (Devroye, 1986).

For example, other common univariate distributions

such as gamma, exponential, Weibull, log-normal can

also be transformed explicitly to normal srvs.

Step 2: Polynomial chaos expansion. Next, we

represent our uncertain model output, L—the likelihood

measure (left-hand side of Eq. (1) or (3)), as an nth order

expansion of a Hermite Polynomial of srvs. This step,

called ‘‘Polynomial Chaos Expansion’’, follows from

Ghanem and Spanos (1991). In this study we have

considered 2nd and 3rd order expansions which are

defined as follows:

L2 ¼ a0;2 þ
Xn

i¼1

ai;2�i þ
Xn

i¼1

aii;2ð�
2
i � 1Þ

þ
Xn�1

i¼1

Xn

j41

aij;2�i�j ; ð7Þ

L3 ¼ a0;3 þ
Xn

i¼1

ai;3�i þ
Xn

i¼1

aii;3ð�
2
i � 1Þ

þ
Xn

i¼1

aiii;3ð�
3
i � 3�iÞ

þ
Xn�1

i¼1

Xn

j41

aij;3�i�j ;þ
Xn

i¼1

Xn

j¼1

aijj;3ð�i�
2
j � �iÞ

þ
Xn�2

i¼1

Xn�1

j41

Xn

k4j

aijk;3�i�j�k; ð8Þ

where the subscript after L represents the order of the

expansion.

Step 3: Calibration of coefficients of the interpolator.

From the above equations (7 and 8), it can be seen that

the number of unknown coefficients (the ‘a’s in the right-

hand side) to be determined for second and third order
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polynomial chaos expansions are 45 and 153, respec-

tively. These unknown coefficients are now identified by

generating the same number of model data points and

solving the system of linear algebraic equations.

Isukapalli and Georgopoulos (1999) provide guidelines

on choosing model points for robust calibration of

coefficients. The choice of the model points in this study

is, however, left open. We investigated this issue herein

and observed that the model points for calibration is

best chosen as scattered uniformly in the entire domain

of possible likelihood values. However, we did not find

the interpolator’s performance to be overly sensitive to

the choice of model points. For calibration of poly-

nomial coefficients we used the singular value decom-

position (SVD) method (Press et al., 1999) because of its

ability to handle ill-conditioned matrices (Press et al.,

1999). This is important for higher order expansions or

when the likelihood measures and coefficients suffer

from scaling problems.

In Fig. 3 we summarize the algorithm for the

interpolator. First, we generate a set of uniformly

distributed model parameter sets from srvs (using Eq.

(5) and Table 1). 45 and 153 points on the TOPMO-

DEL’s parameter-output (L) response surface are then

chosen for the 2nd and 3rd order interpolators,

respectively. The interpolator is then calibrated for its

coefficient values by solving the system of linear
UNCORREC

Fig. 3. Flow-chart for algorithm
OF

algebraic equations by the SVD method. Once cali-

brated for TOPMODEL and the watershed using data

available, we evaluate the efficiency of the interpolator in

parameter sampling in the following 4 steps: (i) sample

N (0,1) srvs; (ii) generate the corresponding family of

uniformly distributed TOPMODEL parameters from

Eq. (5); (iii) compute the interpolator-predicted like-

lihood value—L values from Eq. (7) or Eq. (8); and (iv)

if the interpolator predicts a sampled parameter set to be

behavioral, then test its accuracy by actual execution of

TOPMODEL for that parameter set. Note that the use

of the interpolator within the GLUE framework does

not violate the requirement that parameters be sampled

from their marginal uniform distributions (discussed

further in the following sections). It only helps to make

an informed decision on sampling by providing an

indication on whether the sampled parameter set is likely

to be behavioral or non-behavioral before making the

actual time-consuming TOPMODEL model run.
 P
R5. Simulation framework

The interpolator is potentially a few (at least 2–3)

orders faster in computation than TOPMODEL itself

and can therefore serve as a fast-running proxy for

making Bayesian decisions on the degree of representa-
TED
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formulation of interpolator.



ution) 

vioral 

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

ARTICLE IN PRESS
CAGEO : 1456

F. Hossain, E.N. Anagnostou / Computers & Geosciences ] (]]]]) ]]]–]]]8
UNCORREC

tiveness of sampled parameter sets. In almost all

previous GLUE applications reported in literature,

behavioral and non-behavioral parameter sets were

identified through the actual time-consuming execution

of the hydrologic model. This often resulted in a high

wastage of computational time where a large majority of

the runs were found to be non-behavioral (see Christaens

and Feyen, 2002, for example). In the simulation

framework we tested the accuracy of the interpolator

in modeling the parameter-output response surface for

GLUE and assessed its potential in reducing the

computational time due to the non-behavioral runs (that

are not detected a priori by uniform sampling in

GLUE).

From the specified parameter ranges (Table 1), a total

of 200,000 TOPMODEL parameter sets were sampled

and the respective hydrographs simulated. All sets had

an Efficiency index greater than 0.0 or a PR–RV Index

less than 100%. This large set of parameters now formed

the reference database for evaluation of the interpolator.

This ensemble was further divided into 50 sub-divisions

each containing 4000 parameter sets. Each set within the

sub-division had its corresponding ‘true’ model response

in terms of likelihood measures L (Efficiency Index and

PR–RV Index from Eqs. (4) and (5), respectively). These

true values were archived from actual execution of

TOPMODEL. We then evaluated the accuracy of the

interpolator within each of these 50 sub-divisions to

make generalizations on the mean and variability of its

performance of the interpolator as a fast-running proxy

to the model. We first present a confusion matrix (i.e., a

matrix where observed and simulated vectors are

presented in a matrix format) for sampled parameter

sets below to define the performance measures whose

description follows next (Note: ‘N’ in each quadrant

represents the number of samples; Behavioral (Non-

behavioral) refer to sets greater(less) than a threshold

performance measure.

Truth (from TOPMODEL exec

Behavioral     Non-beha

NA NB

NC ND

  P
re

di
ct

io
n 

(f
ro

m
 i

nt
er

po
la

to
r)

 N
on

-b
eh

av
io

ra
l  

 B
eh

av
io

ra
l

TED P
ROOF

To define the probability of interpolator to success-

fully predict whether a sampled parameter set is

behavioral or non-behavioral (based on a given threshold

for likelihood measure L) we define success ratio (SR) as,

SR ¼
NA

NA þ NB

: (9)

The SR indicates only a partial assessment of

sampling efficiency. There can be instances where the

interpolator is overly conservative in predicting a set as

behavioral and thereby achieve a spuriously very high or

very low SR over very small samples of model

executions. Specific instances where the SR may not be

a reliable indicator of efficiency is when the parameter

uncertainty domain is significantly under-represented.

Thus, another measure, Bias Score (BS, Eq. (10)) was

also defined. BS quantifies the propensity of the

interpolator to predict unsuccessfully the behavioral sets

as non-behavioral or missing regions of potential high

likelihood values of the response surface.

BS ¼
NA þ NB

NA þ NC

: (10)

A BS value of less than 1 would indicate that the

interpolator has a tendency to be conservative in

predicting correctly a sampled parameter set’s likelihood

value. A BS value greater than 1 would indicate the

interpolator’s propensity to predict samples as behavior-

al. An ideal interpolator should therefore have a BS of

near 1.0 and Success Ratio that is higher than that for

uniform sampling.

Performance of the interpolator was compared with

the fully uniform sampling of parameter sets using the

above two measures (Eqs. (9) and (10)). The Nearest-

Neighborhood (NN) search for interpolating parameter

sets’s likelihood value was also compared herein (here-

after called NN method). This type of sampling method

was first proposed by Beven and Binley (1992) to
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address the computational concerns of the GLUE

method. In the NN method, a sampled point in

parameter hyperspace is searched for the ‘n’ nearest

neighboring points in a model’s response surface that is

constructed from a finite number of sample points

( ¼ 1000 points in this study). The probable likelihood

value is then interpolated by the inverse squared

distance technique. We have considered 6 and 12

neighbors for the NN method. A point to note is that

the NN method requires a computationally intensive

sorting algorithm to rank all the distances from a

sampled point. The computing time for sorting increases

as N2 where N is the size of the pre-constructed model

points (Press et al., 1999). Hence a compromise is needed

with the size of the pre-constructed model points when

the dimension of the parameter hyperspace is high.
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6. Results and discussion

In Fig. 4 we show a comparison of SRs for the various

sampling schemes—interpolator, NN method and the

uniform sampling. The SR shown is the mean of the 50

subdivisions represented with one standard deviation of

variability in performance. The inverse of the standard

deviation is a measure of how consistent the sampling

scheme is in predicting correctly. In Tables 2a and b, we

also present the mean values (of 50 sub divisions) for BS

and the total confusion matrix values—NA, NB, NC and

ND, as a function of behavioral threshold for Efficiency

Index and PR–RV Index, respectively. These values are

presented for the interpolator and NN method only.

Joint assessment of SR with BS statistics leads us to the

following observations on the relative merits and
UNCORRE

Fig. 4. Success ratios (SRs) of sampling methods. Upper pa
TED P
ROOF

limitations of the interpolator sampling scheme with

respect to the NN method:

(1) The interpolator sampling scheme appears to

sample more efficiently for Efficiency Index likelihood

measure than the PR–RV Index likelihood measure

(Fig. 4). This may hint at the importance of careful

formulation of the likelihood measure for GLUE

sampling and potentially indicate a structural weakness

in the PR–RV Index to serve as a reliable likelihood

measure. However, the interpolator generally samples

more efficiently than the uniform sampling scheme

(note: some rare exceptions using the 2nd order

interpolator).

(2) For Efficiency Index, the 2nd order interpolator is

found to be more accurate in sampling than the 3rd

order interpolator (upper panels of Fig. 4 and Table 2a).

For PR–RV Index, it appears that the 3rd Order

interpolator is more accurate in sampling than the 2nd

order interpolator (lower panels of Fig. 4 and Table 2b).

At this stage, it is difficult to identify possible reasons

behind such an observation and detailed investigation is

necessary. Recent work by Field and Grigoriu (2004)

indicated that the order of the Hermite Polynomial

approximation bears a complex relationship to the

nature of the system being modeled. The Efficiency

Index based interpolator potentially reduces the total

computing time by uniform sampling for behavioral

parameter sampling by about 15—25% for the 8-

dimensional parameter hyperspace.

(3) Although the NN sampling method has the highest

Success Ratio (SR) of the three sampling methods, it

also has the highest variability (Fig. 4). This variability

(standard deviation), which is about 10–15 times higher
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nels—Efficiency Index; Lower panels—PR–RV Index.
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Table 2

(a) Mean Bias Scores (BS) and total confusion matrix numbers

for Efficiency Index likelihood measure

Behavioral

threshold

4efficiency

index

Bias score

BS

NA NB NC ND

Interpolator-2nd Order

0.00 0.367 66147 0 113943 0

0.10 1.274 222624 28624 17724 111456

0.20 2.150 12616 26313 5548 135613

0.30 2.297 8582 21237 4448 145823

0.40 2.304 5742 16890 4131 153327

0.50 2.558 3346 13907 3458 159379

Interpolator-3rd Order

0.00 0.506 91050 0 89040 0

0.10 2.065 18428 65155 21636 74879

0.20 4.107 7969 67389 10173 94554

0.30 5.089 4955 62128 8055 104956

0.40 5.911 3206 55766 6362 114469

0.50 7.461 1830 49482 5264 123814

Nearest neighborhood (NN)-6 neighbors

0.00 1.00 180090 0 0 0

0.10 0.76 16227 12151 20326 131386

0.20 0.23 2670 1290 14701 161429

0.30 0.07 251 133 12425 167281

0.40 0.03 10 10 9578 170492

0.50 0.01 3 4 9584 170499

Nearest neighborhood (NN)-12 neighbors

0.00 1.00 180090 0 0 0

0.10 0.80 16087 13325 20466 130212

0.20 0.45 4438 3233 12933 159486

0.30 0.16 1007 742 11669 166672

0.40 0.09 172 160 9416 170342

0.50 0.07 21 21 6554 1703485

(b) Mean Bias Scores (BS) and total confusion matrix numbers

for PR–RV Index likelihood measure

Interpolator-2nd Order

100 0.75 135382 0 44708 0

90 0.80 121884 11503 44165 2538

80 2.62 32284 99048 17969 30789

70 2.56 22110 106923 14246 36811

60 6.34 10957 115726 9108 44299

50 10.64 6076 118203 5673 50138

Interpolator-3rd Order

100 0.54 96756 0 83334 0

90 0.58 87494 8210 78493 5893

80 1.89 31474 63187 18770 66659

70 2.58 24569 69066 11788 74667

60 4.64 14249 78365 5813 81663

50 7.83 8944 82545 2808 85793

Nearest neighborhood (NN)-6 neighbors

100 1.00 180090 0 0 0

90 1.08 166105 13983 1 1

80 0.98 31503 17541 18712 112334

70 0.19 4979 1730 31366 142015

Table 2 (continued )

Behavioral

threshold

4efficiency

index

Bias score

BS

NA NB NC ND

60 0.05 416 109 19640 159925

50 0.01 10 6 11744 168330

Nearest neighborhood (NN)-12 neighbors

100 1.00 180090 0 0 0

90 1.08 166035 13913 71 71

80 0.99 31461 18174 18754 11701

70 0.34 8387 3981 27958 139764

60 0.13 1551 775 18505 159259

50 0.06 223 149 11531 168187

F. Hossain, E.N. Anagnostou / Computers & Geosciences ] (]]]]) ]]]–]]]10
TED P
ROOthan the interpolator’s SR, increases as a function of

behavioral threshold.

(4) NN sampling method has very low Bias Scores,

which decreases as the behavioral threshold criterion

increases (Tables 2a and b). This indicates the NN

method has a higher tendency to miss regions of high

likelihood values in the sampling than the interpolator.

The NN sampling scheme formulated herein is found to

be an ineffective global sampling tool. Another major

drawback is that the sorting algorithm in the NN scheme

increases the computational burden of sampling. For

example, after a total of 200,000 executions by the NN

sampling method, only 21 behavioral sets exceeding

Efficiency Index40.5 (Table 2a) were yielded. For the

2nd order interpolator the total number of behavioral

sets yielded was much larger (3346 sets, Table 2a) and

took insignificant computing time.

(5) Efficiency of the NN sampling method does not

appear very sensitive to the number of neighbors used in

the parameter search (Fig. 4 and Tables 2a, b). This is

expected as NN method samples on the principle of

inverse-squared distance interpolation which fails to

recognize the greater non-linearity in the parameter-

output response surface.

The assessment of the interpolator using SR and BS is

not a complete test of its eligibility to accelerate the

uniform parameter sampling for GLUE parameter. The

question as—does the interpolator alter the structural

properties of the GLUE uncertainty analyses?—requires

investigation. For this, we have chosen to examine the

dotty plots of parameters sampled by the interpolator

and compare them to the reference dotty plots by

uniform sampling. Dotty plots were first proposed by

Beven and Binley (1992) as a simple way to demonstrate

the parameter equifinality (non-uniqueness) of a model.

Against the likelihood value presented along the y-axis,

the scatter of the parameters along the x-axis is accepted

as a qualitative measure of parameter equifinality. If the
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dotty plots derived from uniform sampling are assumed

as the reference, then the parameters sampled as

behavioral by the pre-screening of the interpolator should

show similar scatter to represent consistent equifinality.

This is an important aspect to assess for any parameter

sampling scheme, which otherwise may render itself

unsuitable for GLUE analysis. Note that a parameter

set was always deemed behavioral only after an actual

TOPMODEL run. The sole purpose of the interpolator

is to filter out the potentially non-behavioral sets that

could otherwise increase computational time of model

execution. We show herein dotty plots pertaining to

5000 sampled parameter sets determined as behavioral

with the Efficiency Index likelihood measure 40.3 (Figs.

5a–c) and PR–RV Index o100% (Figs. 6a–c). By

comparing among the figures (‘a’ with ‘b’ and ‘c’), we

observe that the behavioral parameters sampled via the

interpolator represent, at least qualitatively, the same

degree of equifinality (non-uniqueness) as the reference

uniformly sampled dotty plots (Figs. 5a and 6a). The

interpolator imposes no specific regions of local attrac-

tion that causes a sampling pattern incompatible with

that by purely uniform (non-interpolator) random

sampling.

A more definitive test for preservation of equifinality

however, would be to consider all 28 (i.e., 8C2)

combinations of parameter covariations in lieu of the

one-to-one parameter dotty comparisons. Since this is a

large number of comparisons, we adopted an alter-

native, yet a definitive way nevertheless in our opinion,

of answering if the interpolator altered the uncertainty

structure of the model or not. In Fig. 7, we show a

GLUE analysis with 90% quantiles (confidence limits)

in discharge simulation uncertainty obtained from the

aforementioned 5000 behavioral parameter sets (Figs.

5a–c, 6a–c). The prediction quantiles produced by

uniform random sampling (leftmost panels, Fig. 7) are

assumed as the reference for comparison here. For both

likelihood measures (Efficiency Index—upper panel,

Fig. 7; PR–RV Index—lower panel, Fig. 7) we observe

negligible difference in the uncertainty estimation at the

90% confidence limits. A subsequently more rigorous

test for the preservation of the uncertainty structure in

simulation is then provided in Fig. 8. Here we compare

the exceedance probability (EP) against the width of

confidence limits from 10% quantile width (45% upper

and 55% lower) to 90% quantile width (5% upper and

95% lower). EP is defined as the number of times the

observed discharge is not enveloped by the confidence

limits normalized by the total number of time-step in

simulation. EP would typically decrease monotonically

with decreasing quantile width. A very close similarity of

the monotonic decrease in EP with increasing quantile

width is observed between the interpolator-GLUE

(middle and rightmost panels—Fig. 8) and uniform-

GLUE (leftmost panels—Fig. 8).
TED P
ROOF

7. Conclusion

A stochastic and non-linear interpolation based

parameter sampling scheme for uncertainty analyses of

hydrologic models was presented. The scheme was based

on the principles of the ‘Theory of Homogeneous

Chaos’. The sampling scheme was evaluated within the

generalised likelihood uncertainty estimation (GLUE;

Beven and Binley, 1992) methodology for uncertainty

analysis. Uncertainty in discharge prediction (model

output) was modeled through a Hermite polynomial

chaos approximation of normal random variables that

represented the model’s parameter (model input) un-

certainty. The unknown coefficients of the polynomial

were then calculated using limited number of model

simulation runs. The calibrated Hermite polynomial

(interpolator) was then used as a fast-running proxy to

the slower-running hydrologic model to predict the

degree of representativeness of a randomly sampled

model parameter set. An evaluation of the scheme’s

improvement in sampling was then made through

comparison with the fully uniform sampling (the norm

for GLUE) and the nearest-neighborhood sampling

technique using TOPMODEL over a medium-sized

watershed in Italy. A notable reduction of computa-

tional burden in the ranges of 15–25% was observed

even for a high dimensional parameter uncertainty. The

GLUE based on the proposed stochastic interpolation

sampling scheme preserved the essential features of the

uncertainty structure in discharge simulation. The

stochastic interpolator demonstrates potential to make

GLUE uncertainty estimation more efficient for models

where large number of parameters (44) are involved,

although further investigation is necessary to explore

this issue in detail. An additional advantage is that the

interpolator does not impose any additional structural or

distributional assumptions upon GLUE.

It is appropriate to note at this stage the limitations of

the Hermite polynomial approximation—which is the

basis for formulation of our proposed interpolator

scheme. Errors are inherent when the Hermite Poly-

nomial Chaos is approximated as a 2nd, 3rd or higher

order approximation (depending on the order of

approximation). These errors may or may not be

significant, depending on the application. In this study,

we have observed a complex relationship among the

efficiency of sampling, the order of approximation and

the formulation of the likelihood function. In any case,

it is wise to understand further and quantify the

consequences of the approximations before using the

scheme for other applications involving GLUE method

(see Field and Grigoriu, 2004 for a detailed assessment

on the limitations of the Hermite polynomial approx-

imations ).

Some of the natural extensions of this stochastic

interpolation based sampling scheme include: (i) appli-
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Fig. 5. (a) Dotty plots from uniform sampling with Efficiency Index as the likelihood measure. (b) Dotty plots from 2nd order

interpolator with Efficiency Index as likelihood measure. (c) Dotty plots from 3rd order interpolator with Efficiency Index as likelihood

measure.
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Fig. 6. (a) Dotty plots from uniform sampling with PR–RV Index as likelihood measure. (b) Dotty plots from 2nd order interpolator

with PR–RV Index as likelihood measure. (c) Dotty plots from 3rd order interpolator with PR–RV Index as likelihood measure.
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Fig. 7. The GLUE uncertainty estimation of discharge simulation at 90% quantile widths (confidence limits) for uniform random

sampling (leftmost panels) and interpolator (middle and right most panels). Upper panels represent GLUE for behavioral Efficiency

Index (40.3) while lower panels are from behavioral PR–RV index (o80%). Uncertainty estimation for each scenario was conducted

from corresponding set of 5000 sampled sets shown as dottyplots in Figs. 5a, b, c, 6a, b and c.

Fig. 8. Exceedance probability (EP) as a function of quantile width. Leftmost panels—uniform-GLUE; middle panels—interpolator-

GLUE (2nd order); rightmost panel—interpolator -GLUE (3rd order); upper panels—Efficiency Index (40.3); lower panels—PR–RV

Index as likelihood measure (o80%).
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cation of the interpolator to other physically-complex

models and hydrologic variables within the GLUE

framework; (ii) investigating the conditions or assump-

tions that give rise to a chaotic and non-chaotic behavior

in the hydrologic system and thereby attempt to connect

the relationship of the hydrologic variable to the

polynomial chaos expansions; and (iii) investigating

the effect of the dimensional size of the parameter

hyperspace on the sampling efficiency of the interpola-

tor. It has also been suggested that when the gradient

information of the parameters with respect to model

output is assimilated in the polynomial chaos expansion,

an increase in the prediction accuracy of the interpolator

can be expected (Isukapalli and Georgopoulos, 1999).

Another potential use of the stochastic interpolation

sampling scheme would be in applications to large-scale

land surface simulations where model parameters are

distributed as a matrix (2-D spatial domain) over

synoptic scales (in this study the parameters were a

vector). For such applications, further study is needed to

explore ways to mathematically reformulate the inter-

polator to handle such distributed parameters in spatial

format. Work is on-going on some of the above aspects

and we hope to report them in future.
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