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1.0 INTRODUCTION 

 Floods account for about 15 % of the total death toll related to natural disasters, 

wherein typically more than 10 million lives are either displaced or lost each year 

internationally (Hossain, 2006). Rainfall is the primary determinant of floods and its 

intimate interaction with the landform (i.e., topography, vegetation and channel network) 

magnified by highly wet antecedent conditions leads to catastrophic flooding in medium 

(i.e., 1000 ~ 5000 km2) and large (i.e., > 5000 km2) river basins. Furthermore, floods are 

more destructive over tropical river basins that lack adequate surface stations necessary 

for real-time rainfall monitoring – i.e., the ungauged river basins (Hossain and Katiyar, 

2006a) (see Figure 1, left panel). 

 However, flood prediction is becoming ever more challenging in these medium-

to-large river basins due to the systematic decline of in situ rainfall networks world-wide. 

The gradual erosion of these conventional rainfall data sources has lately been recognized 

as a major concern for advancing hydrologic monitoring, especially in basins that are 

ungauged or already sparsely instrumented (Stokstad, 1999; Shikhlomanov et al., 2002). 

As a collective response, the hydrologic community have recently established 

partnerships for the development of space-borne missions for cost-effective, yet global, 
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hydrologic measurements. The most pertinent example in the context of flood prediction 

is the Global Precipitation Measurement (GPM) mission for global monitoring of rainfall 

(Smith et al., 2007). Hence, there is no doubt that the hydrologic community as a whole 

will gradually become dependent on GPM for a substantial part of its rainfall data needs 

for hydrologic research and operational monitoring.  

 GPM now beckons hydrologists as an opportunity to improve flood prediction 

capability in ungauged basins. However, before the potential of GPM can be realized, 

there are a number of hydrologic issues that must be addressed. Our success in leveraging 

the GPM to improve flood prediction will depend largely on the recognition of these 

issues and the feedback provided by hydrologists on the assessment of satellite rainfall 

data to the satellite data producing community (Hossain and Lettenmaier, 2006). The 

purpose of this chapter is to articulate these hydrologic issues that require further research 

and highlight the recent progress made in understanding them in the hope that satellite 

rainfall data can be used in hydrologic models more effectively. 

 

2.0 OVERVIEW OF SATELLITE RAINFALL REMOTE SENSING 
AND GPM 

The heritage of GPM originated two decades ago when Infrared (IR) radiometers 

on geostationary satellites were launched to provide high resolution measurement 

(Griffith et al., 1978). While geostationary IR sensors have substantial advantages in that 

they provide essentially continuous observations, a major limitation is that the quantity 

being sensed, cloud top temperature, is not directly related to precipitation (Huffman et 

al., 2001).  Subsequently, space-borne passive microwave (PMW) radiometers evolved as 

a more dependable alternative (in terms of accuracy) a decade later. PMW sensors work 
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on the principle that naturally emitted radiation in the microwave frequencies greater than 

20 GHz is dictated by the composition of atmospheric hydrometeors. PMW sensors are 

considered more accurate under most conditions for precipitation estimation over land 

than their IR counterparts.  

In 1997, the Tropical Rainfall Measuring Mission (TRMM), the first space-borne 

active microwave (AMW) precipitation radar (TRMM-PR), was launched. Although 

radar generally is the most accurate remote sensing technique for precipitation estimation, 

radar technology is costly, and TRMM-PR has limited spatial coverage (at latitudes 

between about 35o S and 35o N) with a sampling frequency about once per day.  

Therefore, the constellation of PMW sensors continue to represent a compromise 

between IR sensors and TRMM-PR in terms of sampling frequency, accuracy, and global 

coverage. GPM is therefore being planned now as a global constellation of low earth 

orbiting satellites (some of them existing) carrying various PMW sensors (Smith et al., 

2007). It will essentially be an extension of the TRMM mission in space and time, which 

would provide near-global coverage of land areas, and would formally incorporate a 

means of combining precipitation radar with PMW sensors to maximize sampling and 

retrieval accuracy.  The GPM Core satellite will be similar in concept to the TRMM 

satellite, and will house precipitation radar of improved accuracy as well as a PMW 

sensor (Figure 1, right panel). Through this configuration, GPM aims to provide coherent 

global precipitation products with temporal resolution ranging from 3 to 6 hours and 

spatial resolution in the range 25-100 km2 (Smith et al., 2007; see also 

http://gpm.gsfc.nasa.gov). 

 3

http://gpm.gsfc.nasa.gov/


 A major benefit offered by the GPM program would be the increased availability 

of microwave rainfall data that will be cooperatively provided from multiple platforms by 

several independent programs at a high temporal resolution (~3 hours). It must however 

be noted by the hydrologist that, the microwave overpasses yield only instantaneous 

rainfall estimates rather than accumulated rainfall totals that are typically used as input in 

hydrologic models. Caution and thoughtful preprocessing are needed before investigating 

the usefulness of satellite rainfall data for flood prediction (discussed in detail later). 

Furthermore, hydrologists need to be cognizant of the current availability of a large 

number of ‘combined’ satellite algorithms that function on the basis of both geostationary 

IR and PMW data. It is currently not known what role IR-based algorithms, if any, will 

continue to play for flood prediction during the GPM-era as the frequency of the more 

accurate PMW data increases many folds. Promising newer algorithms that combine the 

IR data more intelligently and yet manage to retain the strength of PMW algorithms 

should be kept in the hydrologist’s shortlist of potential input data sources over ungauged 

basins (Joyce et al., 2004).  

3.0 CURRENT KNOWLEDGE GAPS ON SATELLITE-BASED 
FLOOD PREDICTION 

 

3.1 THE PROCESS-BASED KNOWLEDGE GAP 
 Understanding the current knowledge gaps on satellite based flood prediction is 

critical to successful application of satellite rainfall data over regions lacking access to a 

conventional rainfall data source. The central theme on the current knowledge gap deals 

with the hydrologic implications of uncertainty of the satellite rainfall estimates. This 

satellite estimation uncertainty manifests as a result of the mismatches in the 
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identification of rainy and non-rainy areas by the satellite algorithm, while considerable 

hydrologic implication exists for this uncertainty due to the spatial scaling properties of 

the river basin (Wood et al., 1990). The focus of this chapter is however, mostly on the 

former issue (i.e., satellite rainfall uncertainty) in an independent manner, even though 

we recognize that the basin scaling properties would play a definitive role in dictating the 

optimal use of satellite rainfall data for flood prediction.  

 Although there are several sources of uncertainty that complicate our 

understanding of flood prediction accuracy (see for example, Georgakakos et al., 2004), 

the principal source of uncertainty is, undoubtedly, rainfall (Kavetski et al., 2006a, 

2006b; Hossain et al., 2004a, 2004b; Krzyzstofowicz, 1999, 2001). In a recent study, 

Syed et al. (2004) corroborated this further by demonstrating that 70%-80% of the 

variability observed in the terrestrial hydrologic cycle is, in fact, attributed to rainfall. For 

the case of satellite rainfall estimation, this uncertainty can lead to unacceptably large 

uncertainties in runoff simulation (Nijssen and Lettenmaier, 2004). Thus, if satellite 

rainfall data are to be critically assessed of the opportunities they possess for river flood 

prediction over large ungauged basins, it is important that we first understand the error 

propagation that is associated with satellite-estimated rainfall.  

 An error propagation of satellite rainfall estimates for flood prediction 

applications requires the derivation of the probability distribution of simulated stream 

flow involving the following three components: (1) a probabilistically formulated satellite 

rainfall model that can simulate realistic and equi-probable random traces of satellite-like 

rainfall estimates; (2) a deterministic or probabilistic hydrologic model for the rainfall-

runoff transformation to floods; and (3) a Monte Carlo (MC) framework linking (1) and 
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(2). The fully random MC sampling can be currently considered the most preferred 

method for such uncertainty analysis due to ever-increasing computing power (Hossain et 

al., 2004c). Other reasons for the widespread preference of MC techniques are their lack 

of restrictive assumptions and completeness in sampling the error structure of the random 

variables (Beven and Freer, 2001; Kremer, 1983).  

 However, the traditional MC approach to modeling stream-flow error propagation 

exhibits limited physical insight of the role played by each hydrologic process control 

comprising the flood phenomenon. This is because the hydrologic model in a typical MC 

uncertainty assessment would be applied as a black-box unit for transforming the rainfall 

to runoff. While the more sophisticated physically-based and fully distributed hydrologic 

models are capable of simulating the individual water cycle components in the continuum 

of space and time, the problem of identifying the make up of streamflow as a function of 

various runoff components nevertheless persists. The derived runoff error distribution is 

thus consequently marginal, regardless of the type of hydrologic model use (conceptual-

lumped or physically-based and distributed) because of its functional integration over the 

major hydrologic processes on the land surface. This distribution can not be isolated into 

components that can be linked directly to the individual hydrologic process controls or 

the nature of its physical representation (such as, infiltration, base flow, evaporation, 

etc.). To the best of our knowledge, there has not been any successful attempt to relate 

the marginal distribution of streamflow simulation error to these individual process 

controls. Existing literature provides little indication of a coherent agenda to explore the 

role of hydrologic process controls in the context of advancing satellite-based flood 

prediction over un-gauged river basins.  
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 But how exactly does the study of flood prediction uncertainty as a function of 

hydrologic process controls and satellite rainfall estimation error help in serving the 

greater scientific agenda of protecting mankind from the flooding hazard? For any given 

river basin, flood prediction needs are unique (e.g., one may be interested in stream-flow 

prediction at the basin outlet or distributed simulation of water levels for the entire river 

network). A hydrologist is faced with a wide variety of geology, soils, initial wetness, 

vegetation, land use and topographic characteristics that affect the relationship between 

rainfall and runoff in the most unique ways. This relationship consequently affects the 

relationship between rainfall estimation error and runoff simulation error. While detailed 

information on the land surface may not always be available, especially for ungauged 

basins, approximate characteristics such as dominant overland flow mechanism 

(saturation excess vs. infiltration excess), extent of evapotranspiration (low vs. high 

vegetation), flow regime in channels (low-mild vs. steep channel slopes) are reasonable 

to be known a priori. Thus, if the role played by each hydrologic process control in 

transforming the rainfall estimation error to stream-flow error could be understood, then, 

ideally, one would be better poised to wisely select a hydrologic model with 

“commensurate” process representation that yields “acceptable” error propagation. These 

would allow the hydrologist to make an informed decision on his choice for a hydrologic 

model for flood mitigation purposes in an ungauged basin on the basis of the quality of 

satellite rainfall data available to him. 

3.2 THE SCALE-BASED KNOWLEDGE GAP 
 Another knowledge gap that we must recognize in the context of flood prediction 

is the complexity of the error structure of satellite rainfall data. Unlike radar rainfall 
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estimation, where after careful quality control and error adjustments, the residual error is 

associated primarily with a random component that usually has modest space-time 

correlation, satellite precipitation retrieval uncertainty is associated with correlated 

rain/no-rain detection and false alarm error characteristics as well as systematic and 

random rain rate error components with non-negligible spatio-temporal correlation 

lengths. Hossain and Anagnostou (2006a) have recently demonstrated the complex nature 

of this satellite error structure using a ground validation site over the Oklahoma Mesonet 

region. Furthermore, different satellite rainfall algorithms would have different error 

characteristics, while the combined multi-sensor algorithms may be expected to have a 

more complex error structure depending on the type of calibration data used in the 

making. Nonetheless, most attempts to characterize errors in satellite precipitation 

retrievals to date portray the error structure using metrics that can be argued as overly 

simplistic, and ultimately misleading relative to the hydrologic potential of GPM.  For 

instance, error metrics limited to ‘bias’ and ‘random error’ parameters have been used to 

define the minimum success criteria of GPM and other community efforts like the Pilot 

Evaluation of High Resolution Precipitation Products (PEHRP, Turk et al., 2006). For 

flood prediction, these metrics are probably not adequate, even though they may serve a 

very useful purpose at meteorological scales. The desire for progression to finer (spatial) 

scales in satellite precipitation estimation is in fact counter-balanced by increasing 

dimensionality of the retrieval error, which has a consequently complex effect on the 

propagation through land surface-atmosphere interaction simulations.  This in turn has 

tremendous implications for the spatial and temporal scales at which hydrologic models 

can reasonably be implemented, or rather, the scale at which optimal data use is feasible. 
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 As an example, consider the dynamic process of vertical soil moisture transport. 

The water flux in soil is governed by the cumulative effect of infiltration, runoff, gradient 

diffusion, gravity, and soil water extraction through roots for canopy transpiration. All 

these processes exhibit dynamic variability in the ranges of minutes to hours over scales 

of cm2 to km2. However, satellite precipitation algorithms of today cannot hope to resolve 

these resolutions. It is even doubtful if the future space-borne precipitation remote 

sensing can independently deliver the rainfall data at the resolution where surface 

hydrology is dominant, which is at considerably smaller space-time scales than the 

typically coarser meteorologic scale at which satellite data is produced. As a minimum, 

there is a need to understand the spatial resolution to which satellite products can 

realistically be disaggregated (see Margulis and Entekhabi, 2001 and Venugopal et al., 

1999 for example) and to estimate the resulting error structure, and its interaction with 

hydrologic models which produce flood forecasts.  The scale incongruity between 

meteorological process data and its hydrologic application represents a competing trade 

off between lowering the satellite retrieval error versus modeling land-vegetation-

atmosphere processes at the finest scale possible.  While much remains to be done to 

define these trade-offs towards optimal use of satellite rainfall data in hydrologic models, 

it may well not be possible to implement GPM products at scales as fine as those cited 

above (e.g., 5 km), and that the 25-100 km resolutions suggested by Smith et al (2004) 

may perhaps be more realistic and reliable for the hydrologist for flood prediction.  

 A major problem encountered in application of satellite rainfall data is that the 

frequency of complex mis-matches (with the ground-truth) increases as the satellite 

rainfall data is progressively reduced in scale (as alluded earlier in section 3.1). We can 
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demonstrate this phenomenon through an example on the detection performance of two 

types of satellite rainfall types. Figure 2 demonstrates typical detection capabilities for 

rain and no-rain for two different sensors (PMW – left panel; IR-right panel) using the 

most accurate space-borne rainfall data derived from the TRMM Precipitation Radar 

(PR) as ‘ground-truth’ (data product name 2A25). The presence of definitive spatial 

structures of detection of rain and no-rain as a function of sensor-type is clearly evident. 

This detection capability is also known to be strongly influenced by scale and rainfall 

rates (Hossain and Anagnostou, 2006).  

 The success in resolving the scale incongruity to a level practically feasible for 

flood prediction will therefore rest on the feedback between hydrologists and 

meteorologists (the typical algorithm and data producers). Even though the efforts at 

addressing hydrologic prediction uncertainty (Beven and Binley, 1992) are probably as 

mature as the efforts to characterize uncertainty of remote sensing of rainfall (North and 

Nakamoto, 1989), both efforts have evolved independently. This lack of feedback can be 

attributed to the absence of proper metrics and frameworks that are interpretable by both 

end-user hydrologists and producer meteorologists. Two satellite rainfall algorithms with 

similar bias and root mean squared error (RMSE) can have much different error 

propagation properties when used in hydrologic models (Lee et al., 2004). Thus 

hydrologists today are therefore left with inadequate metrics to identify optimal data use 

and thereby communicate to the data producers on the desired minimum criteria for a 

satellite mission to be effective in flood prediction at pertinent scales and geographic 

location.  
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4.0 MODELING SATELLITE RAINFALL ERROR COMPLEXITY 

Current satellite error models target mostly PMW sensor retrievals focusing 

primarily on the sampling uncertainty due to the low frequency of satellite overpasses 

(for a detailed review see Astin, 1997; Steiner et al. 1996; Bell, 1987; Bell et al., 1990; 

Steiner et al., 2003; Gebremichael and Krajewski, 2004). Recently, Hossain and 

Anagnostou (2004a,b) have provided evidence that a detailed decomposition of the 

satellite rainfall error structure with explicit formalization of the uncertainty in rainy/non-

rainy area delineation can contribute to improving our understanding of the implications 

of satellite estimation error on land surface simulation parameters for fine-scale 

hydrological processes (such as floods and soil moisture dynamics). There are also other 

notable models formulated recently to characterize the error structure of satellite rainfall 

data that may be of interest to the hydrologist to advance satellite based flood prediction 

(Bellerby and Sun, 2005; Teo, 2006). 

4.1 A TWO DIMENSIONAL SATELLITE RAINFALL ERROR MODEL 
 (SREM2D) 

Motivated by the current state of the art in error modeling and the challenges 

faced by the need for high-resolution satellite rainfall data in hydrology, a mathematical 

formalization of a space-time error model, named SREM2D, was recently developed by 

Hossain and Anagnostou (2006a). SREM2D had the following design objectives in mind 

during its conceptualization: (1) It should function as a filter wherein the hydrological 

implications of fine-scale components of the satellite precipitation error structure can be 

explicitly determined by coupling it with a hydrological/land surface model; Thus, 

SREM2D-based experiments should provide the much needed focus to meteorologists for 

the development of next-generation of satellite rainfall products with enhanced societal 
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applications; These experiments should also help hydrologist identify the optimality 

criterion for using a given satellite rainfall dataset in a hydrologic model; (2) It should be 

modular in design with the capability to allow uncertainty assessment of any satellite 

rainfall algorithm; (3) It should be conceptualized in an algorithmic fashion so that it is 

easy to code numerically by a user wishing to make use of the model for his/her own 

scientific agenda. SREM2D uses as input “reference” rain fields of higher accuracy and 

resolution representing the “true” surface rainfall process, and stochastic space-time 

formulations to characterize the multi-dimensional error structure of satellite retrieval.  

The algorithmic approach of SREM2D is aimed at generating realistic ensembles of 

satellite rain fields from the most definitive “reference” rain fields that would preserve 

the estimation error characteristics at various scales of aggregation. By propagating the 

simulated ensembles in a hydrologic model, SREM2D would therefore allow the 

understanding of the implications of satellite rainfall error structure and scale complexity 

on streamflow simulation. 

The major dimensions of error structure in satellite estimation modeled by 

SREM2D are (1) the joint probability of successful delineation of rainy and non-rainy 

areas accounting for a spatial structure; (2) the temporal dynamics of the conditional 

rainfall estimation bias (rain > 0 unit); and (3) the spatial structure of the conditional (rain 

> 0 unit) random deviation. The spatial structure in SREM2D is modeled as spatially 

correlated Gaussian random fields while the temporal pattern of the systematic deviation 

is modeled using a lag-one autoregressive process. The spatial structures for rain and no-

rain joint detection probabilities are modeled using Bernoulli trials of the uniform 

distribution with a correlated structure. This correlation structure is generated from 
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Gaussian random fields transformed to the uniform distribution random variables via an 

error function transformation. There are nine error parameters in total. Complete details 

on SREM2D can be found in Hossain and Anagnostou (2006a).  

 

5.0  CURRENT PROGRESS ON CLOSING THE KNOWLEDGE GAP 
 

5.1 ON SCALE BASED KNOWLEDGE GAP 
Comparison of SREM2D-simulated satellite rainfall with actual satellite rainfall 

data produced by NASA (IR-3B41RT; Huffman et al., 2003) has shown that a complex 

and multi-dimensional error modeling technique (such as SREM2D) can preserve the 

estimation error characteristics across scales with marginal deviations. Upon comparison 

with less complex and commonly applied error modeling strategies, it was also shown 

that these (simpler) approaches typically underestimated sensor retrieval error standard 

deviation by more than 100% upon aggregation, which, for SREM2D, was found to be 

below 30% (Hossain and Anagnostou, 2006a). More recent studies have further 

demonstrated that understanding of the hydrologic implications of satellite-rainfall data 

overland can be significantly improved through the use of SREM2D in a hydrologic error 

propagation framework. This is a promising finding as it would allow a more reliable 

investigation of the optimality criterion for using satellite rainfall data in hydrologic 

models. Two aspects were examined in detail: (1) soil moisture dynamics and (2) 

ensemble rainfall data generation. For understanding the impact of satellite rainfall 

uncertainty on soil moisture dynamics, the Common Land Model (CLM; Dai et al., 2003) 

was coupled with SREM2D to propagate ensembles of simulated satellite rain fields for 

the prediction of soil moisture at 5 cm depth region. It was observed that SREM2D 
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captured the spatiotemporal characteristics of soil moisture uncertainty with higher 

consistency than a simpler bi-dimensional error modeling strategy (Figure 3, upper 

panels; Hossain and Anagnostou, 2005b). In a subsequent follow-up study, further 

insights were revealed from the pursuit of the scientific query: Can a multidimensional 

satellite rainfall error model perform realistic ensemble generation of satellite rainfall 

data of improved accuracy for a satellite retrieval technique? Using as reference, ground 

radar (WSR-88D) rainfall fields, the scale-dependent multidimensional error structure for 

satellite rainfall algorithms was determined. Next, by reversing the definition of reference 

and corrupted rain fields produced by SREM2D, the inverse multidimensional error 

structure of WSR-88D rainfall fields with respect to the satellite rainfall data was 

identified. SREM2D was then run in the inverse mode to generate reference-like 

realizations of rainfall. The accuracy of inverse-SREM2D rainfall ensemble was 

observed to be consistently higher than the simpler inverse error-modeling scheme for the 

IR-3B41RT product (Figure 3, lower panels).  

Because most attempts to characterize errors in satellite precipitation retrievals to 

date portray the error structure of satellite rainfall estimates using metrics that are overly 

simplistic, and ultimately misleading relative to the true hydrologic potential of satellite 

rainfall data, a complex and multi-dimensional error modeling strategy that is compatible 

with the dynamic nature of land surface hydrologic processes is needed to advance 

optimal data use in hydrologic models.  

5.2 ON PROCESS BASED KNOWLEDGE GAP 

 
 5.2.1 Use of a Modular Hydrologic Modeling Platform 
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In order to understand the implication of satellite rainfall error on hydrologic 

processes, we recently developed an open-book watershed model (Figure 4). The design 

was modular wherein specific hydrologic processes could be conveniently altered or 

added to make a process-based understanding of satellite rainfall error propagation (as 

discussed in Section 3.1). A square-grid volume domain was used where the individual 

processes of overland flow and infiltration to the subsurface were linked to simulate the 

response of the unsaturated zone to rainfall (Figure 1). In the open-book model, the 

generated surface and subsurface runoff were calculated at each time-step from 

knowledge of the time-varying infiltration (or recharge to the soil) and by keeping track 

of the soil water storage for each grid volume at every timestep. The overland flow was 

then routed along the direction of steepest gradient for each grid surface until it laterally 

drains into the main channel. The streamflow was modeled as a 1-D kinematic flow using 

Manning’s equation. Evapo-transpiration and 2-D saturated zone flow were assumed 

insignificant in our conceptualizations as our goal was to focus primarily on streamflow 

simulation at the timescales of flooding where the surface and the unsaturated zones are 

considered hydrologically the most dynamic regions. A point to note herein is that the 

‘Depth to bedrock’ shown in Figure 4 is basically the depth of the effective soil column. 

Complete details on the open-book watershed model can be found in Katiyar and Hossain 

(2006). 

5.2.2 The Hydrologic Process Conceptualizations 

 To understand the role played by specific hydrologic process control 

conceptualization, three types of rainfall-runoff conceptualizations were considered for 

computing excess rainfall over a grid volume (see Figure 5). These conceptualizations 
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were: (1) A simple statistical parameterization to compute excess rainfall; (2) A linear 

storage-discharge conceptualization for surface and subsurface runoff generation; (3) A 

non-linear storage-discharge conceptualization for surface and subsurface runoff 

generation. The overland and river flow components of the model remained the same. 

These process conceptualizations employed basically a mass-balance approach and are 

presented briefly as follows.  

 For the statistical model,  the precipitation p(t) was partitioned into infiltration to 

the soil water store as ap(t), and surface runoff (quickflow/overland flow) as (1-a)p(t). 

The subsurface flow draining from the grid volume’s soil water store is assumed 

insignificant (at flooding timescales) and the soil water storage is updated at each time-

step on the basis of the recharge only. When it equaled the maximum storage capacity of 

Sb (computed as Dφ; D= depth of effective soil column and φ is porosity), all 

precipitation was consequently transformed as surface runoff with no recharge.  

 For the linear storage-discharge conceptualization, the following water balance 

equation was used for each grid volume, 

)()()()( tqtqtp
dt

tds
ssse −−=       (1) 

where, s(t) is the soil water storage, p(t) is the precipitation, qse(t) is the overland 

saturation-excess flow and qss(t) is the sub-surface flow at time t. The qss(t) and qse(t) 

were computed as follows, 
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qss= 0   if s(t) < Sf    (2b) 
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where, Sf is the soil moisture storage at field capacity (defined by the soil type) and tc is 

the grid response time to subsurface flow. tc is approximated from Darcy’s law assuming 

a triangular groundwater aquifer and hydraulic gradient approximated by ground slope.  

β
φ
tan2 s

c K
Lt =       (2c) 

 Herein, L is the grid size, Ks the saturated hydraulic conductivity and β is the grid 

slope. The sub-surface flow draining out from each grid volume is not routed within the 

soil medium for the same reason that it would comprise an insignificant component of the 

total flood volume. However, this model conceptualization represented a complexity 

level higher than the previous statistical parameterization because of the use of mass 

balance equation and physically-based watershed parameters to identify the saturation 

excess runoff. The overland saturation excess flow qse(t) was computed as follows, 

t
Sts

q b
se ∆

−
=

)(
 if s(t) > Sb    (3a) 

qse= 0    if s(t) < Sb    (3b) 

where Sb is the soil’s storage capacity computed as Dφ (D= effective soil column depth 

and φ is porosity). 

Finally, for the non-linear storage-discharge conceptualization, the subsurface 

runoff in the linear model was reformulated as follows, 
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Here, parameters ‘b’ defines the degree of non-linearity in the storage-discharge 

relationship, while ‘a’ replaces tc in Equation 2a. Figure 6 summarizes all three process 

conceptualizations to showcase the gradual increase in model complexity. 
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 5.2.3 The Error Propagation Framework  

 SREM2D was coupled to the open-book models to understand the response of 

satellite rainfall error to spatial scaling on river flow prediction uncertainty. We used, as 

our reference, quality-controlled ground radar (WSR-88D) rainfall data over the 

Oklahoma Mesonet region. Satellite rainfall error parameters were derived for satellite 

rainfall algorithm (3B41RT) that is produced by NASA (Huffman et al., 2003) on a real-

time basis. SREM2D was then used to corrupt radar rainfall fields in a space-time 

framework to simulate satellite-like rain estimates. The satellite rainfall error propagation 

in streamflow prediction was assessed in a MC framework for the three model types 

across two spatial scales of aggregations - 0.25 degree and 0.50 degree. The 15 MC 

realizations of SREM2D generated rainfields that were propagated through each open-

book model conceptualization yielded corresponding uncertainty limits in streamflow 

simulation. 

 Two contrasting issues were considered in the error propagation. If either the 

uncertainty limits were predicted too narrowly or the whole ensemble envelope is biased 

(i.e., the reference streamflow is consistently outside the prediction error bounds), then a 

comparison with in-situ/reference measurements would suggest that the combined 

rainfall-model complexity structure was invalid for the satellite rainfall error. If, on the 

other hand they were predicted too widely, then it could be concluded that the hydrologic 

modeling structure had little predictive capability. The dichotomous nature of ‘structural 

validity’ and ‘predictive ability’ was quantified by the Exceedance Probability (EP 

Equation 5) and Uncertainty Ratio (UR Equation 6), respectively, as follows:  

 timestepsofnumber  Total
limitsy  uncertaint  theexceeds streamflow  reference  timesofNumber 

=EP  (7) 
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Volume Runoff Observed
limits)y uncertaint(beween  simulation  volumerunoffin y Uncertaint

=UR   (8) 

 

 Table 1 summarizes the findings of the error propagation experiment as a function 

of scale and hydrologic process conceptualizations. The global picture that emerges from 

this table can summarized as follows:  

(1) statistical parameterization for excess rainfall results in increased sensitivity of 

satellite rainfall error to streamflow prediction uncertainty; this sensitivity, however, 

responds favorably to scaling towards improving the model’s structural validity at larger 

scales of aggregation;  

(2) inclusion of a linear/non-linear reservoir for subsurface flow representation 

visibly smoothens the hydrologic simulations and reduces the runoff simulation 

uncertainty;  

(3) insignificant beneficial impact is observed through the inclusion of non-

linearity in the storage-discharge relationship and it may so be that the scale of 

application is already so large that satellite rainfall error is insensitive to any further 

increase in process complexity; 

(4) there is strong indication that hydrologic process complexity plays a definitive 

role in accurately capturing streamflow variability on the basis of model driven by 

downscaled satellite input data . 

 While the findings represented a useful first step, our study has limitations like 

any other investigation. Hence, it is important to extend the investigation involving a 

wider range of research objectives and more complex hydrologic process representation. 

Examples of extension could be: (1) repeat the investigation using real-world watersheds 
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in a range of climatic conditions, distributed hydrologic models and elevation data and 

thereby understand the utility of the open-book approach as a physically consistent proxy 

for investigating optimality criteria; (2) increase the complexity of the hydrologic 

processes through more physically-based process equations (i.e., Richards equation or 

Green and Ampt for infiltration; energy-balance method for representation of evapo-

transpiration etc.); and finally, (3) explore scaling behavior at finer space-time resolutions 

(< 0.25 degree and < 1 hourly). Currently the Land Information System of NASA (LIS) 

provides the hydrologic state of the land at 0.5 hour 1 X 1 km2 resolution using satellite 

datasets that are subsequently ingested for numerous societal applications such as 

weather prediction, agricultural planning, army operations etc (Kumar et al., 2006). We 

hope that extension of our work along these directions can consequently help us achieve a 

firmer understanding of the optimality criteria for use of remotely-sensed rainfall data 

from space-borne platforms in hydrologic models. 

6.0 CONCLUDING REMARKS 
 For advancing the use of satellite rainfall data for flood prediction, there are 

basically two major issues related to rainfall data uncertainty that hydrologists need to 

recognize in the context of flood prediction– i) the role played by hydrologic process 

controls; and ii) the role played by scale. We have highlighted the progress made by us 

on the understanding of these two issues. Much work remains to be done towards a more 

complete understanding on optimal use of satellite rainfall data in hydrologic models. It is 

however, equally important to initiate the work in anticipation of a successful leveraging 

of GPM. We have argued in this chapter, as has bee argued previously by others, that 

unless there is a shift in paradigm, the conventional assessment frameworks and metrics 
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for estimation of rainfall from satellite sensors will probably remain inadequate for 

hydrologic purposes such as flood prediction. We also argued that greater emphasis must 

be placed on development of hydrologically relevant precipitation estimation algorithms, 

and that this will require involvement of a broader cross-section of the hydrologic 

community. We therefore hope that identification of these key issues, as discussed in this 

chapter, will usher a new era for hydrologists working on optimal use of satellite rainfall 

data in anticipation of GPM. 

 We would like to close this chapter with a candid discussion of the limitations and 

disclaimers associated with our study that readers should be aware of. For example, while 

we have predominantly focused on floods, the choice of appropriate error metrics would 

most probably be dictated by the flood type (high/extreme floods versus low/frequent 

floods). Furthermore, the hydrologic implication of satellite rainfall error would be 

strongly influenced by the hydrologic variable (or predictand) in question. Again, this 

chapter focused on floods, while soil moisture, which plays a critical role in partitioning 

of rainfall into runoff, would not have the same implication as streamflow. The reader is 

referred to the work of Hossain and Anagnostou (2005a, 2005b) where a detailed 

investigation has been carried out for soil moisture. 
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Table 3. UR and EP values as a function of spatial scale and process conceptualization. 

0.25 degree 0.50 degree 

UR EP UR EP 

Statistical Model 

0.588 0.607 0.670 0.3064 

% Change upon aggregation to 0.5 degree +14.0 % - 40.0% 

Linear Model 

0.492 0.514 0.594 0.450 

% Change upon aggregation to 0.5 degree +20% -12.5% 

Non-Linear Model 

0.561 0.557 0.668 0.476 

% Change upon aggregation to 0.5 degree +19% -14.5% 
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Figure 1. Left panel – global distribution of in-situ rainfall gages showing the sparse and unevenness in 
the underdeveloped world (source: http://www.cpc.noaa.gov). Right Panel - Constellation of GPM 
satellites. The larger satellite on the left represents the core with a radar on board, while the rest carry 
polar orbiting PMW sensors (source: http://gpm.gsfc.nasa.gov).  
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Figure 2.  Successful and unsuccessful rain and no-rain detection by MW and IR sensors 
referenced with TRMM-PR observations. [Taken from Hossain and Anagnostou – 2006a; 
Reprinted with kind permission from Institute of Electrical and Electronics Engineering 
Transactions in Geosciences and Remote Sensing]. 
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Figure 3. Hydrologic implications of using a multidimensional satellite rainfall error 

modeling strategy such as SREM2D.  
 
Upper panels:  Temporal correlogram of error field for near surface (5 cm) soil moisture 

simulated by CLM driven by simulated satellite rainfall data based on two error modeling 
schemes—SREM2D (left panel) and SIMP (right panel). The solid line represents the true 
soil moisture error dynamics on the basis of actual IR-3B41RT data. The dashed line 
represents the range of soil moisture error dynamics based on simulation by error model. 
SIMP represents the commonly used error modeling strategy in literature based on simple 
error statistics (From Hossain and Anagnostou, 2005b; Reprinted with kind permission from 
American Geophysical Union) 

Lower panels:  Ensemble envelopes (i.e. uncertainty range) of satellite-retrieved 
cumulative hyetographs (dotted lines) for two error-modeling schemes—SREM2D (left 
panel) and SIMP (right panel). Solid line represents “true” rainfall cumulative hyetograph 
from WSR-88D estimates, while the dashed line is the rainfall cumulative hyetograph from 
actual IR-3B41RT data.  (From Hossain and Anagnostou, 2006b; Reprinted with kind 
permission from the Institution of Electrical and Electronic Engineers) 
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Figure 4. Geometric representation of the open-book watershed topography. Here, the 
depth to bedrock basically refers to the assumed depth of the effective soil column. 
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Figure 5. Overland flow routing from excess rainfall over pixels/zones. 
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Increasing level of process complexity in rainfall-runoff transformation 
 

 

Figure 6. The three rainfall-runoff process conceptualizations in the order of increasing 
complexity from left to right. The process difference is shown along with the model 
name. 
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