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Providing error information associated with existing satellite precipitation estimates is crucial to
advancing applications in hydrologic modeling. In this study, we present a method of estimating
the square difference prediction of satellite precipitation (hereafter used synonymouslywith “error
variance”) using regressionmodel for three satellite precipitation products (3B42RT, CMORPH, and
PERSIANN-CCS) using easily available geophysical features and satellite precipitation rate. Building
on a suite of recent studies that have developed the error variance models, the goal of this work
is to explore how well the method works around the world in diverse geophysical settings.
Topography, climate, and seasons are considered as the governing factors to segregate the satellite
precipitation uncertainty and fit a nonlinear regression equation as a function of satellite
precipitation rate. The error variance models were tested on USA, Asia, Middle East, and
Mediterranean region. Rain-gauge based precipitation product was used to validate the error
variance of satellite precipitation products. The regression approach yieldedgoodperformance skill
with high correlation between simulated and observed error variances. The correlation ranged
from 0.46 to 0.98 during the independent validation period. In most cases (~85% of the scenarios),
the correlation was higher than 0.72. The error variance models also captured the spatial
distribution of observed error variance adequately for all study regions while producing unbiased
residual error. The approach is promising for regions where missed precipitation is not a common
occurrence in satellite precipitation estimation. Our study attests that transferability of model
estimators (which help to estimate the error variance) from one region to another is practically
possible by leveraging the similarity in geophysical features. Therefore, the quantitative picture of
satellite precipitation error over ungauged regions can be discerned even in the absence of ground
truth data.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Over the past two and half decades, remote sensing based
precipitation estimates have experienced tremendous progress
in providing the world a cost-effective and reliable ways of
measuring precipitation from space (Adler et al., 2003; Huffman
et al., 2001; Joyce et al., 2004; Kuligowski, 2002; Kidd et al.,
2003; Miller et al., 2001; Sorooshian et al., 2000; Xie et al.,
2007). As compared to ground observation system, satellite
giorgis).
precipitation measurement technique, by far, is more effective
to address the spatial and temporal variability of precipitation
over the vast ungauged regions of the earth surface. It avoids
the hurdle of geo-political boundaries issues; it covers both
the terrestrial and water bodies of the earth; it provides a
continuous (uninterrupted) observation irrespective of time
(day/night), terrain and weather condition on the ground; it
evades high operational cost of in-situ networks; and it delivers
information on a near real-time basis.

Despite the obvious, the presence of non-negligible error
(hereafter used synonymously with ‘uncertainty’) in satellite
precipitation estimation presents a hurdle to fully implement
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the product for wide ranges of hydrologic applications (Pan
et al., 2010). Since it is an essential prerequisite for hydrologic
applications, assessing the uncertainty of satellite precipitation
estimate has become important over the last few years. It is
important to understand the nature and quantify themagnitude
of this uncertainty in order for users to apply the a priori
knowledge to scientific research and practical applications.
There are many publicly available high resolution satellite
precipitation products (Huffman et al., 2007; Joyce et al., 2004;
Sorooshian et al., 2000) available at a global scale which are
potentially helpful for many scientific investigations and appli-
cations (Wu et al., 2012; Su et al., 2011; Pan et al., 2010; Shrestha
et al., 2008; Su et al., 2008; Artan et al., 2007; Hong et al., 2006;
among others). However, the question that remains is: ‘to
what level do the end users have the knowledge about the error
information associated to these satellite precipitation products?’

The advantage of knowing error information canbe valuable
from two perspectives: 1) from data producers or algorithm
developers to improve data quality; and 2) from data users
to improve data application. Investigating the components
of error and enumerating each error individually can help
algorithm developers (data producers) comprehend the
strengths and weaknesses of their algorithms in a variety of
settings, understand the aspects that are in greatest need of
improvement, evaluate and monitor the performance of
existing algorithms, and finally, assist with evaluating algo-
rithm upgrades. On the other hand, data (end) users need to
verify the accuracy of satellite precipitation products before
using them for a particular application. A thorough verification
of satellite-based precipitation products can provide users with
information on the expected errors in a wide range of
hydrologic application, so that they can quantify the expected
accuracy in the prediction. With the existence of various
satellite precipitation products, the users need to know the
level of uncertainty in each product and its implication for a
given surface hydrologic prediction. Therefore, data producers
and end users canwork together and allow information to flow
both ways for communal advantage.

The source of satellite-derived precipitation uncertainty
could arise from retrieval errors such as instrument, measure-
ment and algorithmic biases, and sampling error (Nijssen and
Lettenmaier, 2004; Huffman, 1997). It is a very challenging task
to quantify the uncertainty of satellite precipitation estimate for
many reasons. First, precipitation by itself exhibits random
variation to represent the uncertainty with simplemathematical
formulations (Wilks, 2011; North et al., 1993). Second, in case of
high spatial and temporal resolution, there is a problem of
assigning the rain field precisely for true location on the ground
(Bellerby and Sun, 2005). Third, due to the nature of indirect
measurement of precipitation processes such as by observing
cloud-top properties in case of infrared (IR) sensor, and from
thermal emission and backscatter signals in case of microwave
(MW) sensor (Huffman, et al., 2010). In general, the accuracy of
satellite based precipitation estimates depends on several
factors: method of retrieval (type of algorithm), the nature of
sensor used, the surface condition (ocean or land), and
precipitation type and so on. The collected effect of all these
factors makes the satellite precipitation estimates inescapably
uncertain.

Moreover, to validate satellite precipitation estimates, ground
truth data from rain gauge and/or radar observations are
indispensable. The main problem, however, is that most parts
of the globe are ungauged or has limited in-situ precipitation
observation network. On the other hand, the existing observa-
tion networks continue to decline worldwide (Stokstad, 1999;
Shiklomanov et al., 2002). The absence of in-situmeasurement
in most parts of the world represents a ‘paradoxical’ situation
for evaluating satellite precipitation estimation uncertainty.
Under such a circumstance, conventional validation of satellite
precipitation products over these regions is quite impracticable
and unrealistic. There is now a need for us to think outside the
box for global applications. Therefore, a question we ask in our
previous studies (Gebregiorgis and Hossain, 2013a, 2013b;
Gebregiorgis et al., 2012) is, ‘how can the uncertainties of
satellite precipitation be estimated without having ground
reference data?’ In fact, this question needs a novel approach
to predict satellite precipitation uncertainty around the world.

The aforementioned challenges have already prompted the
scientific community to design research strategies and recom-
mendations for future investigations. For example, in a recent
workshop conducted from 15 to 17 March 2010 at University
of California, Irvine on Advanced Concepts on Remote Sensing
of Precipitation at Multiple Scales (http://chrs.web.uci.edu/
events/Workshop_Report.pdf), various research priorities and
recommendations have recently emerged. Quantification of
satellite precipitation uncertainty for different climate regions,
storm regimes, surface conditions, seasons, and elevations was
one of themajor recommendationsmade by the community for
advancing satellite remote sensing of precipitation (Sorooshian
et al., 2011).

In line with these strategies, Gebregiorgis and Hossain
(2013a) have demonstrated a method of estimating satellite
precipitation error variance using readily available geophysical
features and satellite precipitation rate for 3B42RT, CMOPRH,
and PERSIANN-CCS products over Mississippi and Northwest
basins. First, the basins were grouped into different regions
based on topography and Köppen climate. Then, the nonlinear
regression models were fitted for each region by taking into
consideration the season type as shown in Eq. (1).

Evi; j;t ¼ αi; j;k RRi; j;t

� �βi; j;k ð1Þ

where, i represents the topographic region, j the climate type, t
the time at daily scale, and k the season type; Ev denotes pixel's
error variance of the same spatial and temporal resolutions
with satellite precipitation product; RR means the satellite
precipitation estimates;α symbolizes the scaling factor for each
topographic, climate region and season;β the same asα, except
that it designates the power or exponent estimator of the
regression model. In general, the model estimators α and β
control the behaviour, shape and growth or decay of the fitted
curve of the regression function. In this study, error variance
refers to the square of the difference between the estimated
and true value (square error).

The study of Gebregiorgis and Hossain (2013a) showed that
the total error variance is directly proportional to the satellite
precipitation rate, i.e. the value of β is always positive but has a
different rate of growth for various topographic and climate
regimes. Fundamentally, the seasonal precipitation variability
and its type are strongly dictated by topographic and climate. It
is, therefore, safe to claim that the use of geophysical features
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such as topography, climate, and season is an appropriate
strategy for estimation of error variance that builds the
platform for more improved techniques in the future.

Furthermore, several other studies addressed the issue of
satellite precipitation uncertainty (Yan and Gebremichael,
2009; Gebremichael et al., 2011; Maggioni et al., 2014). Yan
and Gebremichael (2009) developed a non-parametric condi-
tional density function that can be applied to generate actual
rainfall data from a given satellite rainfall estimates. Even
though, the model was developed for coarser temporal and
spatial resolutions, the conditional distribution of the generated
rainfall data is well represented by the semi-parametric
conditional distribution model. In another study, Gebremichael
et al. (2011) developed non-parametric error model at fine
spatial and temporal scales (0.25°, 3 hourly) that generates the
distribution of actual rainfall given satellite rainfall estimates.
The model was tested for one year CMOPRH data and it
predicted the actual rainfall reasonably well for the southern
United States with relative large variation at low and high
rainfall rates. However, the applicability of the model at global
scale over long period of various satellite datasets needs to be
further explored. On a similar concept, Maggioni et al. (2014)
proposed an error model framework that computes the
probability distribution of reference precipitation from a given
high resolution satellite precipitation estimates which eventu-
ally helps to calculate the error as difference or ratio between
the satellite product and the estimated reference. The PDF was
modeled for TMPA-V7 product over Oklahoma region by
decomposing the satellite rainfall error into hit, missed, false,
and no-error conditions. Similarly, this study is also limited to
specific region in which its applicability for global scale needs
further investigation.

Building on our recent works, the key issue now is if the
regression models can work around the world in a robust
manner. The more specific question is, “To what level can the
regressionmodel developed for calibration regions perform in other
parts of the globe (validation regions)?” This study investigates
and addresses this important scientific question in order to
advance the knowledge of satellite precipitation uncertainty
and promote the use of our pragmatic error variance estimation
scheme across the globe.

The remaining part of this paper is organized into the
following parts. (1) Study regions, data, and methodology of
the study; (2) detailed discussion of the results and findings of
the study; and (3) summary of the findings and limitation of the
study are presented in the next subsequent sections.

2. Study regions, data, and methodology

2.1. Study regions and period

Four different study regions around the world have been
selected: The contiguous United States, Monsoon Asia, Middle
East, and Mediterranean regions (Fig. 1). The selection of the
study regions was driven by the availability of good quality
validation data (in-situ precipitation observation data) at a
resolution comparable to the satellite precipitation products.
Detailed description of the validation/referencedata is provided
in Table 1.

The contiguous United States (48 adjoining U.S. states,
called CONUS) comprises a total area of 3,119,885 mile2
(8,080,464 km2), which is 1.58% of the total surface area of
the Earth. This region comprises a diverse topography that
ranges from 0 to 4500 m above sea level (a.s.l.). The highest
elevation is the RockyMountainswhich are located in thewest
central part of CONUS. Themajor climates are arid (highland of
west-central), temperate (south, east andwest coast), and cold
(northern part of the CONUS). Tropical and polar climates are
not common in the US due to the positioning of the states in
terms of latitude (see Fig. 2 for detailed topography and climate
features of the regions).

The Monsoon Asia is the largest and most populous region
which is located in the eastern and northern hemisphere. This
region encompasses themost diverse region both in topography
and climate type. All the topography and climate classes
(presented in Table 2) are found in this region. The world's
highest mountain range (collectively called Himalayas) is
located in this region, including the Everest Mountain which is
about 8500m tall above sea level. All sixmajor climate types are
also found in the region: tropical, arid, temperate, cold, and
polar climate (Fig. 2 and Table 2).

The Mediterranean region encompasses the lands around
the Mediterranean Sea (Fig. 1). The topography of the region
ranges from the lowest elevation region on land (TheDead Sea)
−420 to 2600 m a.s.l. It includes arid, temperate, and cold
types of climate. This region ismainly dominated by convective
system duringwarm periods of the year (Lazri et al., 2014). The
Middle East is a region that roughly coversWesternAsia region.
The topography varies from −300 to 2700 m a.s.l and is
dominantly characterized by arid climate type.

To embrace the combination of all types of topographic and
climate features, USA and part of Asia regions were selected to
calibrate the error variance regression model; whereas, the
remaining part of Asia, Mediterranean and Middle East regions
were chosen to validate the performance of the model on
independent area. Due to absence of adequate rain-gauge
stations in some parts of Asia and Middle East, four distinct
regions were selected for model validation. These regions
comprise east of Tibet and Southern part of Himalayas (from
Asia) and Southern part of Iran, Jordan and Israel (from Middle
East) (Fig. 1, lower panel). Generally, the studyperiod comprised
seven years (2003–2007) in which, 2003–2005 was used for
calibration and the period from 2006 to 2007 was for validation
of the error variance model. Even though the entire USA has
been used for model calibration, it has also been considered as
an independent validation region due to the independent
validation period.

2.2. Data

In this study, the error variance of three satellite precipitation
products was estimated: 3B42RT, CMORPH, and PERSIANN-CCS
products. 3B42RT, which is one of the NASA's Tropical Precipi-
tation Measurement Mission (TRMM; Huffman et al., 2007)
Multi-satellite Precipitation Analysis (TMPA) precipitation prod-
ucts, is produced by merging high quality Passive Microwave
(PMW, 3B40) and PMW calibrated IR estimate (3B41). The
product is available at 0.25° spatial resolution and 3 hourly
temporal resolutions. It has global coverage between 50° N and
50° S latitude.

CMORPH precipitation product is generated mostly from
low orbiting satellites producing high quality PMW estimates.



Fig. 1. Four selected global regions for estimation of error variance using regressionmodel (the top panel) and regions selected formodel calibration and validation (the
lower panel). For Asia andMiddle East regions, themodel validationwas applied only to specific regionswhere a good density of rain gauge stations existed (as shown
in black box).
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However, unlike geostationary satellites, low orbiting satellites
do not provide the benefit of continuous coverage. As a result,
geostationary IR estimates are used to propagate the PMW
estimates at times and locations where PMW estimates are
unavailable (Joyce et al., 2004). This product is also available
with global coverage between 60° N and 60° S latitude at 0.25°
spatial resolution for every 3 h interval.

High resolution PERSIANN-CCS precipitation product (at
spatial resolution of 0.04°) is designed to fulfill the demand of
hydrologist for high resolution satellite estimates in hydrologic
Table 1
Summary of validation/reference data set for the study regions.

Study region Reference
dataset

Full name

The contiguous United States
(area 10.5 M km2)

NEXRAD-IV Next-Generation W

Monsoon Asia (area 28.5 M km2) APHRODITE
(version: v1101)

Asian Precipitation
Observational Data
Evaluation of Wate

Middle East (area 8.1 M km2)

Mediterranean region (area 11.6 M km2) ECAD E-OBS European Climate A
ENSEMBLES Observ
modeling applications. The algorithm extracts different cloud
features such as brightness temperature, geometry and texture
of cloud patches from IR imagery and generates relationship
between cloud top temperature and precipitation rate for the
identified cloud patches (Hong et al., 2004; Hsu et al., 2007).
Artificial neural network (ANN) approach is applied to IR
estimates to generate the precipitation rate. PERSIANN-CCS has
a coverage between 60° N and 60° S latitude.

For proper calibration of error variance regression model,
quality validation/reference precipitation data are required.
Spatial
resolution

Temporal
resolution

Reference

eather Radar — stage IV 0.04° Hourly Lin and Mitchell (2005);
Fulton et al. (1998)

— Highly-Resolved
Integration Towards
r Resources

0.25° Daily Yatagai et al. (2012)

ssessment Dataset
ational gridded data

0.25° Daily Haylock et al. (2008)

image of Fig.�1


Fig. 2. Geophysical features (topographic and Köppen climate types) for the study regions and the distribution and percentage of areal coverage of these features for
each region. The regions name R-1 through R-6 correspond to the topographic region mentioned in Table 2 or given in the middle panel of this figure.
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Table 2
Description of topography classes, Köppen climate, and seasons.

Topographic class Köppen climate type Season

R-1:−400–100 m
R-2: 100–500 m
R-3: 500–1500 m
R-4: 1500–2500 m
R-5: 2500–4500 m
R-6:4500–8500 m

A: Tropical (Rainforest, Monsoon,
Savannah)
B: Arid (Desert, Steppe, Hot, Cold)
C: Temperate (dry summer &
winter, hot, warm & cold summer)
D: Cold (dry summer & winter, hot,
warm & cold summer, very cold
winter)
E: Polar (Tundra & Frost)

1: Winter
(Dec, Jan, Feb)
2: Spring (Mar,
Apr, May)
3: Summer
(Jun, Jul, Aug)
4: Fall
(Sep, Oct, Nov)
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Various reference datasets are considered for each study region
as presented in Table 1. As quality control measures, all
reference data have been assessed against available ground
stations, CPC-Unified and2A25-PR (TRMMPrecipitation Radar)
datasets. A point to note is that this step is only a QA/QC
exercise to gauge if the selected gridded datasets can be used
for calibration and validation of the error variance model. The
CPC or the PR2A25 was not used in the actual calibration or
validation of the error variance model. Station precipitation
records from Asian Precipitation — Highly-Resolved Observa-
tional Data Integration Towards Evaluation of Water Resources
(APHRODITE, Yatagai et al., 2012) represented a key source for
Fig. 3. Quality Assessment and Quality Control (QA/QC) for APHRODITE and ECAD data
of APHRODITE, CPC-Unified and 2A25 PR rainfall data for three randomly selected
APHRODITE (bluemark) andCPC-Unified (blackmark); Different errormetrics (FB: Fals
Detection; and RMSE: Root Mean Square Error) for APHRODITE and CPC-Unified prod
colour in this figure legend, the reader is referred to the web version of this article.)
ground data for Asian regions. Additional station precipitation
records from the Bangladesh Meteorological Department,
Nepal Department of Hydrology and Meteorology, Pakistan
Meteorological Department, European Climate Assessment &
Dataset (ECAD), and National Oceanic and Atmospheric
Administration (NOAA) were used to check the consistency of
the reference datasets. The CPC Unified dataset is a gauge-
based gridded precipitation using optimal interpolation (OI)
objective analysis technique at 0.5° spatial resolution from over
30,000 stations globally (Xie et al., 2007; Chen et al., 2008). The
2A25-PR is TRMM's high resolution orbital radar data which
provides the three-dimensional storm structures both over the
ocean and land surfaces (Iguchi et al., 2000).

Fig. 3 presents Quality Assessment and Quality Control
(QA/QC) for APHRODITE and ECAD E-OBS datasets over Asia
and Mediterranean regions. Closer inspection revealed that
similar spatial precipitation distribution was observed by
APHRODITE, CPC-Unified, and 2A25 PRprecipitation estimation
for three randomly selected days (Fig. 3, left-top). In addition,
error metrics analysis and scatter plot correlation were per-
formed. The error metrics analysis involved: 1) Frequency Bias,
FB (ideal value = 1); 2) False Alarm Ratio, FAR (ideal = 0,
worst = 1); 3) Probability of Detection, POD (ideal = 1,
worst = 0); 4) Hit Rate, HR (ideal = 1, worst = 0); 5) Threat
score, TS (ideal = 1, worst = 0); and 6) Root Mean Square
Error, RMSE. In this study, 0.1 mm/day of threshold value was
sets over Asia andMediterranean regions. Upper left panel— spatial comparison
days; Upper lower panel — scatter plot of two gauging stations in Asia with
e Bias, HR:Hit Rate; TS: Threat Score, FAR: False AlarmRatio, POD: Probability o
ucts in Asia and Mediterranean regions. (For interpretation of the references to
f

image of Fig.�3
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used for precipitation–no precipitation condition (Tian et al.,
2009).

For Asia region, the analysis was done by dividing the region
into two parts: the tropical zone (approximately bound by
23.4378° N and S) and the temperate region (above 23.4378° N).
Both datasets exhibit high POD value (above 0.8) and moderate
FAR (around 0.5). This shows that the precipitation events
during the selected threedays are detectedwell by bothdatasets.
However the FAR is moderately high showing that both datasets
reveal false rain detection during these particular periods. In
general, based on a combined assessment of RMSE and
categorical measures, APHRODITE datasets were found to be
more accurate than CPC-Unified. Based on RMSE alone, CPC-
Unified was found more accurate than ECAD. However, for
categorical measure, the case was vice versa. Due to the fact
that ECAD is available at higher resolution (0.25°) than CPC-
Unified (0.5°), ECAD was selected as the appropriate reference
dataset for this study. The correlation between two stations
(Rangpur in Bangladesh; Parachinar, in Pakistan) and the
reference datasets is demonstrated using scatter plots. As seen
in Fig. 3 left-bottom, APHRODITE data is strongly correlated
with the gauge records at both stations.

In general, APHRODITE data has used extensive gauges from
various partner organizations more than the CPC-Unified. The
number of stations incorporated in the gridding process ranged
from 5000 to 12,000, representing 2.3 to 4.5 times the data
available through the Global Telecommunication System
network, which were used for most daily grid precipitation
products. All the gauges used in CPC-Unified have been
included in APHRODITE. Moreover, in case of APHRODITE
dataset, extensive quality control procedure has been applied
manually before the gridding procedures apply (Yatagai et al.,
2012). Therefore, all these factors likely contribute to the
acceptable quality of the APHRODITE dataset. For the purpose
of comparing the performance of each satellite precipitation
product, it is important to avoid the spatio-temporal scale
differences among them. As a result, there is a need to conduct
the study at a consistent spatiotemporal scale (at 0.25° and
daily spatial and temporal scales, respectively). This is done by
aggregating those products which are available at finer scales,
such as PRESIANN-CCS, NEXRAD-IV in 0.04° spatial scales,
NEXRAD-IV in hourly temporal scale, and 3B42RT andCMORPH
in 3-hourly temporal scales.
2.3. Methodology

For estimationof error variance, a nonlinear regressionmodel
framework is developed for the contiguous United States and
Monsoon Asia regions. The satellite precipitation rate and error
variance are used as independent and dependent variables,
respectively. Prior to fitting the model, the observed error
variance and precipitation rate are segregated into various
regions based on topography, climate, and season types (detailed
description is provided in Gebregiorgis and Hossain (2013a)).
For each regions, the model estimators (α and β) are then
determined. The key assumption here is, for similar topography
and climate in the validation regions (Mediterranean, Middle
East), the estimators remain similar with the estimators from
calibration regions (USA and Asia). Accordingly, the error
variance was simulated for all study regions using Eq. (1).
Moreover, error characterization is an important task to
evaluate the performance of regression model. Since satellite
precipitation rate is the only independent variable in the
regression model framework, it produces zero error variance
when the satellite precipitation products miss a rain event on
the ground in certain location. For a particular product and
region where missed precipitation is dominant, the accuracy of
error variance is therefore not reliable. Therefore, to under-
stand the nature of the error, the total bias of the three satellite
precipitation products was decomposed into hit, miss-rain, and
false-rain biases (Tian et al., 2009) for each region at daily time
scale and then converted to seasonal average.

The detailed mathematical formulation used in the error
decomposition scheme is presented in Tian et al. (2009). Let
Ps and Pg be the precipitation from satellite estimate and
ground truth, respectively. The binary-valued precipitation
event mask, K, is derived based on the magnitude of the
precipitation estimate (1 if P N 0 and 0 if P = 0). The error
components' mask can be defined based on Eqs. (2)–(8) as
follows:

Hitmask;KH ¼ Ks � Kg ð2Þ

Missmask;KM ¼ Kg � K 0
s ð3Þ

Falsemask;K F ¼ Ks � K 0
g ð4Þ

where K′ denotes the Boolean complement of the binary
maskK. If E is the total error,H is thehit bias,M ismiss-rain bias,
and F is false-rain bias, then

E ¼ Ps−Pg ð5Þ

H ¼ Ps−Pg

� �
� KH ð6Þ

M ¼ Pg � KM ð7Þ

F ¼ Ps � K F
: ð8Þ

To evaluate the performance of the regressionmodel during
the calibration and validation periods, various metrics such as
coefficient of correlation (r), covariance (cov), Standard Error of
Estimates (SEE), Nash–Sutcliffe efficiency, E (Nash and Sutcliffe,
1970), and index of agreement, d (Willmot, 1981) are used. The
mathematical equations of these performance measures are
presented in Appendix A.

3. Discussion of result

3.1. Error characterization

In this paper, we only presented the characteristics of error
component of Asian region for thewinter and summer seasons.
To provide our readers with the complete picture of the error
characteristics, we provided additional explanation about the
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nature of the error components of other study regions without
any quantitative and qualitative results at the end of this
section. Fig. 4 presents the error components of the three
satellite precipitation products over Asian region for thewinter
(upper panel, three rows) and summer (lower panel, three
rows) seasons. The three products, shown in Fig. 4, share one
similar feature in common. For all products, the dominant
source of total bias for the southern tropical region (around
equator) is positive hit bias. This shows that all satellite
precipitation algorithms have the ability to detect the equatorial
heavy precipitation at the screening stage but they overestimate
the rain rate at the retrieval stage. For the winter season, the
Fig. 4.Decomposition of satellite rainfall error components for Asia region during thew
of 2006–2007.
northern part of Asia (temperate region) is mainly character-
ized by negative and high positive total bias for CMORPH and
PERSIANN-CCS products, respectively. In case of PERSIANN-CCS,
the substantial positive total bias arises from the contribution of
both positive hit bias and false precipitation particularly over
Himalaya region.

For the summer season, positive hit bias and missed
precipitation are the major sources of the total error in case of
3B42RT over the tropical region. In fact, the miss-rain bias is
more dominant over low land regions (India and Bangladesh).
For CMORPH product, the contribution of both negative hit bias
andmissed precipitation enhances the negative total error over
inter (upper panel, three rows) and summer (lower panel, three rows) seasons

image of Fig.�4
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the Himalaya and Bangladesh regions. For PERSIANN-CCS, the
missed precipitation is relatively low as compared to CMORPH
and 3B42RT products.

In general, the dominancy of error components varies from
location to location for the three satellite rainfall products. For
instance, for snow season,missed precipitation is the dominant
error component almost for the three satellite rainfall products:
e.g. for northeast of USA during the winter season, for Himalaya
region during spring and summer seasons, the missed precip-
itation is significant as compared to the other seasons. This
could be related to the inability of satellite sensors to detect rain
drops over snow cover areas (Tian et al., 2009; Gebregiorgis
et al., 2012). However in most cases, hit and false precipitation
bias are the major error components for most of the regions.
False bias for PERSIANN in Asia region, false and hit bias for
CMORPH product in Middle East region are some of the
examples. As a summary, hit bias is the major error component
for all products in all regions during the rainy seasons.
3.2. Model estimators

The model estimators, computed from the observed error
variance and satellite precipitation rate, were compared for
regions of similar topography, climate and season. According
to the hypothesis of this study, error information can be
transferable from one location to another provided that the
regions have similar topographic and climate features and
seasons. In other words, the regression equations developed on
the calibration regions (USA and part of Asia) were used to
estimate the error variance on the other part of the regions
provided that the aforementioned governing factors are
similar. Therefore, in these regions, the regression estimators
need to be comparable.

Fig. 5 shows the model estimators (α and β) for 3B42RT
product over the study regions. First, the estimator α is
relatively comparable for most of the regions. However, α
value shows significant discrepancy for lowland (R-1) and cold
regions (D/1, 2, 3, 4; see Table 2 for the nomenclature). The
estimator α is very high for USA and very low for Middle East
(See Fig. 5, first row), particularly for the winter and spring
seasons (D/1, 2). In case of USA, these regions specifically
represent the northeast coastal regions. For the same regions,
the estimator β is very low for USA and high for the remaining
three regions. Despite the similarity of topography and climate,
we speculate that the reason for the inconsistency of α and β in
these regions is mostly linked to the presence of snow cover in
the northeast coastal region of USA during the winter and
spring seasons. As a result, the error variance curves in these
regions have different rates of growth and shape. For the case of
USA, the error variance is not highly sensitive to precipitation
rate as it does for the remaining three regions during thewinter
and spring seasons. In general, in addition to topography,
climate and season, geographical proximity is also an impor-
tant factor that needs to be considered during the transfer
of model estimators from gauged to ungauged regions. The
closer the regions, the similar estimators they are expected to
have. In this article, we only present the estimator for 3B42RT as
a representative example. Like 3B42RT, the estimators for
CMORPHalso reveal similar features. For PERSIANN-CCSproduct,
the estimator variation is not only limited to lowland and cold
climate but also extends to lowland and temperate climate
regions.

3.3. The measures of multiple correlative associations

The performance of error variance regression model is
tested using the measures of multiple correlative associations
between the observed and predicted error variance. These
include the multiple correlation coefficient (R) corrected for
n − 1° of freedom where n is the size of data sample (from
2003 to 2005, n = 1096) and the unbiased Standard Error of
Estimates (SEE). These have been done by aggregating the
observed and predicted error variances of individual pixels
over each region at a daily time step. As seen in Fig. 6 (upper
panel), the multiple correlation coefficients show strong asso-
ciation between the observed and predicted error variances in
most of the regions for 3B42RT product. However, there are
some offbeat situations where R is very small in the calibration
and validation regions (USA andMediterranean regions). These
locations are highland and arid climate regions of USA during
the summer and fall seasons (R-5/B/3 andR-5/B/4, respectively)
and Mediterranean regions during the summer season (R-5/B/
3). The poor predictive performance of the model in these two
particular regions could be related to the presence of missed
precipitation or/and the quality of the reference data in the
regions. For 3B42RT product missed precipitation is a common
problem over mountainous regions, such as Rockies during the
winter season not during summer and fall (Tian et al., 2009;
Gebregiorgis et al., 2012). On the other hand, the western and
northwestern highlands of USA are known to be poorly covered
by radar and gauges (Maddox et al, 2002). Hence, the quality of
NEXRAD IV data is a potential reason for the poor performance
of the model.

The Standard Error of Estimates is ameasure of the accuracy
of predictions made with a regression model. It is computed as
the square root of the average squared error of the predictions.
Thus, the smaller the SEE, the better the prediction of the
model. Fig. 6 (lower panel) shows the SEE between observed
and predicted error variances of 3B42RT product. For the same
reason mentioned in the previous paragraph, the SEE of
3B42RT is high over the highland and arid regions of USA
during all seasons. In general, both the correlation and SEE
reveal the good performance of the error variance model in the
remaining regions.

3.4. Error variance estimation

The regression model was implemented to estimate the
error variance of the three satellite precipitation products at a
daily time scale. Fig. 7 presents the simulated, observed, and
residual error variances, and ratio of computed error variance
to ground precipitation over Asia region on 03 July 2007. Along
with the accuracy of the simulated error variance, the model
generally captured the overall spatial pattern of the observed
error variance over the region. In temperate climate region, the
residual error is significantly high for the three satellite
precipitation products. This shows that the model overesti-
mates the error variance along the foothills of the Himalayan
Mountains starting from the border of Pakistan all the way to
Myanmar. This region is dominated by positive hit bias for
3B42RT and PERSIANN-CCS products during the summer;



Fig. 5. Error variance regression model estimators (α and β) of the study regions for each topographic, Köppen climate class and season during the calibration period
(2003–2005). The name on x-axis is designation based on Table 2.
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whereas CMORPH is mainly characterized by negative hit bias
particularly in northwest India and Bangladesh region. As a
result of the hit bias, the model tends to overestimate the error
variance in this region.

The tropical region of Asia is characterized by low residual
error enlightening the good performance of the model in this
region. The model also estimated well the error variance in
the northern part of Asia. In fact, these regions were also
characterized by small total bias due to low precipitation in the
region. The map of ratio of simulated error variance to ground
precipitation shows the presence of observed precipitation
during that particular day. Overall, the regression model
performedwell in simulating the error variance over the entire
region at the time of rain event.

Fig. 8 shows the simulated, observed, and residual error
variances over the contiguous United States on 06 July 2006.

image of Fig.�5


Fig. 6. Correlation (upper panel) and Standard Error of Estimates, SEE (lower panel) for observed and simulated error variance during the calibration period (2003–
2005) for 3B42RT product.
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Fig. 7. Simulated, observed error variance (the first two rows panels), and residual error variance (third row), and ratio of simulated error variance to observed rainfall
(bottom row) for the three satellite rainfall products over Asia region on 07/03/2007.
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The three products share similarities that the simulated error
variance captures the spatial distribution of the observed error
variance. But in terms of prediction accuracy, the model
performed well in 3B42RT and CMORPH products; whereas it
over predicted in the northern part of New Mexico and Texas
states and under predicted in the east coast of CONUS for
PERSIANN-CCS. In the case of Mediterranean region, over small
rainy region, the model overestimated the error variance for
3B42RT and CMORPH products; whereas it underestimated for
PERSIANN-CCS product due to missed precipitation error
(Fig. 9). For 3B42RT and CMORPH, the spatial distributions of
the observed and estimated error variances were also found to
be similar. The region is fully characterized by temperate
(northern part) and arid (southern part) climate.

For Middle East region, model simulated error variance
represents the observed error variance very well for all satellite
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Fig. 8. Same as Fig. 7, except over USA on 07/06/2006.
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precipitation products both in terms of spatial distribution and
magnitude (Fig. 10). The residual error was small, particularly
for CMORPH product. The PERSIANN-CCS underestimated the
error variance in the eastern part of the region. This region is
characterized by a single arid climate type. To summarize, the
performance of the regression model has the tendency to
overestimate the error variance for 3B42RT and CMORPH
products in all study regions. But that is not the case in
PERSIANN-CCS; it over predicts in USA for arid climate and
underestimates in USA for cool climate, in Mediterranean for
temperate region and inMiddle East for arid climate conditions.

To see the entire nature of the error variance, the temporal
trend at daily time scalewas investigated by averaging spatially
over each selected study region during the period of 2005–
2007. Fig. 11 shows the spatial average of observed and
simulated error variance for USA (top, left), Mediterranean
region (top, right), East Tibet and Himalayas region in Asia
(middle and bottom, left), and South Iran, Jordan and Israel
from Middle East (middle and bottom, right). The model
displays good performance in simulating the temporal varia-
tion of the error variance for the three satellite precipitation
products during the entire period of analysis. It adequately
captures the time series of error variance over the selected six
regions. The model performance was found to decline for
3B42RT product over Mediterranean and Middle East regions.
In case of CMORPH, the model over predicted the error
variance over USA and East Tibet during the summer season
(between June and August). Good performance was observed
for CMORPH over Mediterranean, south Himalayas in Asia, and
Jordan and Israel in Middle East regions. For PERSIANN-CCS,
the model overestimated the error variance in USA during the
whole seasons except between September and November (fall
season). However, it also exhibited improved performance in
the validation regions of Asia and Middle East.

In summary, for time series error variance, the efficiency of
the model was assessed by three performance measures:
coefficient of correlation (r), Nash–Sutcliffe efficiency, E (Nash
and Sutcliffe, 1970), and index of agreement, d (Willmot, 1981).
The correlation coefficients inmost cases were above 0.6 except
for two regions (Mediterranean and Middle East–south Iran
region) that yielded 0.48 and 0.56 for PERSIANN-CCS and
CMORPH products, respectively (Fig. 12, top panel). The nearest
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Fig. 10. Same as Fig. 7, except over Middle East on 02/17/2006.
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r value to one means, the smallest dispersion of the predicted
error variance to that of the observation. This shows that the
dynamics of the observed error variance trend is captured very
well by the model even though it exhibits strong biases, which
in some regions is much higher than the actual variability of the
error.

Based on Nash–Sutcliffe efficiency (Fig. 12, middle panel),
the error variance model showed poor prediction over
Mediterranean region for 3B42RT and PERSIANN-CCS products,
respectively. The range of E lies between 1 (ideal value) and
−∞. Negative efficiency indicates that the mean value of the
observed error variance would have been a better predictor
than the model. In fact, one of the major problems of Nash–
Sutcliffe efficiency, since it squares the difference between the
observed and predicted error variances, is that the efficiency
can be exaggerated with the presence of high prediction in the
time series (Legates and McCabe, 1999). On the contrary, it
is insensitive for small differences between observed and
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Fig. 11. Temporal trend of observed and simulated error variances of the three satellite rainfall products over the study regions for the period of 2005–2007. To avoid visual cluttering, a 31 daymoving average is applied. For Asia and
Middle East regions, the spatial average was performed only for selected four sub-regions: East Tibet, Himalayas, Iran (IR), Jordan (JO), and Israel (IL). Refer to Fig. 1, lower panel for locations.
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Fig. 12. Correlation coefficient (top panel), Nash–Sutcliffe efficiency (middle panel), and index of agreement (lower panel) between observed and simulated error
variances for all study regions (as labeled in Fig. 11) during 2006–2007.

55A.S. Gebregiorgis, F. Hossain / Atmospheric Research 154 (2015) 39–59
predicted. For instance, in Mediterranean and Middle East (JO,
IL) regions, the model overestimates the error variance during
the winter season for PERSIANN-CCS and 3B42RT, which
eventually result in high negative efficiency.

The index of agreement (d) is also computed as seen in
Fig. 12, lower panel. Like coefficient of determination, r2, the
value of d ranges between 0 (no correlation) and 1 (perfect fit).
This performance measure backs the results obtained from
correlation coefficient. It indicates poor performance of the
model in Mediterranean region for PERSIANN-CCS and 3B42RT
products. In general, it can be concluded that the model
predicts the error variance well in most of the regions and all
products except the two cases mentioned above.
3.5. Impact of using gauged grid boxes for assessment of estimated
error variance

In the above analysis (Section 3.4), the choice for our
reference (ground validation) precipitation data for assessing
the error variance model was gridded (spatially interpolated)
datasets. Because interpolation techniques have an inherent
uncertainty in interpolating precipitation over a grid box
lacking in an in-situ gauge, a concern that can be raised in
such an assessment is that the performance of the error
variancemodel could lead to significantly different conclusions
if restricted to grid boxes containing only in-situ gauges.
Literature on the use of gridded precipitation datasets for
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validation of satellite data indicates that this concern may be
unfounded. In general, it is not possible to reach perfect spatial
matching between point measurements from gauges and
Fig. 13. a. Two 3 × 2 gridded grid boxes equipped with rain-gauge (red colour) and w
were selected to test the impact of calibration and validation of the error variancemod
with no gauges and c) using both gauged andungauged grid boxes. b. The comparison o
and grid boxes from panel a: gauged-only, ungauged-only, and combined grid boxes (
boxes. (For interpretation of the references to colour in this figure legend, the reader i
spatially averaged estimates from satellite products (Sapiano
and Arkin, 2009; Romilly and Gebremichael, 2011). Funda-
mental difficulties exist when comparing gaugemeasurements
ithout rain-gauge stations (yellow colour) in East Asia region. These grid boxes
el for three scenarios: a) using grid boxes with gauges; b) using only grid boxes
f simulated error variance from three different calibration approaches using data
gauged and ungauged), shown with observed error variance at the gauged grid
s referred to the web version of this article.)
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Fig. 13 (continued.)
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and satellite estimates: retrieval errors of satellite algorithms,
sampling errors caused by different sampling schemes, system-
atic gauge errors related to instruments, etc. (Ciach and
Krajewski, 1999; Bowman, 2005). As long as a robust interpo-
lation technique is employed in the gridding process, where the
uncertainty of the interpolation is significantly smaller than the
uncertainty due to sampling or retrieval (e.g. Huffman, 1997;
Gebremichael et al., 2003), such gridded data can be used as
ground validation as there is simply no better practical
alternative (Maurer et al., 2002; Adler et al., 2003; Tong et al.,
2013). A point to note here for readers is that if the error variance
model development restricted itself to the use of only the grid
boxes containing in-situ gauges, then a sufficient rangeof climate
and topography (most in-situ gauges are located in lower
elevations) would not be available for the calibration of the
error variance model. Consequently, the error variance model
would lack global value for use over the vast ungauged regions of
the world.

Nevertheless, in order to provide added confidence for global
applications, we have assessed the impact of the performance
of the error variance model by considering calibration (and
validation) for the following three scenarios: a) using only the
grid boxes containing in-situ gauges; b) using only grid boxes
(gridded)without in-situ gauges and c) using grid boxes that are
both gauged and ungauged (the approach that we have used in
our study). Fig. 13a shows two regions we have selected in East
Asia comprising 3 × 2 0.25° grid boxes. One region of 3 ×2 grid
boxes is entirely ungauged (shown in yellow circles), while the
other is entirely gauged (shown in red circles). Fig. 13b shows
the estimated error variance for the three satellite products
calibrated (during the period of 2002–2005) and then validated
independently (during the period of 2005–2007) for the three
scenarios (gauged-only, ungauged-only and combined). It is
clearly seen that restricting the calibration and validation of the
error variance model to grid boxes containing only in-situ
gauges has no discernible impact on the performance of the
error model scheme. Careful inspection also reveals that the
findings of this test are consistent with what is reported in
Fig. 11 across the wider geographic region of East Asia. Therein
(in Fig. 11) we observe that PERSIANN provides the most
accurate estimation of error variance. This test also proves that
the quality of the gridded datasets we have used for assessment
of error variance is quite acceptable for drawing conclusions
over a much larger area of application that is mostly ungauged.

3.6. Conclusion and recommendation

The broader impact of this study is that the global
availability of error information for three satellite precipitation
products can advance the operational use of satellite precipita-
tion estimate for a wide range of applications. In particular over
ungauged regions of theworld, predicting satellite precipitation
error information from easily available geophysical features is
an alternate and pragmatic solution to perform meaningful
prediction using satellite precipitation data for many applica-
tions. Just like nutrition label informs a potential consumer at a
super market, we believe that satellite precipitation products
should also be available to end users with essential error
information associated with the products. Non-negligible and
unavoidable errors inherent in satellite precipitation estimates
can result in wrong applications if the errors are unknown a
priori. Even though there have been several studies regarding
the estimation and characterization of satellite precipitation
uncertainty (e.g. Zhang et al., 2013; Gebregiorgis et al., 2012;
Tian and Peters-Lidard, 2010; Hong et al., 2006; Nijssen and
Lettenmaier, 2004; Hossain and Anagnostou, 2004; Huffman,
1997, among several others), an approach that explicitly
integrates the estimation techniques in the absence of any
reference ground data is, to our knowledge, is not yet universal.

Therefore, we propose a method of predicting satellite
precipitation error variance from easily available geophysical
information to users. Such amethod can bepractically applicable
to ungauged regions of the world where satellite precipitation
estimates are the only viable source for several applications
including decision making. To this end, our purpose is not to
provide information on which satellite product is the best, but
rather to examine simplest and practical ways of knowing an a
priori approximate error associated with a product from
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information easily available to end-users. We believe that this
kind of study is an important step forward to deal with satellite
precipitation uncertainty in regions where ground validation
data is absent.

Essentially, this study provides the error variance of three
satellite precipitation products for satellite precipitation data
users. Before using satellite precipitation estimate for specific
application, understanding error information can help users to
choose the appropriate product, find out the level of accuracy of
their prediction, and thenmakemeaningful prediction. Beyond
that, the end user communities can also develop trust on
information coming through satellite precipitation prediction.
The users can build confidence to apply the data for societal
benefits, as has been recently demonstrated for the case of
satellite altimetry (Hossain et al., 2014). It opens up more
possibilities for satellite data to intervene in day to day social
activities, such as tourism, entertainment, and large social
gatherings.

Our study is done not without limitations. The error
variancemodel has a drawback in predicting the error variance
in location where missed precipitation is dominant. It produces
zero error variance for a single storm which is missed by
satellite. It significantly underestimates the error budget
accumulated over specific period (such as for daily accumulated
precipitation) if missed precipitation is themajor contributor to
the total precipitation error. Therefore, in addition to precipita-
tion rate, other independent variables need to be considered
(such as surface temperature, lapse rate, integrated water
vapour) in the regression model to avoid the dependability of
error variance on precipitation alone. Moreover, implementa-
tion of advanced approach (such as probabilistic methods) is
recommended to further understand the connection between
geophysical features and satellite precipitation uncertainty. For
instance assessing and quantifying the probability of being
missed-rain, or false bias, as a function of the geophysical
nature would be worthwhile. Moreover, topography, climate,
and seasons are not the only governing factors to characterize
satellite precipitation uncertainty. Other factors, such as
precipitation type, geographical proximity (location of the
region from large water bodies etc.) play significant role on
estimation of satellite precipitation uncertainty. A great deal of
work remains to be done and we recommend further
exploration to adequately address the issue of practical
approaches to satellite precipitation uncertainty estimation in
ungauged regions.
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Appendix A. Performance measures

PEV predicted error variance
OEV observed error variance
n number of sample size
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