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A Two-Dimensional Satellite Rainfall Error Model

Faisal Hossain and Emmanouil N. Anagnostou

Abstract—A two-dimensional satellite rainfall error model
(SREM2D) is developed for simulating ensembles of satellite rain
fields on the basis of “reference” rain fields derived from higher ac-
curacy sensor estimates. With this model we aim at characterizing
the multidimensional stochastic error structure of satellite rainfall
estimates as a function of scale. The pertinent error dimensions
we seek to address are: 1) the joint probability density function for
characterizing the spatial structure of the successful delineation
of rainy and nonrainy areas; 2) the temporal dynamics of rain
estimation bias; and 3) the spatial variability of rain rate estima-
tion error. Ground radar rain fields in the Southern plains of the
United States are used as reference to evaluate SREM2D error
parameters at (0.25-deg and hourly spatiotemporal resolution for
an infrared (IR) rain retrieval algorithm (IR-3B41RT) developed
at NASA. Comparison of SREM2D simulated satellite rainfall with
actual IR-3B41RT data showed that the error modeling technique
can preserve the estimation error characteristics across scales with
marginal deviations. The model performance is compared against
two simpler, but widely used, approaches of error modeling that do
not account for uncertainty in rainy/nonrainy area delineation. It
is shown that both of these approaches fare poorly with regards to
preserving the error structure across scales. They underestimated
the sensor retrieval error standard deviation by more than 100 %
upon aggregation, which, for SREM2D, was found to be below
30%. SREM2D is modular in design—it can be applied for any
satellite rainfall algorithm to consistently characterize its error
structure.

Index Terms—Error model, error propagation, infrared (IR),
satellite rainfall estimation, scale.

1. INTRODUCTION

UR ability to accurately model the error structure of

satellite rainfall at fine space-time scales (<0.1 deg,
and 1- to 3-hourly) is currently of high importance due to the
anticipated increased availability of passive microwave (PM)
satellite sensor observations from the Global Precipitation
Measurement mission (GPM) [5]. GPM observations com-
bined with high-frequency rainfall estimates available from
geostationary infrared (IR) sensors [20] as well as auxiliary
data (such as long-range lightning observations [7], [39]) and
multisensor estimation techniques [24], [28], [18]) are expected
to yield global rainfall products of improved accuracy, and
consequentially expanded levels of utility. In this respect,
an adequately designed satellite rainfall error model capable
of generating realistic ensembles of high resolution satellite
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rain fields from reference rain fields of higher accuracy (e.g.,
dense surface gauge network or ground radar) is mandated.
Developing probabilistic (ensemble) representations of the
error propagation from satellite rainfall products to high-reso-
lution hydrologic model simulations can form the basis for the
establishment of criteria for the optimal use of satellite rainfall
data in hydrologic forecasting and continental water and energy
cycle studies [15], [16].

Two specific applications of satellite-rainfall error propaga-
tion need special reference in this context: 1) the Global Land
Data Assimilation—GLDAS [32] and 2) the streamflow (or
flood) prediction over ungauged regions [14], [15], [17], [29].
One of the primary objectives of GLDAS is to provide real-time
and high resolution estimates of the surface hydrologic state that
is of vital importance for the accurate forecasting of weather
patterns [7]. The effectiveness of GLDAS depends largely on the
quantification of the error structure of the hydro-meteorological
forcing variables, which dictates the frequency for assimilation
of satellite data [38]. Among the major hydro-meteorological
forcing variables, rainfall is undoubtedly the most important
component of the terrestrial water cycle. A recent study by Syed
et al. [35] has shown that almost 70%—80% of the variability
of the land surface hydrology is attributable to rainfall. On the
other hand, a substantial portion of floods takes place in regions
that are remote, or lack the financial resources to be adequately
covered by ground stations [14]. A situation that further ag-
gravates the global flood prediction problem is that several
countries have most (more than 95%) of their territory within
one or more international river basins [12], thus forced to cope
with flooding primarily generated beyond their borders (e.g.,
the Bangladesh delta in the Ganges, Brahmaputra, and Meghna
river basins [30]). The vantage of meteorological satellites
provides a way of monitoring rainfall across political bound-
aries or ungauged terrain, which appears a plausible alternative
for enhancing the flood forecasting capability of many flood
prone lowermost riparian nations. It is the hydrologic time lag
(between rainfall and the occurrence of flood peak downstream,
which magnifies as a function of basin size) that comprises the
fundamental principle for anticipating extension of forecasting
range with quasi real-time satellite rainfall data. However, the
accuracy in predicting sensitive flood parameters such as peak
runoff and time-to-peak is dependent on our ability to monitor
the spatiotemporal variability of rainfall. Although satellite
observations provide the means for estimating rainfall over
large-scale watersheds their estimates are associated with error.
Proper characterization of the error and its nonlinear propaga-
tion in hydrologic models is, therefore, a critical priority that
needs to be resolved.

For the accurate modeling of satellite rainfall error, it is
important to recognize that the desired progression to finer
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space-time scales in satellite rain estimation is counter-balanced
by an increasing multidimensionality of the retrieval error. This
scale dependence of rain retrieval error is associated with
complex error propagation in hydrologic modeling through the
highly nonlinear and fast-evolving land-atmosphere processes
[3], [15], [16]. As an example, consider the case of vertical
soil moisture transport. The water flux in soil is governed by
the cumulative effect of infiltration, runoff, gradient diffusion,
gravity, and soil water extraction through roots for canopy
transpiration. All these processes exhibit dynamic variability
in the ranges of minutes to hours over scales of squared cen-
timeters to squared kilometers. Hence, a land surface model
(LSM) requires the numerical solution of a second-order partial
differential equation at fine step-lengths to adequately capture
the spatiotemporal variability of the soil water movement (for a
list of equations typically used by LSMs, see Dai et al., [8]). On
the other hand, past satellite rainfall studies have concentrated
on rain retrieval uncertainty issues associated with large spa-
tiotemporal scales involving limited number of error statistics
[13], [1], [28]. These statistics are useful mainly in assessing
the use of satellite rainfall data in long-term climatologic or
water balance studies, but they cannot offer any insight toward
gauging the more dynamic and finer scale phenomena such as,
for example, soil water movement, floods and weather-related
hazards.

In addition to the scale issue, current satellite error models
target mostly PM sensor retrievals focusing primarily on the
sampling uncertainty due to the low frequency of satellite
overpasses (for a detailed review see [2]; Steiner et al. 1996;
Bell, 1987; Bell et al., 1990, [36], and [10]). To the best of our
knowledge, there currently exists no modeling technique that
mathematically accounts for uncertainty in delineation of rainy
and nonrainy areas by satellite sensor observations. Recently,
Hossain and Anagnostou [15], [16] have provided evidence that
a detailed decomposition of the satellite rainfall error structure
with explicit formalization of the uncertainty in rainy/nonrainy
area delineation can contribute to improving our understanding
of the implications of satellite estimation error on land surface
simulation parameters for fine-scale hydrological processes
(such as floods and soil moisture dynamics). However, recent
error propagation studies continue to lack explicit acknowledg-
ment of these unavoidable components of the fine-scale error
structure (see, for example, [29] and [38]).

The herein study, motivated by the current state of the art in
error modeling and the challenges we are faced by the need for
high-resolution satellite rainfall data, mathematically formal-
izes a space-time error model, named a two-dimensional satel-
lite rainfall error Model (SREM2D). Because the accuracy in
satellite-based land surface hydrologic simulation depends on
an accurate characterization of the rainfall estimation error our
goal is to provide an objective framework for error propagation
studies. SREM2D is conceptualized based on the following de-
sign objectives: 1) It should function as a filter wherein the hy-
drological implications of fine-scale components of the satel-
lite precipitation error structure can be explicitly determined by
coupling it with a hydrological/LSM; Thus, SREM2D-based ex-
periments should provide the much needed focus to meteorolo-
gists for the development of improved satellite rainfall products
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with enhanced societal applications. 2) It should be modular in
design with the capability to allow uncertainty assessment of
any satellite rainfall algorithm. 3) It should be conceptualized in
an algorithmic fashion so that it is easy to code for a user wishing
to make use of the model. SREM2D uses as input “reference”
rain fields of higher accuracy and resolution representing the
“true” surface rainfall process, and stochastic space-time for-
mulations to characterize the multidimensional error structure
of satellite retrieval. The algorithmic approach is aimed at gen-
erating realistic ensembles of satellite rain fields from the most
definitive “reference” rain fields that would preserve the esti-
mation error characteristics at various scales of aggregation. To
demonstrate the relative accuracy of SREM2D, we also show
comparisons with two commonly adopted satellite error mod-
eling strategies in error propagation studies.

The paper is organized as follows. Section II presents the al-
gorithmic formulation for SREM2D. Section III discusses cal-
ibration of the model parameters based on actual data. In Sec-
tion IV, we evaluate the error model in terms of its numerical ac-
curacy and scaling consistency, followed by a comparison with
two simpler approaches. Finally, in Section V, we present our
conclusions and future directions.

II. FORMULATION OF THE SREM2D ALGORITHM

SREM?2D builds upon a one-dimensional version (point-
versus-time) developed by Hossain and Anagnostou [15]. The
original concept of the Hossain and Anagnostou [15] error
model was to corrupt time series of point reference rainfall
values to characterize the error structure of pertinent satellite
estimates at sensor resolution. In this paper, we extend the
concept in a method developed for simulating ensembles of
satellite rain retrieval fields with coherent spatial error struc-
tures in terms of rain/no-rain detection and the estimation of
rain rates in rain covered areas, and temporal variability in the
marginal (mean and variance) rain rate error statistics. In the
following, we describe the steps involved in the algorithm.

A. Step 1: Conversion of Time-Aggregated Reference Rain
Rates to Represent Instantaneous Rain Rates

Ground based radar-rainfall or dense-gauge measurements,
which are intended as “reference,” are typically available at
temporal scales coarser (>hourly) than the nearly instantaneous
satellite retrievals. To address this issue an approach is devised
to quantify the statistical departure of instantaneous from
time-averaged rainfall rates at the satellite sensor resolution.
We define two characteristics in this regard: 1) the difference
in rain detection and 2) conditional rain rate differences (given
successful detection at both aggregated and instantaneous
scales). The “probability of detection” of instantaneous rain
rate (PODngt) is used to define the chance of an instanta-
neous reference measurement to register a nonzero value in
agreement with the time-aggregated (hereafter, termed “accu-
mulated””) measurement. This is defined as follows:

PODinst = Prob{Rrer—insT>0|Rrer—accu>0} (1)

where Rrer_1NnsT represents realizations of an instantaneous
area-averaged reference rain rate value and Rrpr—_accu is the
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accumulated reference rainfall of the corresponding time-step.
The conditional error, Finst—accu, of RrRer—insT With re-
spect to Rrer—accu is defined as

FEinst—accu = Rrer—inst/RrEF—ACCU. )

Due to the multiplicative nature of the error, the statistical
distribution of EinsT_accu is assumed log-normal, with
mean and variance components defined as MuinsT—accu
and SinsT—Accu, respectively. The above approach can be
used to statistically generate instantaneous reference rain rates
(Rrer—insT) from, for example, hourly “reference” radar-
rainfall values (Rrer—_accu). Hossain and Anagnostou [15]
provide an example of the accumulated-to-instantaneous con-
version on the basis of continuous record of gage rainfall data.
This step can be ignored if reference rain fields are available
at high temporal resolution (<1 h), or for example, they are
themselves similarly instantaneous as the satellite rain fields
(e.g., ground radar scans). From this conversion onwards, we
shall continue to use the term reference rain fields to refer to
instantaneous reference fields.

An instantaneous satellite rain retrieval (hereafter, we make
no distinction between the words “retrieval” “estimation/esti-
mate”), may exhibit one of the following possible outcomes:
1) when it actually rains (reference rainfall >0 unit) the satel-
lite retrieval may indicate rain (successful rain detection) or
zero rain (false no-rain detection), while 2) when it does not
rain (reference rainfall = 0 unit) the satellite retrieval may in-
dicate zero rain (successful no-rain detection) or nonzero rain
(false rain detection—also termed as “false alarm”). We define
the successful rain detection probability Pran as a function of
Rrer—1nsT. The functional form is identified through calibra-
tion on the basis of actual data (discussed in the following sec-
tion). The false no-rain detection is derived from Pgrarx as (1 —
Pra1n)- The successful no-rain detection, Pxor AN, iS the uni-
tary probability that satellite retrieval is zero when RrRerp—_INST
is zero, which is also determined on the basis of actual data. The
false rain detection probability is then derived from PxoraIn
as (1— PxoraIN)- A probability density function (Dgy)se ) is de-
fined to characterize the probability distribution of the satellite
retrievals in false rain detection. This function is also identified
through calibration on the basis of actual sensor data (discussed
next in Section III). Note that the Prain and Pyorain com-
bined define the uncertainty of a satellite in delineation of rainy
and nonrainy areas.

B. Step 2: Modeling the Joint Probability of Successful
Delineation of Rainy and Nonrainy Areas

In this step, the joint spatial probability of successful de-
lineation of rainy and nonrainy areas is characterized using
Bernoulli trials of the uniform distribution with a correlated
structure generated based on Gaussian random fields. These
Gaussian random fields are transformed into uniform distri-
bution random fields via an error function transformation.
Modeling the spatial structures for detection is an important
element of SREM?2D as real sensor data are known to exhibit de-
finitive spatial clusters for false rain and false no-rain detection.
Fig. 1 shows an example of typical spatial structures expected

1513

PM (TMI - 2A12 Version 5) IR (3B41RT)

PR Orbit No. 26545

wo -85 90 -85 —80 -7 00 85 80 -85 80 -7 -

PR Orbit No. 25949

I Successful Rain Deiection

Bl Successful No Rain Detection

BN Unsuccessful Rain Detection
TUnsuccessful No Rain Detection

Fig. 1. Successful and unsuccessful rainy and nonrainy area delineation by
PM (TMI) and IR (3B41RT) sensors referenced with TRMM-PR 2A25 rain
observations. Left panels—TMI; Right panels—IR.

in the detection of rainy and nonrainy areas for PM and IR
rainfall retrievals. In this figure, we use the more definitive
tropical rainfall measuring mission (TRMM) precipitation radar
(PR) rainfall fields [23] as reference. Ground validation studies
on PR have shown high correlation (>0.9) and low (<7%)
systematic differences with rain-gauge-calibrated ground radar
estimates [4], [25]. The PM retrievals are represented by the
2A12 TRMM product computed with the Goddard profiling
algorithm (GPROF) [24] (Fig. 1, left panels). In terms of IR
retrievals, we used the hourly PM-calibrated variable IR rainfall
product (VAR) produced by multisatellite precipitation analysis
(MPA) [19] (Fig. 1, right panels). This product is operationally
known as IR-3B41RT. On the common PR orbit, green and
blue colors are used to identify successfully detected rainy
and nonrainy pixels, respectively, while we use orange and red
colors for the converse (unsuccessful detection). The spatial
clusters of colors seem to indicate that sensor detection has
a spatial dependency, which for IR retrievals appears to be
more widespread and spatially correlated in the false detection
situation (Fig. 1, right panels).

To model this spatial structure for detection, spatially corre-
lated fields of Gaussian N (0, 1) random deviates are generated
in 2-D space based on the Turning Bands algorithm [26]. A
simple exponential type auto-covariance function is assumed.
The correlation length (the separation distance at which cor-
relation is equal to et al., 0.3678) is determined on the basis
of calibration with actual data over a large domain (the size of
Oklahoma in this study). For identifying the correlation length
of rainy (nonrainy) areas, we assign all successfully detected
rainy (nonrainy) pixels the value of one while the rest are as-
signed zero values. Subsequently, the empirical semi-variogram
is computed as follows:

n(h)

) 2 ()~ ) @)

i=1

where z(x;) and z(x; + h) are the binary pixel values (0 or 1)
at distance x; and x; + h, respectively, and A is the lag in kilo-
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meters. n represents the number of datapoints at a separation
distance of h. The term ~y(h) is the semi-variance at separation
distance h. Assuming that the empirical variogram is best rep-
resented by an exponential model, we fitted the functional pa-
rameters describing the spatial variability as follows:

v(h) = co + (1 — e ") (4)

where co represents the nugget variance, c is the sill vari-
ance, and C, is the distance parameter known as “correlation
length.” Conversely, the auto-correlation function is modeled
as, C = ¢ "Or where “C” is the correlation. With the
correlation length as an input, the Turning Bands algorithm
then generates realizations of Gaussian random fields. The
N(0, 1) spatially correlated random fields are then transformed
to uniform U[0, 1] fields as follows:

1 1
v = 5+ erf(e;/V/2) 5)

where z;, is a U0, 1] random (but spatially correlated) deviate
for pixel j generated from the corresponding N (0, 1) deviate,
e;j. The erf(e;) is the error function defined by the following
integral:

erf(e;) = % /e_"”de. (6)
0

The uniform random field is then scaled by its standard devia-
tion to yield a unitary variance (this ensures the maximum auto-
covariance of one at zero lag). Numerical consistency checks
have shown that this conversion can increase the correlation
length of the generated uniform distribution fields, which should
be accounted for in setting the correlation length parameter for
the generation of the Gaussian fields by the Turning Bands al-
gorithm. It is noted, that the effect is most significant at lags
beyond 10 (or 250 km range in this case). Hence, we ignored
this suggested adjustment due to the relatively acceptable size
(~ 250 km) of the study domain. Execution of step 2 yields
spatially correlated fields of U[0, 1] random deviates that are
now amenable for Bernoulli trials for modeling the uncertainty
in rainy and nonrainy area delineation with consistent spatial
structures. The estimation of correlation lengths for detection is
further discussed in Section III (calibration).

C. Step 3: Modeling the Conditional Rain Rate Estimation
Error

The conditional (reference rainfall> 0 unit) satellite rain rates
Rsar are statistically related to corresponding conditional ref-
erence rain rates RREF—INST as

Rsat = RREF-INST-€S @)

where the multiplicative satellite error parameter, €5, is as-
sumed to be log-normally distributed. The assumption of
log-normality was justified by the distinct skewness of the
probability density function of error that was observed during
the calibration exercise (discussed next). A log transformation
[log(Rsat) — log(Rrer—1nsT)] of (7) transforms the €, to a
Gaussian N (u, o) deviate £ where 4 and o are the mean and
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standard deviation statistics, respectively. To determine the
multiplicative mean (M uinst) and standard deviation (StxsT)
of e, the following conversion is used in terms of y and o:

MuinsT = exp(p + 0.502) )
Stnst = [exp(0?) — ] exp(2u + 0?). )

The error parameter ¢ (hereafter, also referred to as “log-error’)
is both spatially and temporally auto-correlated. A lag-one au-
toregressive function is used as in [15] to model the temporal
variability of y (i.e., satellite rainfall bias)
tie = 1+ (p)(ti1,r — T0) (10)
where time index 4 represents discrete hourly time-step, and p?
is the lag-one autocorrelation of . Note that we use a subscript r
to denote the index of a Monte Carlo (MC) realization. Herein, 7z
represents the steady-state value of satellite bias. The variance
of error (a,ﬁ ,) at each time-step is related to the steady-state
variance (02) and the lag-one correlation p? as
ol = o2 (1 - (pZ)) .

»

(1)

The generation of spatial random fields of error with time-
correlated mean (bias) is achieved as follows. At the first
time-step, we set p and o to their corresponding steady state
(ergodic) values that can be derived from a calibration exercise
(discussed next), and generate a random field of errors. At
subsequent time-steps ¢ for a given MC realization, 7, 14; ;- is
calculated on the basis of (10) using the value from the previous
time-step + — 1. Note that for the previous time-step 7+ — 1 the
Mi—1,~ is the sample value calculated on the basis of what is
actually generated by a given random MC realization index r
and, hence, will not equal the steady-state (population) value of
7t (unless the areal domain is infinitely large).

D. Generation of Synthetic Satellite Rainfall Fields With
SREM?2D

The SREM?2D operation is summarized in the flow chart of
Fig. 2. If the time-scale of reference rainfall is coarser than the
time-scale of the satellite rainfall product, we use (1) and (2) to
generate realizations of instantaneous reference rain rate values
(RrerF-1nsT)- Pixels that are zero (nonrainy) do not require
such treatment. Next, a Bernoulli trial is conducted for each
satellite pixel to model the PODnsT by generating a uniform
U|0, 1] random number 7. If r,, is less than PODngT (Which
is determined as a function of Rrrpr_accy) an instantaneous
reference rain rate, Rrgr_insT Vvalue is calculated on the
basis of (2) by randomly generating a log-normally distributed
deviate, LN[MuINSTfACCU7 SINSTfACCU], representing
FinsT—accu. After the conversion of an accumulated rain
rate field to an instantaneous “reference” rain rate field, two
sets of spatially correlated U|0, 1] random fields are generated,
one each for conducting Bernoulli trials to model the satellite’s
successful delineation of rainy and nonrainy areas. This is done
using (3)—(6) and the procedure described in step 2. When the
instantaneous reference rain rate is nonzero (Rrgr—1nsT>0)
SREM2D decides as to whether the corresponding satellite
rainfall estimate would be zero, or not, through a Bernoulli
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i = time step index
J = satellite pixel

RreFaccu, ij i=1 }
[ Is RREF—ACCU,iJ >0.0 mm/hr '%
YES [ NO

'

‘ Rrer.anstij=Rrer-accuij

i=it+]

Compute PODysr from Eqn. 1

Generate uniform r, (0-1)

Is Fn < POD[NST?

RRrer.vstij
=0.0 mm/hr

4.[ Is RREF-INSTI’,/>0~O mm/hr 7]‘—

From Eqn. 2

RRerINsTij ]

YES l NO
Compute Pray Compute Pyorav
Generate uniform field r, (0 il Generate uniform field r, (0-1)

Is 7 < Praiv?
YES NO

YES NO

2-D Field

A
Rsarinstij Rsur.ivstij
=0.0

from Dy,
Fig. 2. Flowchart for SREM2D algorithm; ¢ and j represent time-step and
satellite pixel indexes.

2-D Field
Rsur.instij Rsur.instij
from Eqn. 7 =0.0

[

trial. If the corresponding uniform U[0,1] random number
(obtained from the random field) r,, is less than Pgran (Which
is determined as function of Rrgr_insT) then the instanta-
neous satellite retrieval Rga is set a nonzero value determined
stochastically from (7) (discussed next). Otherwise, Rgat is
assigned zero value. Similarly, for a nonrainy reference value
(Rrer_insT = 0.0 unit) Bernoulli trial is used to decide as to
whether the satellite rainfall estimate would be zero or nonzero.
If the uniform random deviate 7,, generated for a given pixel
is less than Pyoraln, then Rgar is assigned a zero value.
Otherwise, the satellite rain rate value is statistically determined
on the basis of the false alarm (i.e., false rain detection) satellite
rain rates’ probability density function ( Dgy)se ). Having defined
the pixels delineated as rainy, satellite rain rate values are
stochastically simulated on the basis of space-time correlated
error fields generated using (7)—(11) and the sequence enumer-
ated in step 3. The procedure may be repeated multiple times to
generate equiprobable ensembles of synthetic satellite retrieval
fields.

III. SREM2D CALIBRATION

Having mathematically formulated the algorithm for
SREM?2D, the next step is to calibrate the model parameters
based on actual sensor retrievals. To demonstrate the algorithm

1515

. ; o
2 m (e}

Study Domam

Fig. 3. Study region in the Southern plains bounded between —100°
W—95° W and 37° N-34° N. At 0.25—-deg resolution, the domain comprises
20 x 12 pixels. The dots show the location of the Oklahoma Meso-network’s
meteorological stations.

in this study, we chose hourly IR rainfall product as the satellite
rainfall source, and corresponding hourly ground radar rainfall
fields as the reference input for SREM2D. In terms of the
IR retrievals, we chose the NASA data product operationally
known as IR-3B41RT (for a brief description see Section II,
step 2). The data resolution was 0.25 deg and hourly. Radar
rainfall fields were retrieved from WSR-88D observations
using the National Weather Service multicomponent precipita-
tion estimation algorithm with real-time adjustments based on
mean-field radar-rain gauge hourly accumulation comparisons
[9]1, [34], [33]. To minimize effects due to complex terrain
and range effects the calibration exercise was performed over
the region of Oklahoma bounded by —100° W-95° W and
37° N —34° N (Fig. 3). We selected a period of 4 months
(May 1, 2002—-August 31, 2002; 2952 hourly time-steps each
with 20 x 12 pixels at 0.25 deg resolution) to determine the
SREM?2D error parameters. Step 1 of SREM2D algorithm did
not apply in this application as both reference and satellite
estimates had the same temporal resolution. About 3% of the
IR data were missing from the archive, and replaced by radar
data. We determined the values and/or functional forms of the
following SREM?2D error parameters: 1) Pran (as a function
of reference rainfall); 2) Pnorain; 3) Diatse; 4) Muinst
(8); 5) SinsT (9); 6) Correlation lengths for the successful
delineation of rain—CLg a1n; and 7) no rain—CLyoraIN; (8)
correlation length for the retrieval error (conditional, when rain
>0.0 unit)}—CLggT ; and (9) the lag-one hourly autocorrela-
tion, p, of satellite bias.

Table I summarizes the fine-scale multidimensional error
structure of IR-3B41RT. We computed the multiplicative bias
(8) of the conditional retrieval by normalizing the total rainfall
volume estimated by the sensor over the entire study period
to that estimated by radar. Since the retrieval is conditional,
only pixels that are successfully delineated as rainy by the
sensor are considered. Due to the long time series, this yielded
a climatologic estimate of satellite bias representative of the
steady-state bias value for the region. About 125% overestima-
tion of rainfall volume (multiplicative bias, MUinsT = 2.25)
is observed with a log-error standard deviation of 1.27. Consis-
tently with previous observations by Hossain and Anagnostou
[15], the probability distribution of rainfall during false alarms
appeared to follow an exponential density function with mean
(1/)) equal to 1.43 mm/hr. The functional form of Pran was
found to follow a sigmoidal function (Fig. 4, right panel) with
parameters A and B shown in Table I. Large spatial structures
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TABLE 1
SREM?2D PARAMETERS EVALUATED FOR IR-3B41RT DATA AT 0.25- AND
0.5-deg RESOLUTION

Satellite Data IR-3B41RT

Scale (degree) 0.25° 0.50°

Multiplicative Bias 2.25 2.35

Gaussian Std. Deviation 1.27 2.53
1, 1.43 mm/hr 0.95 mm/hr

False Alarm mean (;)

POD parameters A(B) 2 1.1(1.5) 1.05(2.0)

PODoran (%) 95.60 94.60

Retrieval Error* Correlation Length 170.0 km 250.0 km

(Spatial) *

Successful No-rain Detection Correlation 220.0 km 220.0 km

Length’ (Spatial)

Successful Rain Detection Correlation 170.0 km 180.0 km

Length® (Spatial)

Lag-one (hourly) Correlation of retrieval 0.62 0.72

error *(p) (temporal)

! Dyuise( Rsar)=2exp(-ARg,7) [Exponential distribution assumed on the basis of [15]

1

2 POD(RWSK-)M”)= . [
A+exp(=BRyg; 5)

Sigmoidal function assumed on the basis of [15]

3 An exponential autocorrelation model is assumed: C = EXP(-h/C, } where C=correlation; h= distance or time and
Cy= length or time at which C = 0.368

4 Retrieval errors is defined as conditional (when WSR-88D rain rate>0.0 mm/hr)

with correlation lengths in excess of 150 km for the detection
of rain, no-rain and retrieval error were observed (Table I and
Fig. 5).

IV. SREM2D EVALUATION
A. Numerical Accuracy

Fig. 6(a) shows a typical SREM2D-simulated satellite rainfall
field from May 13th, 00:00 hours (UT) (rightmost panel) and
comparisons against the reference input (WSR-88D, leftmost
panel) and true IR (3B41RT, middle panel). SREM2D appears
to preserve the qualitative sanity of the rain fields by mimicking
the observed IR spatial pattern. In Fig. 6(b), we observe that the
rainy and nonrainy area delineation by SREM2D is quite similar
in structure to that observed from sensor data. As part of a nu-
merical consistency check, Table II shows the convergence of
the simulated error statistics of SREM2D as a function of MC
runs for 0.25-deg hourly resolution calibrated parameters. Due
to the long time series (2952 time-steps) the ergodic hypoth-
esis appears reasonably dominant here; 15 SREM2D MC real-
izations are found adequate to converge to the true statistics of
the error structure. Fig. 7 shows the convergence pattern for
a time series one order smaller (295 time-steps) than the entire
4-month study period. Here, convergence to the true error sta-
tistics (only multiplicative bias of retrieval is shown) is found to
require an order higher number of MC runs (~100 runs). It is
evident from Figs. 6 and 7 that for reasonably large (>10 x 10
pixels) fields and sufficiently long (>1000 time-steps) time se-
ries, a parsimonious number of MC realizations in the range
of 10-20 are adequate to statistically characterize the sensor’s
error structure, and provide sufficient ensemble representations
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resolution. Upper left panel—spatial structure of retrieval error (conditional);
upper right panel—temporal structure of retrieval error (conditional); lower left
panel—spatial structure of successful no-rain detection; lower right panel—
spatial structure of successful rain detection.

of error propagation in hydrological applications. For study pe-
riods comprising shorter scales (in space and time), it is impor-
tant to ensure adequate MC runs according to some scaling rule
of thumb based on actual testing of convergence of the SREM2D
error parameters.

B. Scaling Consistency

The scale consistency of SREM2D is assessed using aggre-
gated rainfall fields at coarser resolution (0.5 deg). The approach
is to simulate ensembles (all 15 simulation runs of Table II) of
SREM?2D rainfall fields from WSR-88D reference rain fields at
0.25-deg resolution, and aggregate them to derive error param-
eters (of Table I) at 0.5-deg resolution. To assess the model’s
scaling consistency, the error parameters evaluated at coarse
(0.5 deg) resolution are compared to corresponding error pa-
rameters calculated on the basis of comparisons of aggregated
(true) IR-3B41RT versus WSR-88D data at the same resolution.
To facilitate the comparison we define a scaling coefficient as
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(a) Examples of SREM2D simulated fields (rightmost) versus WSR-88D (leftmost) and actual IR (3B41RT) (middle panel) for May 13th, 00:0 Hrs, 2002

(UTC). (b) Maps of the error in retrieval (absolute difference) (left panels) and rainy and nonrainy area delineation (right panels) for the May 13th, 000 Hrs (UT).
Upper panels—IR-3B41RT; Lower panels—SREM?2D simulation. Colors have the same significance as in Fig. 1.

the ratio of the error parameters at 0.25-deg to that of 0.5-deg
resolution.

Table III shows comparisons of the scaling coefficient values
of SREM2D-simulated and actual data (IR-3B41RT). Accurate
error structure preservation is observed at higher scales for the
spatiotemporal correlation lengths with negligible error ranging
between 5% and 10%. SREM?2D yields an increase in standard
deviation of log-error at the 0.5-deg scale due to the aggregation
of false alarms and rain detection failures, which is also sup-
ported by the actual IR-3B41RT data. In Figs. 8-10, we show
graphical representation of certain error properties for SREM2D
and IR-3B41RT data. The false alarm and rain detection prob-
ability distributions shown in Fig. 8 (left and right panels) ex-
hibit reasonable agreement between SREM2D and actual data.
We note that the probability of rain detection at the aggregated
resolution by SREM2D continues to preserve the idealized sig-
moidal form and is mimicking well actual data at rain rates
higher than 5 mm/hr. In Fig. 9, the spatiotemporal error structure
of the aggregated SREM?2D rain fields agree well with that ob-
tained from aggregation of IR-3B41RT retrievals. The left panel
denotes the spatial correlogram. The temporal dynamics of es-
timation bias (i.e., the temporal corelogram of 1) is accurately
preserved, even at high lags (>200 h) where white noise is ex-
pected to dominate (Fig. 9, right panel). Finally, in Fig. 10, we
show comparisons for the corelograms of successful delineation
for rainy and nonrainy areas.

For a quantitative assessment of the statistical significance
of the scaling consistency, Table IV shows the chi-square
statistic computed from deviations observed between SREM2D
and IR-3B41RT data in Figs. 8-10. Herein, we test the null
hypothesis that SREM2D simulations shown in those figures are
statistically similar to those of IR-3B41RT at the 5% confidence
level. We define chi-square x? as follows:

: (12)
T3B41RT!

2 i (TsrEM2D? — T3B41RTT)”

=2

i=1
where df symbolizes the degree of freedom and subscripts refer
to parameter values for the ¢th degree of freedom. The df rep-
resents the number of data points used to construct the scaling
behavior in Figs. 8-10, and x represents the ordinate values. We
show in Table IV through the chi-squared test that there is suffi-
cient statistical evidence not to reject the null hypothesis at 5%

confidence [22].

C. Comparison With Simpler Error Modeling Approaches

In this section, we compare the scaling consistency of our
proposed model with two simpler error-modeling approaches.
Both of these approaches assume the satellite retrieval to be
perfect in terms of delineation of rainy and nonrainy areas, and
having low, or none (one of the two), spatial and temporal error
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TABLE 1I
NUMERICAL VERIFICATION OF SREM2D (time series = 2952 TIME-STEPS)

Total Pramv Proram Bias Std. Dev Lag-1 False Alarm
Number of @ Multiplicative ~ Gaussian ~ Temporal Mean
Simulation  Rainysg-ssp Correlation  (1/A) mm/hr
Runs =2.5mm/hr p
Model 0.890 0.956 2.20 1.27 0.620 1.430
Input’
1 0.898 0.951 4.10 1.68 0.640 1.415
2 0.896 0.951 2.16 1.24 0.611 1.423
3 0.894 0.953 1.89 1.13 0.640 1.427
4 0.892 0.952 2.10 1.22 0.628 1.428
5 0.895 0.952 2.03 1.19 0.629 1.427
6 0.896 0.952 2.10 1.22 0.626 1.427
7 0.897 0.952 2.01 1.21 0.636 1.424
8 0.898 0.952 2.01 1.23 0.631 1.424
9 0.897 0.952 1.92 1.23 0.625 1.424
10 0.897 0.952 1.93 1.24 0.625 1.425
11 0.898 0.952 1.93 1.24 0.625 1.425
12 0.898 0.952 1.96 1.24 0.625 1.425
13 0.898 0.952 1.96 1.24 0.625 1.425
14 0.898 0.952 1.95 1.24 0.625 1.425
15 0.898 0.952 1.95 1.24 0.625 1.425

1. Model Input is the input parameters to SREM2D at 0.25 degree (Table 1).
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Fig. 7. Convergence of SREM2D multiplicative bias for 295 time-step time
series (data period 1 order smaller than that shown in Table II). One hundred
simulations appear adequate for convergence to the required error parameter (in
this case, multiplicative bias), which, for Table II is found to be 15 simulation
runs.

structure. We name the two simpler approaches to error mod-
eling as N1 and N2. In approach N1, we model only the con-

False Alarm Distribution Probability of Rain Detection
1 T T T T 1

0sl 1 L/ —— SREM2D aggregated_ | - o
: H - --- 3B41RT aggregated g
c
2 06 {1 H o6 £
g 8
D D
o [=}
2 5
g 2
g 3
& o4 1 r Hos4 8
o
02 {1t Jo2
o 2= . . . 0
5 10 15 20 0 5 10

Sensor Rainrate (mm/hr) W SR -88D Rainrate (mm/hr)

Fig. 8. Comparison of the scaling behavior of SREM2D simulations with real
IR-3B41RT data for false alarms and successful detection of rain at 0.5-deg
resolution.

ditional retrieval error (assuming perfect detection) with no spa-
tiotemporal error structure. The systematic (mean) and random
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(variance) error parameters chosen for this purpose are those
shown in Table I. Approach N2 also assumes perfect detection,
but models the conditional retrieval error with the herein spec-
ified spatiotemporal structural parameters as listed in Table I
(notably: CLggT, and lag-one correlation, p). These two sim-
pler approaches are bi-dimensional in the sense that they recog-
nize only the systematic and random error components as the
major constituents of the error structure. They (N1 and N2)
continue to be the backbone of recent hydrologic error propa-
gation studies [29], [38]. Fig. 11 shows a rain field realization
simulated by the two approaches for May 13, 00:00 hours, 2002
[similar to Fig. 6(a) by SREM2D]. We summarize the scaling
coefficients for the N1 and N2 methods in Table IV. While we
observe that the scaling coefficients for the retrieval correlation
length and lag-one hourly correlation are preserved within ac-
ceptable bounds relative to IR-3B41RT data for the approach
N2, poor preservation of the structure for random error (stan-
dard deviation) is observed at the higher scale of aggregation.
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TABLE III
SUMMARY OF SCALING BEHAVIOR OF IR-3B41RT AND SREM2D
IR-3B41RT SREM2D

Scale (degree) 0.25/0.5 Scaling Coeff.” 0.25/0.5 Scaling Coeff."
Multiplicative 2.25/2.35 0.96 1.95/2.00 0.97
Bias
Std. Dev 1.27/2.53 0.50 1.24/1.99 0.62
(Gaussian)
False Alarm 1.428 /0.950 1.50 1.425/0.750 1.90
mean (mm/hr)
Retrieval Error 170.0/250.0 0.68 160.0 / 240.0 0.67
Correlation
Length
(spatial - km)
Lag-one hourly 0.620/ 0.720 0.86 0.619/0.702 0.88
correlation
(temporal)

1. Scaling Coefficient = Ratio of error statistic at 0.25 degree-hourly to 0.5 degree-hourly.

We note more than 100% underestimation of the standard devi-
ation of simulated retrieval error compared to IR-3B41RT de-
rived error for both approaches (/N1 and N2). When compared
to SREM2D (which is below 30%), we observe that the underes-
timation of the random error variability is significant. In the ag-
gregation process, the two simpler approaches fail to mimic the
increase in the standard deviation of random error apparent in
the actual sensor data (Table IV). This underestimation denotes
the importance of modeling probabilistically the satellite error
characteristics in delineating rainy from nonrainy areas. The as-
sessment of hydrologic implications of satellite rainfall error by
those simpler error-modeling approaches (such as N1 or N2)
may deviate even further in error propagation of hydrologic sim-
ulations given the nonlinear nature of the land-atmosphere in-
teraction processes at fine space-time scales. Earlier studies by
Anagnostou [3] have shown that rain retrieval differences can
significantly magnify in the prediction of land surface parame-
ters (soil moisture, runoff, energy fluxes, etc.). Similarly, Hos-
sain and Anagnostou [15] have demonstrated significant sensi-
tivity on the estimation of the water budget and peak runoff in
terms of the sensor’s rain area delineation accuracy, especially
in the case of long lasting storm events (>3 days).

V. CONCLUSION

SREM?2D was developed for generating ensembles of real-
istic satellite rainfall fields. This space-time error model utilizes
higher accuracy “reference” rain fields to characterize the mul-
tidimensional stochastic error structure of satellite retrieval as a
function of scale. Comparison with actual sensor data revealed
that SREM2D is capable of preserving the satellite retrieval error
characteristics across two scales (0.25-0.5 deg) with less than
30% underestimation when compared to actual data. Two sim-
pler, but widely used, approaches of error modeling with no ex-
plicit formalization of the delineation error of rainy/nonrainy
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TABLE 1V
Chi-squared STATISTIC OF THE SCALING BEHAVIOR OF SREM2D SIMULATIONS USING IR-3B41RT AS REFERENCE (TRUTH)

Chi-squared Statistic

False Alarm  Probability of =~ Temporal Spatial Spatial Spatial

Distribution ~ Rain Detection correlogram  Correlogram  Correlogram of  Correlogram of

(Figure 8, (Figure 8, right  for bias of rain rate non-rain rain detection
left panel) panel) (Figure 9, error (Fig. 9, detection error error
right panel) left panel) (Fig. 10, left (Fig. 10, right
panel) panel)
Degrees of 10 10 10 10 10 10
Freedom, df
o 0.1540 0.0689 0.1446 0.0249 0.1083 0.0347
Significance Yes Yes Yes Yes Yes Yes

at 5% level

& . 2
x i—x i .
. (esesuran 6317 ) , where df = degree of freedom and subscripts refer to parameter

i=1 X3pairr?

values for i degree of freedom

TABLE V
SCALING CONSISTENCY OF THE SIMPLER ERROR MODELS (/N1 AND N2)

IR-3B41RT Simpler Error Model

Without Spatio-temporal With Spatio-temporal
structure (N) structure (N2)

Scale (degree)  0.25/0.50 Scale Coeff. 0.25/0.50 Scale Coeff. 0.25/0.50 Scale

Coeff.
Multiplicative ~ 2.25/2.35 0.96 1.83/1.87 0.98 1.83/1.87 0.98
Bias
Std. Dev. 1.27/2.53 0.50 1.27/1.53 0.83 1.27/1.53 0.83
(Gaussian)
Retrieval Error 170/250 0.68 N/A N/A 160.0/220 0.73
Correlation
Length (spatial —
km)
Lag-one hourly  0.62/0.72 0.86 N/A N/A 0.619/0.740 0.83
correlation
(temporal)
areas revealed that preservation of the retrieval error structure Our proposed stochastic modeling strategy offers a more

across scale is not honored. Large underestimation exceeding comprehensive and explicit characterization of satellite error
100% in the random retrieval error was observed. in space and time. Furthermore, the decomposition of error
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structure); right panel—approach N2 (spatiotemporal structure).

structure into nine parameters (or dimensions) also allows
a more complete exploration of the response surface of the
hydrological error propagation (such as error in runoff or soil
moisture simulation) within the satellite rainfall error hyper-
space. An added versatility of SREM2D is that it is independent
of the rain retrieval algorithm; thus, it can consistently apply to
characterize the error structure of any satellite retrieval or com-
bination of sensor estimates. This provides an objective way
to compare competing rain estimation schemes by providing a
quantitative assessment of hydrologic propagation error [15].

An important issue to note about SREM2D is that of regional
dependency of its parameters, and consequently, of the model
global applicability. Parameters controlling the spatial structure
of error in SREM2D may be regionally calibrated using coinci-
dent TRMM-PR rainfall data (Hossain and Anagnostou 2004).
However, the temporal error parameters require calibration with
continuous reference rainfall data, which may be available from
ground observations. Unfortunately, no rigorous global valida-
tion of current satellite rain retrievals (such as the TRMM pre-
cipitation products) has been performed, and it is not known yet
as to whether the existing validation sites are sufficient, or good
enough, to provide global validation of precipitation products
in general. However, there has been significant work on glob-
ally classifying rain systems and finding similarities and dif-
ferences between rain systems from various geographic regions
[11], [31]. Potentially, such work could be used to identify the
model error parameters, based on similarity with other regions,
for the regions where validation sites are not available.

Two studies by Hossain and Anagnostou ([15] and [16])
have shown evidence that concepts formalized in SREM2D can
effectively advance our understanding on the use of high-resolu-
tion satellite data in hydrologic applications. With the detailed
space-time formulation of SREM2D, we hope that several ques-
tions on the hydrologic implications of satellite rainfall data can
now be investigated on the basis of MC data driven experiments.
Examples are: What is the current level of performance of satel-
lite rainfall data for surface hydrologic applications? At what
level would a combined rainfall product need to perform in order
to be more reliable than what it is today? What are the hydro-
logic variables that magnify or dampen in response to satellite
rainfall error propagation? What are the tradeoff relationships
between hydrologic simulation accuracy and satellite rainfall as
space-time scales are increased or decreased? The error model
developed in this paper would facilitate the incorporation of
a wide range of hydrologic model structures, resolutions and
objectives toward optimal integration of remotely sensed rainfall
data in data assimilation systems such as GLDAS for weather
forecasting, and the upcoming GPM for flood forecasting over
ungauged basins.

Comparison of rain fields generated by two simpler approaches. Left most panel—true IR-3B41RT; middle panel—approach N1 (no spatiotemporal

Finally, in addition to the science questions highlighted
above, SREM2D may potentially have some applicability over
ungauged regions in operational (online) frameworks currently
serving society. Given that meteorological satellites on geosta-
tionary platforms have evolved over the years with the capability
to provide high-frequency IR rainfall estimates over the vast
un-gauged regions, an application of SREM2D wherein the
definition of reference rainfall input and sensor estimate output
is reversed should, in principle, yield equiprobable realizations
of surface-based or ground reference measurements. Combined
with the recently reported technique of C-MORPH [21], where
information from the more accurate PM sensors are propagated
by motion vectors derived from IR data, the inverse-SREM2D
method of stochastic recreation of “reference rainfall” may
provide hydrologically useful information in LSM. In addition,
techniques of spatiotemporal disaggregation proposed by Venu-
gopal [37] and Margulis and Entekhabi [27] could be embedded,
in SREM?2D algorithm to study the error propagation of coarser
satellite rainfall datasets such as the Global Precipitation Cli-
matology Project (GCPC) [18]. We caution the reader that our
proposed inverse-SREM2D concept combined with suggested
statistical downscaling techniques requires thorough verification
before we can rightly proclaim its qualification in operational ap-
plications over un-gauged regions. Such a thorough assessment
is underway and we hope to report findings in near future.
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