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This paper addresses the open question - What is an ideal set of error metrics for satellite 

rainfall data that can advance the hydrologic application of the anticipated Global 

Precipitation Measurement (GPM) products overland? Advancing the development of 

hydrologically relevant satellite rainfall algorithms over land requires the use of error 

metrics that are mutually interpretable by hydrologists (users) and algorithm developers 

(data producers). In this study, our primary aim is to initiate a framework for building 

such metrics that data producers can use to provide hydrologists with more insightful 

information on the quality of the satellite estimates. In addition, hydrologists can use the 

framework to develop a space-time stochastic error model for simulating equi-probable 

realizations of satellite estimates for quantification of the implication on hydrologic 

simulation uncertainty. First, we conceptualize the error metrics in three general 

dimensions: 1) temporal dimension (how does the error vary in time?); ii) spatial 

dimension (how does the error vary in space?) and iii) retrieval dimension (how ‘off’ is 

each rainfall estimate from the true value over rainy areas?). We suggest formulations 

for error metrics specific to each dimension, in addition to ones that are already widely 

used by the community. We then investigate the behavior of these metrics as a function 

of spatial scale ranging from 0.04 degree to 1.0 degree for the PERSIANN geostationary 

infrared-based algorithm. We observe that moving to finer space-time scales for satellite 

rainfall estimation requires explicitly probabilistic type of measures that are 

mathematically amenable for space-time stochastic simulation of satellite rainfall data. 

The probability of detection of rain as a function of ground validation rainfall, which can 

be modeled using Bernoulli trials, is found to be most sensitive to scale followed by the 
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correlation length for detection of rain. The coefficient of correlation, frequency bias, 

false alarm ratio and the equitable threat score are found to be modestly sensitive to 

scales smaller than 0.24° lat./long. Error metrics that account for an algorithm’s ability to 

capture rainfall intermittency as a function of space appear useful in identifying the 

optimal spatial scales of application for the hydrologist. We show that our proposed 

conceptual framework can identify seasonal and regional differences in reliability of four 

global satellite rainfall products over the United States that is otherwise not apparent with 

conventional metrics. Hence, we believe that the framework for building such error 

metrics can lay a foundation for better interaction between the data-producing community 

and hydrologists in shaping the next generation of satellite rainfall algorithm being 

developed for the planned Global Precipitation Measurement (GPM) mission.   

 

Keywords: Satellite rainfall, Infrared, Geostationary, Uncertainty, Metrics, Scale, GPM 

and Hydrologic Modeling. 
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1.0 INTRODUCTION 93 

Rainfall is a critical input for hydrologic models that predict the make-up of the 

hydrologic state over land. Because rainfall is intermittent, accurate modeling of the 

dynamic surface hydrologic state requires accurate rainfall data at the highest possible 

resolution. However, given the gradual and global decline of in situ networks for 

hydrologic measurements (Stokstad, 1999; Shikhlomanov et al., 2002), space-borne 

global observations provide the only means to promote our understanding of terrestrial 

hydrology over the vast regions that are ungauged (Hossain and Lettenmaier, 2006).  
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The global importance of satellite-derived rainfall has led to the development of 

an increasing number of satellite-based rainfall products to meet the needs of various 

users. Anagnostou (2004) provides a detailed synopsis of the evolution of current satellite 

estimation techniques over land, while Ebert et al. (2007) summarize several “high-

resolution precipitation products” that are currently available via the internet. 

Recognizing the need for metrics of uncertainty, several recent studies have also been 

initiated to compare the accuracy of various satellite rainfall products over land. For 

example, the International Precipitation Working Group (IPWG) assessed six widely 

available satellite data products using an array of error metrics (Ebert et al., 2007). Hong 

et al. (2006) have evaluated an infrared satellite estimation technique for hydrologic 

applications using error conceptualizations initiated by North and Nakamoto (1989) and 

subsequently formalized by Steiner (2003). Other examples of evaluating satellite rainfall 

uncertainty include: McCollum et al. (2002) on the assessment of bias; Gebremichael and 

Krajewski (2005, 2004) on sampling errors; and Ali et al. (2005) on satellite error 

functions for the Sahel region.  
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While these and other studies of satellite rainfall uncertainty no doubt, have 

advanced the application in terrestrial hydrology to some extent, some issues continue to 

remain open. For example, many studies treat error as a uni-dimensional measure and use 

power law type relationships or models for estimating this aggregate error as a function 

of spatial and temporal sampling parameters (Moradkhani et al., 2006; Hong et al., 2006). 

Such frameworks may be acceptable for estimating the average error over an areal 

domain. However, they do not represent the space-time covariance structure of the 

estimation error that can have significant implications in terrestrial hydrology (Hossain 

and Anagnostou, 2005). Uni-dimensional measures also have limited power in 

articulating the strengths and weaknesses of satellite algorithms that are relevant to 

hydrologic modeling. Also, most studies, such as that of the IPWG (Ebert et al., 2007), 

have typically addressed uncertainty at daily or larger time scales and spatial resolutions 

greater than 20 km, which are somewhat coarse for resolving the evolution of the 

dynamic hydrologic state over land (e.g. for floods and soil moisture).  
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Generally, the satellite data and hydrologic communities tend to characterize the 

accuracy of rainfall data using metrics such as bias, correlation coefficient and standard 

deviation of “error”. Additional measures, such as Critical Success Index (CSI), Heidke 

Skill Score (HSS; Heidke, 1926), Equitable Threat Score (ETS), False Alarm Ratio 

(FAR; Ebert et al., 2007) have seen use in the meteorological community engaged in 

forecasting (for example, the National Weather Service or the European Center for 

Medium Range Weather Forecast). These measures have proved useful in assessing 

satellite rainfall algorithms at scales pertinent for climate modeling, weather prediction or 

even large-scale water management studies. However, with the planned Global 
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Precipitation Measurement (GPM) mission (Smith et al., 2006) and the continued shift 

toward hydrologically more relevant scales (5~10 km and hourly), there is an urgent need 

to investigate metrics that can more effectively advance the use of satellite algorithms for 

hydrology over land, among other uses (Huffman et al., 2004; Lee et al., 2004). Hossain 

and Lettenmaier (2006) have argued that a shift in paradigm is needed to properly assess 

estimates of rainfall from satellite sensors for modeling of dynamic hydrologic 

phenomenon such as flood prediction. The issue is that uncertainties in satellite-estimated 

rainfall cascade non-linearly through the simulation of the terrestrial hydrologic processes 

(Nijssen and Lettenmaier, 2004). This non-linear effect is difficult to model because of 

the prominent discontinuities of the rainfall process in space and time that are observed as 

scales become smaller. 
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In this paper, we therefore ask ourselves the open question - What is an ideal set 

of error metrics for satellite rainfall data that can advance the hydrologic application of 

the anticipated Global Precipitation Measurement (GPM) products overland? The 

satellite rainfall data producing community have long recognized that information on the 

reliability of satellite precipitation estimates is valuable to a wide range of users. Yet, the 

definition of ‘optimal’ use of satellite data is relative to the nature of application. Ebert et 

al. (2007; on page 49) provides a lucidly explained perspective on the diverse accuracy 

requirements. Our pursuit of an answer to the main question leads to a set of additional 

questions: What should be the characteristics of error metrics at hydrologically relevant 

scales? How should they be designed so that they are conveniently interpretable by both 

data producing and hydrologic communities? How should these metrics be packaged into 
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standard satellite data products for best use in hydrologic modeling and decision 

making?  
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Clearly, these questions require error expressions that capture mean behavior 

accounting for space-time correlations and intermittency in the estimated precipitation 

fields. Hence, for the hydrologist, error should be defined in terms of the rainfall and 

tagged to a given space and time scale. We therefore conceptualize that the error metrics 

should be associated, at a minimum, with three general dimensions: 1) temporal 

dimension (how does the error vary in time?); ii) spatial dimension (how does the error 

vary in space?), and iii) retrieval dimension (how ‘off’ is the rainfall estimate from the 

true value over rainy areas?).  

As with any modeling exercise, there is probably no unique way of representing 

error completely. But, we need to recognize that studies of uncertainty in hydrologic 

prediction have usually evolved independently of efforts to characterize uncertainty in 

remote sensing estimates of rainfall. In this study, our aim is therefore to initiate a 

common framework for building such error metrics. In particular, we are motivated to 

build such a framework of multi-dimensional metrics that can mathematically be 

transformed in to a model for simulating equi-probable realizations of satellite rainfall 

data for a given satellite rainfall algorithm. While there are several mathematical error 

models today (such as, Steiner, 1996; Steiner et al.,  2003; Hong et al., 2006), there are 

none, to the best of our knowledge, that remain conceptually flexible enough to allow 

inclusion of additional, or deletion of redundant, error metrics for a given application. 

Hence, our formulation of such a framework is timely for the community. 

 7



183 

184 

185 

186 

187 

188 

189 

190 

191 

192 

193 

194 

195 

197 

198 

199 

200 

201 

202 

203 

204 

205 

 We also emphasize that our framework should not be construed as a dismissal of 

the commonly used metrics (e.g. correlation, bias, RMSE etc.) that currently have 

widespread diagnostic use. Rather, our framework aims to minimize the limitations of 

such metrics for assessment of algorithms at hydrologically relevant scales. In section 2, 

we introduce a set of error metrics originally suggested by Hossain and Anagnostou 

(2006). Overviews of the study region and rainfall datasets (reference and satellite) are 

provided in section 3. In section 4, we present our error assessment across hydrologically 

relevant spatial scales ranging from 0.04° to 1.0° of lat./long. for a particular satellite-

based set of precipitation estimates. The implications on data use are discussed along 

with and the challenges ahead in developing more robust metrics for operational data 

products. Finally, in section 5, we summarize the major findings and recommend future 

work. 

 

2.0 ERROR METRICS FOR SATELLITE RAINFALL 196 

In section 1 we hypothesized that error metrics should quantify, at a minimum, 

three specific dimensions related to rainfall intermittency. Hereafter, we follow up on that 

concept using the error modeling approach first outlined by Hossain and Anagnostou 

(2006). In order to identify the set of error metrics that may be required, we should first 

recognize that the error structure necessary to capture the rainfall intermittency at 

hydrologically relevant scales arises from the physical issues associated with satellite 

rainfall estimation. Satellite-derived estimates are typically instantaneous, area-averaged 

rainfall (Villarini and Krajewski, 2007). Since rainfall is an intermittent process in the 

continuum of space and time, each satellite gridbox will be classified by the algorithm as 
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rainy or non-rainy. When compared to the corresponding ground validation (hereafter 

referred to as ‘reference’) rainfall data, a satellite estimate may fall into one of four 

possible outcomes: 

1) Satellite successfully detects rain (successful rain detection, or “hit”). 

2) Satellite fails to detect rain (unsuccessful rain detection, or “miss”). 

3) Satellite successfully detects the no-rain case (successful no-rain detection). 

4) Satellite fails to detect the no-rain case (unsuccessful no-rain detection, or 

“false alarm”). 

 For the data producing community, there are already accepted metrics in use that 

can quantify these notions of ‘hits’, ‘misses’ and ‘false alarms’. Some examples are, 

Frequency Bias (FB), False Alarm Ratio (FAR) and Equitable Threat Score (ETS). Ebert 

et al. (2007; page 52) provides an introductory background on the formulation of these 

metrics that are often tagged with the satellite estimates by the data producers during 

algorithm comparisons (see also Appendix 2). A limitation, however, associated with 

these metrics is the difficulty in mathematically modeling the property they represent for 

simulation of stochastic realizations of satellite rainfall data. For example, the metric FB 

is supposed indicate the tendency of an algorithm to overestimate or underestimate the 

aerial extent of rainy areas (>1 for overestimation; < 1 for underestimation). Yet, it is not 

clear how one would use the FB measure to simulate satellite-like rainy areas with 

coherent spatial structures. The same applies for FAR, ETS and correlation coefficient. 

Hence, many of the currently accepted metrics have diagnostic power but lack prognostic 

qualities for hydrologic error propagation experiments. Hence, for the satellite algorithm 

developers, these metrics could be considered as a starting point to bridge the currently 
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adopted practice to what follows next in our proposed framework on hydrologically more 

relevant metrics.  

 In Figure 1, we outline our logical thought process in a step by step manner to 

conceptualize the error metrics. The gridboxes that are successfully detected as rainy may 

exhibit three additional properties. Each of these properties may be considered fully or 

partially representative of the three general dimensions outlined in section 1 (page 7). At 

this stage we are not certain how completely these properties represent a given 

dimension. For example, the temporal variation of error probably arises from a mixture of 

the true spatial and temporal correlations of the rain system in its Lagrangian (system-

following) frame of reference, and the advection speed of that frame of reference. Yet, 

we address the temporal dimension (‘how does error vary in time?’) with a simple 

representation – assuming that only the mean field bias (systematic error) is correlated in 

time in an Eulerian (surface-based) frame of reference. Since we wish to build the 

framework first, we feel it is important that we first begin with simplest representation to 

understand the usefulness of the associated error metrics. 

 The successful rain or no-rain detection capability may exhibit a strong 

covariance structure (i.e., the probability of successful detection of a gridbox as rainy or 

non-rainy may be a function of the proximity to a successfully detected gridbox). For 

gridboxes that are detected as non-rainy, the algorithm can be characterized by a marginal 

probability of no-rain. However, for gridboxes that are detected as rainy, the probability 

of successful detection may depend on the magnitude of the rainfall rate. The functional 

dependency of probability of detection of rain may be tagged with reference (ground 

validation) or the estimated rain rate. For example, the hydrologist users would likely be 
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interested in the probability of rain detection benchmarked with respect to ground data. 

On the other, the data producers may find it almost impossible to tag the probability of 

detection of the satellite estimates in a likewise manner for the hydrologist on an 

operational basis due to lack of global scale ground validation data and hence, choose to 

use satellite estimates instead. 

Collecting all these components, and by following our logical modeling steps 

outlined in Figure 1, it appears that one possible set of error metrics is: (1) Probability of 

rain detection (and as a function of rainfall magnitude) - PODRAIN; (2) Probability of no-

rain detection - PODNORAIN; (3)  First and second order moments of the probability 

distribution during false alarms; (4) Correlation lengths for the detection of rain-CLRAIN, 

and (5) no rain–CLNORAIN; (6) Conditional systematic retrieval error or mean field bias 

(when reference rain > 0); (7) Conditional random retrieval error or error variance; (8) 

Correlation length for the retrieval error (conditional, when rain >0.0)—CLRET; and 

finally, (9) Lag-one autocorrelation of the mean field bias. The mathematical formulation 

of each of these nine error metrics are reasonably straight-forward and are provided in 

Appendix 1. We also encourage readers to refer to Hossain and Anagnostou (2006) where 

the more complete description of the nine error metrics and how they are used in a 

mathematical error model to simulate realizations of satellite rainfall data are provided.  

It is not clear to us if these nine metrics can completely describe the error 

structure of satellite rainfall estimation at hydrologically relevant scales. The needs of 

particular users and applications will necessarily drive the evolution to the best 

representation of these error structure parameters.  
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3.0 DATA AND STUDY REGION 275 

We chose the US National Weather Service (NWS) Stage II rainfall data as the 

ground validation rainfall dataset for characterizing the nine error metrics. This dataset 

uses the NWS WSR-88D radar estimates with real-time adjustments based on mean-field 

radar-rain gauge hourly accumulation comparisons (Fulton et al. 1998; Seo et al. 1999, 

2000).  
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For a representative satellite rainfall algorithm, we used data from a recently 

improved version of the Precipitation Estimation from Remotely Sensed Information 

Using Artificial Neural Networks (PERSIANN; Sooroshian et al., 2000). In its original 

version, PERSIANN is a satellite IR-based algorithm with calibration by passive 

microwave precipitation estimates in a neural net framework that produces global 

estimates of rainfall at 0.25° × 0.25°, half-hourly resolution (Hong et al., 2005a). In this 

study, we used an improved version that includes a self-organizing nonlinear output 

(SONO) neural network for cloud-patch–based rainfall estimation. This revised 

PERSIANN algorithm estimates 0.04o, half-hourly rainfall and is available over the 

internet at http://hydis8.eng.uci.edu/GCCS/ (Hong et al., 2005b). This fine sub-

microwave –footprint scale is achieved by using the Climate Prediction Center Merged 

IR Data Set (Janowiak et al., 2001) at full resolution and disaggregating the microwave 

estimates from the original (PERSIANN-produced) 0.12o grids with guidance from the IR 

field before use in training the neural network scheme. 
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To minimize effects due to complex terrain and radar range effects the error 

computation exercise was performed over the region of Oklahoma bounded by 100oW – 

95oW and 37oN - 34oN (Figure 2), which is relatively flat and well-covered by radars and 
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the PERSIANN data. We selected a period of 1 month of data (May 1, 2002 to May 30, 

2002; 720 hourly time steps). 
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4.0 METHODOLOGY AND RESULTS 301 

We assessed the nine error metrics at seven spatial scales: (i) 0.04 degree 

(original); (ii) 0.08 degree; (iii) 0.12 degree; (iv) 0.16 degree; (v) 0.24 degree; (vi) 0.48 

degree and (vii) 1.0 degree. The lower end of this range is considered more relevant to 

hydrologic modeling, while the higher end is typical of many long-term satellite 

precipitation products such as the GPCP products (Huffman et al., 2001) and IPWG 

(Ebert et al., 2007). Note, however, that a statistically significant sample for spatial 

correlation lengths is not possible at the two largest scales due to the size of the study 

region (5.0° X 3.0°) and hence, these values have not been reported. In addition, three 

other commonly used diagnostic metrics such as frequency bias (FB), false alarm ratio 

(FAR) and equitable threat score (ETS) were also evaluated (see Appendix 2 for their 

mathematical formulation).  

Using a very simple cropping technique, the WSR-88D data were remapped to the 

0.04° PERSIANN grid to allow consistent comparisons. We subsequently verified that 

the cropping-based interpolation had no effect on the statistics of the data. The temporal 

resolution was kept fixed at hourly. The spatial scales of aggregation are intentionally 

chosen to be integer multiples of the original 0.04°grid to avoid spatial interpolation 

errors, which was found to be problematic in our preliminary investigation. This choice 

allowed us to focus on the scaling behavior of error parameters purely as a function of 

aggregation, seeking to identify how each of the nine error metrics responds to spatial 
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scaling and whether there exists some minimum scale at which some or most of the error 

parameters remain “acceptable” for the hydrologist user.  

 Ordinarily, one would expect the data producer to use error metrics that are robust 

to changes in scale for the sake of consistency. However, such an approach for evaluating 

error metrics may not provide the best insight into applying satellite rainfall data at 

hydrologically relevant scales. As an example, consider the case when the spatial scale 

for a data product decreases from 0.24 degree to 0.16 degree or 0.12 degree as part of 

algorithm enhancement involving spatial downscaling. The correlation coefficient or 

systematic bias may register a change with scale that is considerably more modest than 

changes in the algorithm’s ability to correctly delineate the rainy or non-rainy areas, 

given the intermittency of the rainfall process. This is because marginal measures such as 

correlation coefficient are parameters that reflect essentially the aggregate effect of the 

algorithm’s ability to retrieve rainfall over the study area (also discussed later). But the 

intermittency has important implications for hydrologic simulation of the terrestrial water 

cycle and must be considered in evaluating the use of satellite data.  

In Table 1, we summarize results for the metrics correlation coefficient, RMSE, FB, FAR 

and ETS. The conditional correlation refers to the cases when both reference and satellite 

rain is non-zero. In general, we observe that the response to spatial scale is similar for all 

these conventional metrics, often appearing somewhat mild at scales smaller than 0.24 

degree. For example, Figure 3 shows that the correlation coefficient behavior graphically 

as a function of scale. The sensitivity of correlation appears modest and yet it remains 

difficult a metric to be used in an error model. A similar assessment can be made for 

FAR, FB and ETS.  Obviously, the hydrologist wishing to quantify the implication of 
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each of these metrics on terrestrial simulation would expect to be able to use it 

mathematically for simulation of equi-probable realizations of satellite data and error 

propagation experiments. 

An interesting pattern emerges in Figure 4 for our proposed metric on probability 

of rain detection – PODRAIN as a function of the magnitude of rain rate. With spatial 

aggregation, both the maximum PODRAIN (at reference rain rates greater than 15 mm/hr) 

and the gradient of probability detection as a function of reference rainfall rate increase 

noticeably, as expected (the highest being for 1.0 degree). Compared to the probability of 

no-rain detection, PODNORAIN clearly exhibits stronger scale dependence (Figure 5). The 

probabilities for both rain and no-rain detection decrease definitively as spatial scales 

decrease below 0.48 degree. Hence, these two metrics, that account for rainfall 

intermittency, add to the existing value of traditional metrics for exploring satellite 

rainfall data application in hydrologic models. 

In Figure 6, we show the spatio-temporal structure for metrics on conditional 

retrieval error (random; upper left panel), mean field bias (temporal autocorrelation 

function; upper right panel), and the spatial correlation functions for rain detection (lower 

left panel) and no-rain detection (lower right panel). Even though the distinction in spatial 

scaling for these spatio-temporal error parameters is weak at the scales considered, these 

metric can be used coherently in an error model to simulate realistic space-time 

covariance structure of satellite rainfall data (Hossain and Anagnostou, 2006). If 

correlation lengths in space and time are computed (assuming that an exponential model 

is appropriate; see Appendix 1), a more informative picture emerges (Figure 7). We 

observe a clear sensitivity of the correlation length to spatial scales, with the correlation 
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length for rain detection being the most sensitive. The lag-one (hourly) temporal 

correlation of mean field bias however remains insensitive to scale as would be expected 

since the domain’s area is the same for all grid sizes. These results demonstrate that the 

suggested error metrics on rain detection/delineation correlation lengths give insight into 

the useful spatial scales for applying satellite-based rainfall in hydrologic models. While 

the assessment of the direct implications of these metrics on hydrologic modeling is 

beyond the scope of this study, Hossain and Anagnostou (2004) have shown that an 

improvement in the probability of rain detection can yield substantial improvements in 

flood prediction at the 0.1o scale for saturation-excess watersheds in the Alps. Intuitively, 

the same can be expected of Hortonian watersheds where spatial pattern of the rainy areas 

along with the rain rate and soil’s infiltration capacity dictate the propensity of a region to 

produce direct runoff. 

 Finally, in order to demonstrate the value of our proposed error building 

framework for distinguishing the strengths and weaknesses of existing algorithms, we 

assessed four global satellite rainfall products. These were: 1) NASA’s Infrared Rainfall 

(IR) product 3B41RT (Huffman et al., 2007); 2) NASA’s Merged Microwave Rainfall 

product 3B42RT (Huffman et al., 2007); 3) NOAA CPC Passive Microwave Rainfall 

product CMORPH (Joyce et al., 2004), and 4) PERSIANN. Error analysis was performed 

for the year 2004 over two regions in the US known to have a distinct hydro-climatology 

– i) Mid-western US (a semi-arid zone), and ii) Florida (sub-tropical zone modulated by 

coastal effects). WSR-88D Stage-II rainfall data was used as reference for ground 

validation data. Tables 2a and 2b show a summary of correlation, standard deviation of 

error and the lag-one autocorrelation of mean field bias. In Figure 8, the variation of 
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PODRAIN during the winter (January and February) and summer (June, July and August) 

is shown. It is very clear from the tables 2a and 2b that the correlation metric fails to 

highlight any major differences in quality among the algorithms as a function of region 

and season. On the other hand, the lag-one autocorrelation and the PODRAIN show clear 

sensitivity across algorithms, regions and seasons.  
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5.0 CONCLUSION AND FUTURE NEEDS 396 

 Representing the error structure of satellite rainfall as a function of scale against 

quality-controlled ground validation datasets remains a critical research problem. 

Hydrologists and other users, to varying degrees, need to know the errors of the satellite 

rainfall data sets across the range of time/space scales over the whole domain of the data 

set. In this study, we investigated the behavior of a suggested set of error metrics that 

were linked primarily to rainfall intermittency for a microwave-calibrated geostationary 

infrared based algorithm. In general, the conventional error metrics such as correlation 

coefficient, frequency bias, false alarm ratio and equitable threat score appeared to have 

similar levels of sensitivity to scale. Yet, the use of these common metrics for simulating 

probabilistic realizations of satellite rainfall with realistic space-time covariance 

structures is not feasible. This limits the value of the metrics to the hydrologist who may 

choose to probabilistically quantify the implications of each metric on overland 

hydrologic simulations. The probability of detection of rain and its functional relationship 

to ground validation rainfall were found to be the most sensitive to scale followed by the 

correlation length for detection of rain. These specific error metrics appear informative 
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430 
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433 

for identifying the useful scales for data integration over land and can also be used in a 

stochastic error model.  

 The data sets envisioned for GPM pose significant opportunities for hydrologists, 

but with associated challenges. Specifically, effective assessment frameworks and 

metrics for satellite precipitation data must be developed that enhance GPM’s utility for 

land surface hydrology and are jointly defined by the hydrologic and data-producing 

communities. While we have shown some tangible examples of error metrics and their 

potential value in gauging utility, more work is needed to define hydrologically relevant 

metrics that can connect more directly to the physics and geometries of satellite rainfall 

estimation.   

 The practicality of the approach presented in this paper can be questioned because 

the details likely vary by region and season, and because many regions lack the necessary 

ground validation data to develop region-specific error representations. However, it 

appears conceptually feasible to build on work already accomplished on global 

classification of precipitation systems (Petersen and Rutledge, 2002). In addition, it is 

possible to use the TRMM Precipitation Radar (PR) as the reference for the spatial 

domain (e.g., Hossain and Anagnastou, 2004), and apply a recent approach suggested by 

Bellerby and Sun (2005) based on transfer of probability distribution functions for the 

temporal domain. Another approach could be the use of geostatistical simulation 

techniques such as ordinary or indicator kriging to transfer error metrics from a ground 

validation site to ungauged regions under the assumption of stationarity of the metric 

values. 
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456 

 A challenge that remains is to choose a small set of error parameters that enable 

practical use of the uncertainty information and capture the time/space structure of the 

uncertainties. At this level of complexity it might be best to establish functional forms for 

the error metrics and supply coefficients for data- and algorithm-driven choices for large 

regions and seasons. In some cases average or “climatological” coefficients might 

suffice, while in other cases routine updates as a function of time might be required. 

Given this information a user could easily estimate the errors that correspond to the 

time/space scale of their application. In particular, a hydrologist could identify the 

necessary scale of aggregation of satellite rainfall data to achieve a specified level of 

accuracy that would minimize error propagation in a hydrologic model (Harris and 

Hossain, 2007). 
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APPENDIX 1 592 
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Formulation of Error Metrics 

 
Consider first, the following confusion matrix for hits and misses associated with 

satellite rainfall estimates: 

                               Truth/Reference  

                                      Rainy Gridboxes             Non-rainy Gridboxes 

                                        NA (HIT)                   NB (MISS) 
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 Probability of Detection for No Rain (PODNORAIN): 
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 We also define the (successful) rain detection probability, PODRAIN, as a function 

of rainfall magnitude of either the reference rainfall or satellite estimate. The functional 

form is usually identified through calibration with actual data (see Hossain and 

Anagnostou, 2006).  The PODNORAIN, is the unitary probability that satellite retrieval is 

zero when reference rainfall is zero, which is also determined on the basis of actual data.   

A probability density function (Dfalse) is defined to characterize the probability 

distribution of the satellite estimates when there are misses over non-rainy areas.  This 

function is also identified through calibration on the basis of actual sensor data. Hossain 

and Anagnostou (2006) have reported that this Dfalse probability density function typically 

tends to appear exponential. Hence, both the moments (first and second) can be defined 
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617 

618 

619 

620 

using only one parameter of the distribution, λ.  This can be computed using the chi-

squared or maximum likelihood method. 

To identify the correlation lengths of error (i.e., how does the error vary in space) 

a simple exponential type auto-covariance function can be assumed.  The correlation 

length (the separation distance at which correlation =
e
1 = 0.3678) is then determined on 

the basis of calibration with actual data over a large domain (the size of Oklahoma in this 

study). For identifying the spatial correlation length of rain detection, CLRAIN (or, no-rain 

detection - CLNORAIN) from data, all successfully detected rainy (non-rainy) pixels are 

assigned a value of 1.0 while the rest has a value of 0.0. The empirical semi-variogram is 

then computed as follows: 
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    (3) 

where z(xi) and z(xi+h) are the binary pixel values (0 or 1) at distance xi and xi+h, 

respectively and h is the lag in km. n represents the number of data points at a separation 

distance of h. The term γ(h) is the semi-variance at separation distance h. Assuming that 

the empirical variogram is best represented by an exponential model, the functional 

parameters describing the spatial variability can be fitted as follows, 

                                                                     (4)  )1( )( /
0

CLhecch −−+=γ

where c0 represents the nugget variance, c is the sill variance and CL is the distance 

parameter known as “correlation length”. Conversely, the correlation function is modeled 

as, C = EXP(-h/CL), where C is the correlation.  

 For identifying the correlation length for retrieval error, CLRET, a similar set of 

steps are adopted as above for rain/no rain detection, with the exception that the binary 
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values (0-1) are no longer pertinent. Instead, one computes the correlation length in terms 

of retrieval error defined as the difference between reference and satellite estimate as 

described below.  

The conditional (i.e., reference rainfall >0 unit) non-zero satellite rain rates, RSAT, 

can be statistically related to corresponding conditional reference rain rates, RREF, as, 

                                                             .  SINSTREFSAT RR ε−=                 (5) 644 
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where the satellite retrieval error parameter, εs, is assumed to be log-normally distributed. 

It is up to the data producers to verify the assumption of log-normality. The advantage of 

such an assumption is that a log transformation [log(RSAT)-log(RREF-INST)] of Equation 5 

transforms the εs to a Gaussian N(μ,σ) deviate, ε, where μ and σ are the mean and 

standard deviation of retrieval error, respectively. 

 The retrieval error parameter ε is both spatially and temporally auto-correlated. 

The spatial aspect has already been discussed earlier in this appendix. For temporal 

correlation, a lag-one autocorrelation function is used to identify the temporal variability 

of μ (i.e., conditional satellite rainfall bias). 
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APPENDIX 2 662 
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668 

Formulation of some common error metrics 

 

 Using the terminology adopted by Ebert et al. (2007), a gridbox can be classified 

as a hit (H, observed rain is correctly detected), miss (M, observed rain is not detected), 

false alarm (F, rain detected but not observed), or null (no rain observed or detected). 

 The frequency bias (FB) is defined as, 

 FB=
)(
)(

MH
FH

+
+         (6) 669 

670  The false alarm ratio (FAR) is defined as, 
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)( FH

F
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672  The equitable threat score (ETS) is defined as, 
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 Where, He=(H+M)(H+F)/N and N=the total number of gridboxes 
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8.0 TABLES 683 

Table 1. Some commonly used error metrics as a function of spatial scales degrees of 

lat./long.).  

684 

685 

686 

687 

688 

689 

690 

691 

692 

693 

694 

695 

696 

697 

 

 0.04o  0.08o 0.12o 0.16o 0.24o 0.48o 1.0o 
Correlation 
(Unconditional) 

0.386 0.383 0.393 0.401 0.418 0.469 0.569 

Correlation 
(Conditional) 

0.272 0.298 0.319 0.334 0.361 0.437 0.547 

Root Mean 
Squared Error 
(mm hr-1) 

4.708 3.933 3.530 3.230 2.776 1.98 1.25 

Frequency Bias 
(FB) 

1.524 1.405 1.423 1.419 1.460 1.548 1.677 

False Alarm 
Ratio (FAR) 

0.686 0.634 0.619 0.601 0.5804 0.5370 0.5066 

Equitable 
Threat Score 
(ETS) 

0.205 0.235 0.245 0.255 0.271 0.302 0.306 
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Table 2a. Summary of some error metrics over Oklahoma during winter and summer of 
2004. 

698 
699 
700 

701 
702 
703 

704 
705 
706 

707 

 
Winter        

 Correlation (conditional) 

Error Std Dev 
(conditional)  
(mm/hr) lag-one correlation 

CMORPH 0.226   2.19  0.540323  
3B41 0.106   1.89  0.855313  
3B42 0.18   1.95  0.467897  
PERSIANN 0.268   1.58    
        
Summer        

 Correlation (conditional) 

Error Std Dev 
(conditional) 
(mm/hr) lag-one correlation 

CMORPH 0.251   2.47  0.641784  
3B41 0.274   2.31  0.911418  
3B42 0.216   2.32  0.491956  
PERSIANN 0.303   1.72    

 
Table 2b. Summary of some error metrics over Florida during winter and summer of 
2004.  
Winter        

 Correlation (conditional) 

Error Std Dev 
(conditional) 
(mm/hr) lag-one correlation 

CMORPH 0.195   2.41  0.6277  
3B41RT 0.102   2.18  0.9603  
3B42RT 0.121   2.18  0.5635  
PERSIANN 0.159   1.79  0.7210  
        
Summer        
 Correlation (conditional) Error Std Dev lag-one correlation 
CMORPH 0.153   2.52  0.4282  
3B41RT 0.219   2.38  0.8959  
3B42RT 0.220   2.29  0.3712  
PERSIANN 0.248   1.84  0.7105  
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    Rainfall as an Intermittent Process 
 
 
  
 RAINY AREAS     NON-RAINY AREAS               
 
 
  How well does satellite data delineate the rainy/non-rainy areas? 
   
 
   HIT?   MISS?    HIT?    MISS?          
 
 
 
          Probability of Detection                         Probability of Detection          False Alarm 
          of Rain            of No-Rain                       (Probability Distribution 
         (As a function of magnitude of         (Fixed – marginal value)              parameters)    
         reference or satellite rainfall)    (2)    (3) 
                     (1) 
 
 
    How does the error vary in space? 
 
 
  Correlation Length    Correlation Length 
  of Successful Detection               of Successful Detection 
  of Rain (4)     of No-Rain (5) 
 
 
 
  How ‘off’ is rainfall estimate from true value over rainy areas? 
 
 
    Systematic and Random Errors 
    in Retrieval 
        (6) and (7) 
 
 
    Correlation Length of Retrieval 
               (8) 
 
 
    How does the error vary in time? 
 
 
           Temporal Correlation of Systematic Error in Retrieval 
                   (9) 

708 
709 Figure 1.  The logical thought process to building the conceptual framework for 
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hydrologically relevant error metrics. Numbers in parentheses denote the metrics 
numbered in section 2. 
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Figure 2. Study region over Oklahoma bounded by 100oW – 95oW and 37oN - 34oN. 

[The yellow dots show the location of the Oklahoma Meso-network meteorological 

stations with gauge rainfall data for WSR-88D radar calibration. Red dots indicate the 

location of WSR-88D radars inside Oklahoma; circles approximately indicate coverage 

with 100km radius]. 
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Figure 3. Correlation coefficient of satellite rainfall data with WSR-88D radar rainfall as 

a function of spatial scale. 
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Figure 4. Probability of rain detection as a function of reference (WSR-88D) rainfall rate 

and spatial scales. 
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Figure 5. Comparison of scaling behavior of maximum probability for rain (at rain rates 

>15 mm/hr) and marginal probability of no-rain detection. 
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Figure 6. Spatio-temporal metrics as a function of spatial scales. Upper left panel – 

spatial correlation function for conditional retrieval error (rain> 0); Upper right panel – 

temporal correlation function for mean field bias; Lower left panel – spatial correlation 

function for rain detection and Lower right panel – spatial correlation function for no-rain 

detection. Note: spatial correlation functions are not reported at scales 0.48 degree and 

1.0 degree due to the small spatial sample available over the study region. The separating 

distance is reported in km by making an approximate assumption that 1 degree is 

equivalent to 100 km.  
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770 

Figure 7. Correlation lengths and lag-one autocorrelation as a function of scale 

(assuming an exponential model is appropriate to describe the correlation function in 

space). [Note: spatial correlation lengths are not reported at scales 0.48 degree and 1.0 

degree due to the small spatial sample available for the study region.] 
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Figure 8. Probability of detection of rain (PODRAIN) as a function of season, region, algorithm 

and reference (GV) rain rate. Left panels – Oklahoma (semi-arid hydrology); Right panels – 

Florida (coastal hydrology). 
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