
Software Design Documentation
STEVE 2.0
Stochastic Theory Education through Visualization Environment
Robert Florence

July 21, 2008

Table of Contents

1. Introduction .
2

1.1 Purpose. .
2

1.2 Scope .
2

1.3 Definitions, Acronyms, and Abbreviations.
2

1.4 Overview. .
2

2. Design Entities. .
3
2.1 Simulation Program. .
3
2.1.1 Function .
3
2.1.2 Interfaces .
3
2.1.3 Processing .
3
2.1.4 Data .
3
2.2 Window .
3
2.2.1 Function .
3
2.2.2 Interfaces .
4
2.2.3 Processing .
4
2.2.4 Data .
5
2.3 Input Form. .
6
2.3.1 Function .
6
2.3.2 Interfaces .
6
2.3.3 Processing .
6
2.3.4 Data .
7
2.4 Visualization .
8
2.4.1 Function .
8
2.4.2 Interfaces .
8
2.4.3 Processing .
8
2.4.4 Data .
9
2.5 Parameter .
10
2.5.1 Function .
10
2.5.2 Interfaces .
10
2.5.3 Processing .
10
2.5.4 Data .
10
2.6 Color .
10
2.6.1 Function .
10
2.6.2 Interfaces .
10
2.6.3 Processing .
10
2.6.4 Data .
11
1. Introduction

1.1 Purpose
The purpose of this document is to explain the design and implementation of the STEVE 2.0 program.

1.2 Scope
The project provides a GUI to input values into a provided simulation program and a visualization for the output of the simulation. After the user provides various input values, the program executes the simulation code and displays two animated maps. One map is based on data generated by the simulation code with default input values, and the second map is based on data generated with the user’s input values. The project was created using the C++ programming language with the Windows API. OpenGL was used for the visualization display, and GLUT was used to draw text inside the OpenGL window. The provided simulation program was written in Fortran. The project has been tested with the Windows XP and Windows Vista operating systems.

1.3 Definitions, Acronyms, and Abbreviations
API: application programming interface
GUI: Graphical User Interface
GLUT: OpenGL Utility Toolkit
OpenGL: 2D and 3D graphics API
RGB: Red, Green, Blue format for representing a color

1.4 Overview
This software design documentation is divided into two main sections: the introduction and the design entities. The introduction provides background information needed to understand the document. The design entities section describes the entities used in the program implementation, and each entity is further broken down into sections for its basic function, interfaces with other entities, detailed processing, and data elements.

2. Design Entities

2.1 Simulation Program

2.1.1 Function
The Simulation Program is separate from the STEVE program (“simul/simulation_fast.exe”). It executes a simulation with the input values from the Input Form, and its output is read by Visualizations.

2.1.2 Interfaces
The Simulation Program is executed by Window. It reads the list of input values from the “simul/params.dat” file written by the Input Form. After it finishes the simulation, its output file (“simul/output.dat”) is read by the custom Visualization.

2.1.3 Processing
The detailed processing of the Simulation Program is not relevant to the project. It is a “black box” entity, so any variation of the simulation program can be substituted in its place as long as it uses the same input and output formats.

The Simulation Program reads the parameters from “simul/params.dat” generated by the Input Form as well as simulation input from “simul/input.dat”. The latter file is not used in any way by the STEVE program. It then writes the output of the simulation to “simul/output.dat”. Also, in order to render the default visualizations, the file “simul/default.dat” must be created by executing the Simulation Program with the default parameter values and the maximum simulation period. The resulting output file should be renamed to “default.dat”. This only needs to be done once when a new Simulation Program is used in the project.

2.1.4 Data
The data elements of the Simulation Program, excluding the files mentioned in section 2.1.3, are not relevant to the project.

2.2 Window

1.1.1 Function
Window is the main part of the program. It creates the window, menu, Input Form, and Visualizations. It handles the Windows message loop and messages for itself and the Input Form. Window manages communication between the Input Form, the Simulation Program, and the Visualizations. It also enables OpenGL for the Visualizations and controls their animation.

1.1.2 Interfaces
Window creates the Input Form at startup and two Visualizations after a simulation has been run. It handles window messages for the Input Form and calls Input Form functions when the corresponding messages are received. Window is responsible for executing the Simulation Program when the “Start” button of the Input Form is pressed. Lastly, it draws the Visualizations as well as the map axes and color bar.

1.1.3 Processing
When the program is executed, Window creates and registers the window class (Windows API, not this design entity). It then creates the main window for the program, where the Visualizations will be drawn, and the parent window for the Input Form. Window instantiates the Input Form and creates its windows. It also creates a shell execution info structure to run the Simulation Program.

Window enables OpenGL in its main window for the Visualizations by getting a handle to a device context, a pixel format that is appropriate for both the graphics being drawn and the monitor, and creating a rendering context. OpenGL commands can then be executed and will be drawn inside the main window. OpenGL is disabled when the program exits by deleting the rendering context.

Window handles the message loop for itself and the Input Form. The loop continues until the program quits. If there is a message waiting in the message queue, it is sent to the WndProc function. Otherwise, Window draws the Visualizations. The WndProc function handles any Windows messages, including when a button in the Input Form is pressed, when a menu item is selected, when the program window is resized, and when the program window is closed. When the Start button in the Input Form is pressed, Window tells the Input Form to check the user input values. If the test passes, the Input Form writes the user input values to the Simulation Program’s input file (“simul/params.dat”). A small “Please Wait” dialog box is displayed while the simulation program is running. The Simulation Program is then executed using the shell execution info created in the WinMain function. The program waits until the Simulation Program finishes. This is accomplished by a loop that checks for any Window messages to the “Please Wait” dialog box, handles the messages if there are any available, and then waits until either the Simulation Program finishes or a new Window message is added to the message queue. The only message handled by this loop is the message generated when the user clicks the “Cancel” button on the dialog box. The loop checks if the “Cancel” button has been pressed and if so, the Simulation Program is terminated and the program resumes its original execution. After the simulation finishes (if it was not canceled), the time it took to run is displayed by the Input Form, and two new Visualizations are created. The default visualization is created from a pre-made output file (“simul/default.dat”) generated by the Simulation Program with the default input values, and the custom visualization is created from the new output file of the Simulation Program (“simul/output.dat”).

The WndProc function also handles messages from the program’s menu by calling the appropriate Input Form functions or opening help documents. It creates dialog boxes for the “Report a Bug” and “Acknowledgements” menu items. These dialogs, along with the “Please Wait” dialog box displayed while the simulation is running and the menu itself, are resources created in resource.rc. The “Report a Bug” and “Acknowledgements” dialog boxes have separate message handler functions called RepBugDlgProc and AckDlgProc, respectively. Both functions handle the message to remove the dialog box when it is closed. AckDlgProc additionally loads the Tennessee Tech logo from “img/TTULogoSm.bmp” when the dialog box is created and launches the default web browser to the project’s website when the URL is clicked. When the main window is resized, WndProc handles the message and calls the resizeWnd function. This function extends the Input Form to the bottom of the resized window and resizes the OpenGL viewport to the new dimensions of the window minus the space taken up by the Input Form. It also sets the OpenGL orthographic projection, allowing the Visualizations to be drawn in two dimensions instead of three.

Window draws the Visualizations in the message loop and controls their animation. The map axes and color bar are always drawn, and both Visualizations are drawn if they have been created. If the Back button is pressed in the animation controls of the Input Form, the frame of both Visualizations is decremented. If the Forward button is pressed or the animation delay time has passed, the frame of both Visualizations is incremented. The animation delay time is measured in clock ticks since the program started. If the animation is not paused, the animation delay is retrieved from the Input Form in seconds and converted to the next number of clock ticks to advance the frame.

1.1.4 Data
Window stores handles to the main program window (HWND), the parent window of the input form (HWND), the device context for OpenGL (HDC), and the rendering context for OpenGL (HGLRC). It contains information required to execute the Simulation Program (SHELLEXECUTEINFO). Window records whether or not the Simulation Program has been canceled (BOOL) to know if it needs to terminate the Simulation Program or keep waiting for it to finish. It also stores references to the Input Form (InputForm*) and the default and custom Visualizations (Visualization*). For the animation, Window tracks the state of the Input Form’s play/pause button (BOOL) and the time to draw the next frame in the animation (clock_t).

1.2 Input Form

1.2.1 Function
The Input Form class creates a GUI for the user to enter input values to send to the Simulation Program, start the Simulation Program, and control the animation of the Visualizations. It also writes the parameters to the Simulation Program’s input file. Input Form can load or save the user’s parameters to a user-defined file.

1.2.2 Interfaces
Window creates an Input Form and handles all window messages sent to the Input Form. The Input Form class creates a list of Parameters for all input values needed by the Simulation Program.

1.2.3 Processing
Input Form’s constructor sets the parent window of the form elements and creates the list of Parameters, giving each Parameter its name and other values. The parent window must be created before the Input Form. The list of Parameters is read from the file “simul/paramInfo.dat”. The first line of this file must always be the number of Parameters in the list. The following line is the column headers for each Parameter’s name, minimum, maximum, and default. This line is ignored. Input Form reads each remaining line and creates a Parameter with the information from the line. The name of the Parameter must be separated from the minimum value by at least one tab. All characters up to the first tab in the line are stored as the Parameter’s name. By using this file to create the list of Parameters, the number and type of Parameters can be changed to allow changes to the Simulation Program.

The createWindows function is called by Window after the Input Form is instantiated. This function displays the list of Parameters in the parent window, each with a name (static), default value (static), and user input value (edit). A “Start” button is created below the list. A box to control the animation of the Visualizations is created below the Start button, with three buttons to move back one frame, play/pause, and move forward one frame. A track bar is created to control the speed of the animation. The images for the animation buttons are loaded from the corresponding files in the “img” folder. An empty static field is created to display the simulation generation time after a simulation has been completed. The Tennessee Tech logo is loaded from “img/TTULogo.bmp” and displayed on the bottom. When the Input Form is created or when it is reset through the program’s menu, all user input values are set to the default value of the respective Parameter.

Before the Simulation Program is executed, all input values must be checked to make sure they are between the parameters’ minimum and maximum values. If one or more of the input values are invalid, an error message will appear listing all invalid values and Window will not execute the Simulation Program. Input Form writes the user input values to a file which will be read by the Simulation Program (“simul/params.dat”). Once the Simulation Program completes, Window will calculate the time it took to run, and Input Form will display the time in “mm:ss” format.

The Input Form class also has capabilities to load and save the user’s list of input values for later use. These functions open a standard Windows “Open” or “Save As” dialog box, and either set the user input values in the GUI to the values in the file or write the user input values to the file. In the animation controls, Input Form alternates between play and pause when the play/pause button is pressed and changes the image displayed in the button accordingly. Input Form also calculates the time between each frame of the Visualizations based on the position of the animation speed track bar. There are ten positions on the track bar, with the right position representing 0.33 seconds per frame and each additional position to the left adds 0.33 seconds to the time between each frame.

1.2.4 Data
Input Form stores the handle to its parent window (HWND). This window is created before the Input Form and cannot be changed after the Input Form is created. The Input Form class also stores handles to the play and pause images (HGDIOBJ), which are needed when the play/pause button is pressed to alternate images. Lastly, this class stores the number of Parameters (int) and the list of Parameters (Parameter**) for the required input values of the Simulation Program. This array is dynamically allocated in the Input Form constructor and cannot be changed after the Input Form is instantiated.

1.3 Visualization

1.3.1 Function
The Visualization class draws all OpenGL elements in the program, including the map axes, the color bar, and the output map of the Simulation Program. It reads the output file of the Simulation Program and draws a map of the simulation at each time step.

1.3.2 Interfaces
The Window class creates two Visualizations for the default and custom maps. It also controls the animation of the maps. The output file of the Simulation Program (“simul/output.dat”) is read for the custom Visualization, and the default output of the Simulation Program (“simul/default.dat”) is read for the default Visualization. It uses the Color class to store the color for each grid in the map.

1.3.3 Processing
When a Visualization is created, it reads the output file of the Simulation Program and stores the values in a three dimensional array of floats. The first dimension of the array is the time step, which is given as a parameter to the constructor, followed by the row and column of each value. The array is dynamically allocated and is deleted when the Visualization is deleted.

Visualization draws the map at the current time step with the draw function. The top left corner of the area to draw the map is given to draw the map in the top or bottom map area. These parameters should always be the predefined constants MAP1_LEFT, MAP1_TOP or MAP2_LEFT, MAP2_TOP. The current time period of the Visualization is displayed in the center of the GL window. To make the gradients smooth, each grid is divided into four triangles. The color for each value in the array is set at the vertex in the center of the grid. Looping through all but the last row and column, the values in the map at (row+1, col), (row, col+1), and (row+1, col+1) form a square. The colors for these four values are averaged, and a fifth vertex is created in the center of the square, where the grid lines intersect. The five vertexes are then connected by triangles. A total of 16 triangles are drawn for all interior grids, connecting them with all 8 adjacent grids. When this loop finishes, a small border (0.05 GL units) still remains undrawn in the map. Because there are not values outside the map to get four color values, the outer edges cannot be drawn in the same way as the center of the Visualization. To draw the vertical edges, rectangles are drawn connecting each grid with the grid below it. The top two vertexes are set to the color of the upper grid, and the bottom two vertexes are set to the color of the lower grid. The horizontal edges are drawn in the same way. This still leaves an undrawn square in each corner with a side length of 0.05 GL units. These squares are filled with the color of adjacent corner grid of the map.

The functions to draw the map axes and the color bar are static and can be called without an instantiated Visualization class. To draw the map axes, the drawAxes function receives the top left corner of the area to draw the axes in the same way as the draw function. The axes are labeled “Default Map” or “Custom Map” depending on the given coordinates. A grid line is drawn every 0.1 OpenGL units, and every four grid lines extends a little farther out of the map and is labeled. Each grid represents 25km on the map. To draw the color bar, a large rectangle is drawn from the top of the top map to the bottom of the bottom map. The rectangle is divided into five smaller rectangles, with the color gradient from red at the top, to yellow, green, cyan, blue, and finally white at the bottom. Each interval is labeled and represents 10 mm/hr. The top red interval is labeled “50+ mm/hr” to show that all values greater than 50 are colored red.

When the draw function needs to determine the color of a value in the map, the getColor function interpolates the color based on the color bar. The color bar of white, blue, cyan, green, yellow, and red allows the RGB value of the color to be determined exactly because each red, green, and blue value is either 0.0 or 1.0 for these colors. For values in the range (0, 10], the blue value is always 1.0, and the red and green values are interpolated from 1.0, if the value is 0.0, to 0.0, if the value is 10.0. The equation “1 – value/10.0” gives this output. The value is divided by 10.0 because the interval between white and blue is 10.0 mm/hr. For values in the range (10, 20], the red value is always 0.0, the blue value is always 1.0, and the green value is interpolated from 0.0 to 1.0. The equation “(value – 10.0)/10.0” gives this output. The subtraction is needed to get the percentage the value has passed the previous interval (blue, 10.0 mm/hr). The color for values in the rest of the intervals are determined in the same way, in the range (20, 30] for cyan to green, (30, 40] for green to yellow, (40, 50] for yellow to red. Everything greater than 50.0 is red, and 0.0 is the default color of white.

1.3.4 Data
The main data member of Visualization is the three dimensional map array (float***). This array is dynamically allocated to the correct size when the Visualization is created. Visualization also contains the simulation period of the map (int), which is used to read the correct amount of data from the Simulation Program’s output file and to loop the animation. The map and simulation period cannot be changed after the Visualization is created. This class contains the current frame of the animation (int), which is incremented or decremented by the incFrame and decFrame functions. The frame is the time step to display when the draw function is called.

1.4 Parameter

1.4.1 Function
The Parameter class contains information about an input value for the Simulation Program, including its name, minimum value, maximum value, and default value.

1.4.2 Interfaces
The Input Form creates a list of Parameters. Parameter does not reference any other entities.

1.4.3 Processing
A Parameter is given all of its values in its constructor. The values are checked to make sure the maximum is greater than or equal to the minimum and the default is between the minimum and maximum.

1.4.4 Data
Parameter contains the name (char[50]) of the input value, as well as its minimum, maximum, and default values (double). All of these data members are private and can be retrieved by public “get” functions. The data members cannot be changed after the Parameter is created.

1.5 Color

1.5.1 Function
The Color class contains a color value in RGB format.

1.5.2 Interfaces
The Visualization class uses Color to store the RGB value for a point in the grid and update the OpenGL color.

1.5.3 Processing
Color’s default constructor sets its value to white (1.0, 1.0, 1.0). Another constructor is available to set the RGB values when the Color is created (not currently used in the program). The RGB values can be changed after the Color is created by the setRGB function. All color values are restricted to between 0.0 and 1.0 (inclusive) when they are changed by the constructor or setRGB function.

1.5.4 Data
Color contains a color’s red, green, and blue values (double). The data members are private and can be retrieved by public “get” functions.
PAGE
1

