
 1

An Open-source Software for Interactive Visualization using C++ and 1
OpenGL: Applications to Stochastic Theory Education in Water 2

Resources Engineering 3
 4

 5

 6

Robby Florence 7

Department of Computer Science 8

Tennessee Technological University 9

Cookeville, TN 38505-0001, USA 10

 11

And 12

Faisal Hossain and David Huddleston 13

Department of Civil and Environmental Engineering 14

Tennessee Technological University 15

Cookeville, TN 38505-0001, USA 16

 17

 18

Submitted to: 19

Computer Applications in Engineering Education 20

 21

Submitted: July, 2008 22

Revised: Sept 29, 2008 23

 24

Corresponding Author: 25

Dr. Faisal Hossain 26

Department of Civil and Environmental Engineering 27

1020 Stadium Drive, Prescott Hall 28

Tennessee Technological University 29

Cookeville, TN 38505-0001 30

Email: fhossain@tntech.edu 31
Tel: (931) 372 3257 Fax: (931) 372 6239 32

 2

Abstract 33
The purpose of this paper is to explain the design and implementation of an open-source 34

engineering education software called Stochastic Theory Education through 35

Visualization Environment (S.T.E.V.E) version 2.0. In an earlier article, a proof-of-36

concept for a computer-aided visualization tool (also named S.T.E.V.E, version 1.0) for 37

stochastic theory education in water resources engineering was articulated (see, Schwenk 38

J., F. Hossain and D.H. Huddleston, “A Computer-aided Visualization Tool for 39

Stochastic Theory Education in Water Resources Engineering”, Computer Applications 40

in Engineering Education, 2008, in press). Using Java Native Interfacing, it was shown 41

that S.T.E.V.E 1.0 could wrap a space-time stochastic model written in any computer 42

language and be independent of any specific language compiler during tool usage. This 43

paper describes the general philosophy, software design and classroom usage for 44

S.T.E.V.E. with significant improvements on visualization and user-friendliness (hence, 45

rightfully called version 2.0). The software was created using the C++ programming 46

language with the Microsoft Windows Applications Programming Interface (API). 47

OpenGL was used for the visualization display, and the OpenGL Utility Toolkit (GLUT) 48

was used to visualize text inside the OpenGL window. The instructor-specified 49

simulation program on stochastic theory was written in Fortran 77. The application has 50

user-friendly options for modifying input data and parameter specifications as desired by 51

the instructor or the student user. STEVE 2.0 has been tested with the Windows XP and 52

Windows Vista operating systems. For the benefit of interested users and software 53

makers, we also provide the software application, a short tutorial and all pertinent source 54

codes as freeware for download on our STEVE homepage at 55

http://iweb.tntech.edu/saswe/steve.html. 56

 3

Key words: Water resources engineering, stochastic theory, curriculum, computer-aided 57

visualization. OpenGL, C++. 58

59

 4

1.0 INTRODUCTION: MOTIVATION FOR STOCHASTIC THEORY 60

VISUALIZATION 61

In an earlier article, Schwenk et al. (2008) commented on the importance of 62

stochastic theory visualization for water resources engineering education as follows. 63

“..most engineering university baccalaureate programs introduce students to these 64

concepts only in the graduate level. Our recently concluded survey of curriculum on 65

stochastic theory in water resources engineering education indicate that 84% of all 66

courses in nation are graduate level. This means that the diverse but foundational 67

concepts making up stochastic theory, such as random variables and processes, 68

probability density functions, moments, geostatistics, autocorrelation, random field 69

generation, time-series analysis etc., can overburden freshmen graduate students unless 70

particular care is taken in demonstrating these concepts via real-world examples…. 71

Conventional teaching paradigm for delivering stochastic…continues to rest mostly on 72

text-based pedagogy involving comprehensive stochastic theory books. While the 73

traditional method is still needed, there is scope to make the subject matter more exciting 74

and 'learner-friendly' by leveraging visualization technology.” 75

For such a visualization system to be effective for stochastic theory education, 76

Schwenk et al. (2008) further reported that the visualization scheme should have the 77

following features: “(1) real-world application of a wide range of concepts of stochastic 78

theory via a practical tool that allows convenient computational modeling of the 79

variability of natural phenomena; (2) full interactive control to students over the tool to 80

allow them to conveniently and rapidly modify concepts, parameter values through 81

add/remove options, observe corresponding effect and thereby foster inductive learning 82

 5

and generate research curiosity; (3) multi-media and a computer assisted technology, 83

such as a Graphical User Interface (GUI), that combines (1) and (2) and further enhances 84

the user-friendliness of the modular modeling system.” Although there is not any 85

educational software, to the best of our knowledge, tailored for stochastic theory 86

education in water resources engineering, the interested reader can refer to some 87

examples on visualization tools for environmental education from Lai and Wang (2005), 88

Valocchi and Werth (2004), Li and Liu (2003) and Rivvas et al. (2006). 89

 The purpose of this paper is to explain the enhancement of an open-source 90

engineering education software called Stochastic Theory Education through 91

Visualization Environment (S.T.E.V.E) version 2.0. In an earlier article appearing in the 92

same journal, a proof-of-concept of an earlier version for S.T.E.V.E (named S.T.E.V.E, 93

version 1.0) was articulated (see, Schwenk J., F. Hossain and D.H. Huddleston, “A 94

Computer-aided Visualization Tool for Stochastic Theory Education in Water Resources 95

Engineering”, Computer Applications in Engineering Education, 2008, in press). 96

Therein, Schwenk et al. (2008) provided justification for the development of the 97

visualization software on stochastic theory through survey of graduate and undergraduate 98

curriculum across the nation and the perception of classroom instructors willing to use 99

such a free software. 100

 While the general concept embedded in STEVE (version 1.0) and its potential for 101

classroom usage that can be afforded was described in that article of Schwenk et al. 102

(2008), specific software building issues were absent for interested software users and 103

makers. This paper therefore addresses the software design and implementation aspects 104

along with significant improvements on visualization and user-friendliness (hence, 105

 6

justifiably called version 2.0). In essence, this paper is a sequel to Schwenk et al. (2008) 106

as the second part of a two part series. Our motivation for such a design and 107

implementation document is to encourage users, specifically software makers, to apply 108

and modify the tool for continual improvement in an open-source fashion. 109

 Hereafter, we provide the details of the software design issues in a step by step 110

manner. Section Two describes the general philosophy of STEVE, while Section Three 111

elaborates the software design aspects. Section Four dwells on the classroom usage of 112

STEVE 2.0. Section Five describes possible ways of improving initial understanding of 113

difficult stochastic theory concepts using STEVE 2.0. Finally, conclusions are presented 114

in Section Six. We also provide the software application, user manual, a short tutorial and 115

all pertinent source codes as freeware for download on our STEVE homepage at 116

http://iweb.tntech.edu/saswe/steve.html. 117

 118

2.0 GENERAL PHILOSOPHY OF STEVE 2.0 119

 120
 STEVE 2.0 can essentially embed any stochastic theory model and visualize its 121

output. Typically, such a stochastic theory model manifests several different concepts 122

(such as spatial statistics, temporal statistics, probability density functions, random fields 123

etc.) wherein the dominance of each concept can be controlled quantitatively through 124

user-defined set of inputs. In STEVE 2.0, a stochastic theory model called ‘SREM2D’ 125

(Two Dimensional Satellite Rainfall Error Model) developed by Hossain and Anagnostou 126

(see A Two-Dimensional Satellite Rainfall Error Model, IEEE - Trans. Geosci and 127

Remote Sens.vol. 44(6), pp. 1511-1522 doi: 10.1109/TGRS.2005.863866). This model 128

employs a stochastic theory code written in Fortran 77 which corrupts a time series of 129

 7

rainfall fields in space and time as per user-specified error parameters. Users do not 130

require a background on computing to use STEVE 2.0. The general flowchart for STEVE 131

2.0 is shown below: 132

 133

Figure 1. General flow-chart of STEVE 2.0 that visualizes the output of the Fortran-134

coded SREM2D against user-specified input. 135

 136

 8

 2.1 General Folder and Data Organization of STEVE 2.0 137

 We encourage that readers download our STEVE 2.0 application package that is 138

provided as a freeware at http://iweb.tntech.edu/saswe/steve.html. Examination of the 139

source codes and folders will better facilitate understanding of the STEVE software 140

making process described in this paper. There are three folders, one readme file and one 141

executable (on STEVE GUI). The folders are: 142

 ‘doc’: containing all the necessary help and documentation literature for the user 143

to access when needed from the GUI help menu. The user need not do anything to 144

this folder. 145

 ‘img’: containing iconic images for the STEVE GUI. The user need not do 146

anything to this folder. 147

 ‘simul’: containing the SREM2D Fortran code, the SREM2D Fortran code 148

executable, user-specified input parameter file, user-specified input parameter 149

range file, input data, and output data. It is basically this folder that the user needs 150

to manipulate for STEVE 2.0 usage. 151

 152

 2.2 Starting STEVE 2.0 153

 STEVE 2.0 opens the visualization window by clicking on the executable file 154

STEVE.exe that is shown as an icon in the package (Figure 2). 155

 156

3.0 SOFTWARE DESIGN ASPECTS 157
 158
 There are six major software design aspects of the STEVE 2.0 program: 1) 159

Stochastic Theory Simulation Program; 2) Program Window; 3) Input Form; 4) 160

 9

Visualization Process; 5) Visualization Color Scheme; and 6) Configuration Parameters. 161

Hereafter, we describe the details of each of these six design aspects (note that we use the 162

terms as proper nouns, and hence the capitalization of the first letter of each word). 163

 3.1 Stochastic Theory Simulation Program 164

 The Simulation Program (SREM2D, in this case) is separate from the STEVE 165

program (“simul/simulation_fast.exe”). It executes a simulation with the input values 166

from an Input Form, and its output is read by STEVE program The Simulation Program 167

is executed by the STEVE Window (Figure 2). It reads the list of input values from the 168

“simul/params.dat” file written by the Input Form. After the simulation is complete, the 169

output file (“simul/output.dat”) is read by the custom Visualization Process (described in 170

detail in section 3.4 as aspect #4). 171

 172

Figure 2. Screen-shot of STEVE 2.0. 173

 10

 The detailed processing of the Simulation Program is not relevant to the 174

development of STEVE 2.0. It is a “black box” entity, so any variation of the simulation 175

program can be substituted by the user or instructor in its place as long as it uses the same 176

input and output formats. Although, our software visualization package can be applied to 177

many tasks, we have developed and implemented it using a stochastic theory simulation 178

program unique to modeling satellite rainfall data because of our strong interest in water 179

resources engineering. 180

 The Simulation Program reads the parameters from “simul/params.dat” generated 181

by the Input Form as well as simulation input from “simul/input.dat”. The latter file is not 182

used in any way by the STEVE program. STEVE then writes the output of the simulation 183

to “simul/output.dat” (Figure 1). Also, in order to render the default visualizations, the 184

file “simul/default.dat” must be created by executing the Simulation Program with the 185

default parameter values and the maximum simulation period. The resulting output file 186

should be renamed to “default.dat”. This only needs to be done once when a new 187

Simulation Program is used in the project. 188

 3.2 Program Window 189

 The Program Window is the main part of the STEVE program. STEVE creates 190

the window, menu, the Input Form, and Visualizations (see Figure 2). It handles the 191

Windows message loop and messages for itself and the Input Form. The STEVE Program 192

Window manages communication between the Input Form, the Simulation Program, and 193

the Visualizations. It also enables OpenGL for the visualizations and controls their 194

animation (Figure 1). In essence, this window is part of the Graphical User Interface 195

(GUI) that is manifested through the Input Form (described in section 3.3). 196

 11

 STEVE creates an Input Form at startup and two Visualizations after a simulation 197

run has been executed (e.g., notice the two maps on the right hand side of Figure 2). It 198

handles window messages for the Input Form and calls input form functions when the 199

corresponding messages are received. The Program Window is responsible for executing 200

the Simulation Program when the “Start” button of the Input Form is pressed. Lastly, it 201

draws the visualizations as well as the map axes and color bar. 202

 When the ‘Start’ button is pressed, the Program Window creates and registers the 203

window class (Windows API, not this design entity). It then creates the main window for 204

the program, where the Visualizations will be drawn, and the parent window for the input 205

form. The Program Window also creates a shell execution information structure to run 206

the Simulation Program. 207

 The Program Window enables OpenGL in its main window for the Visualizations 208

by getting a handle to a device context, a pixel format that is appropriate for both the 209

graphics being drawn and the monitor, and creating a rendering context. OpenGL 210

commands can then be executed and will be drawn inside the main window. OpenGL is 211

disabled when the program exits by deleting the rendering context. 212

 The STEVE Program Window also handles the message loop for itself and the 213

Input Form. The loop continues until the program quits. If there is a message waiting in 214

the message queue, it is sent to the WndProc function. Otherwise, Window draws the 215

visualizations. The WndProc function handles any Windows messages, including when a 216

button in the Input Form is pressed, when a menu item is selected, when the program 217

window is resized, and when the program window is closed. When the Start button in the 218

Input Form is pressed, Window tells the Input Form to check the user input values. If the 219

 12

test passes, the Input Form writes the user input values to the Simulation Program’s input 220

file (“simul/params.dat”). 221

 A small “Please Wait” dialog box is displayed while the simulation program is 222

running. The Simulation Program is then executed using the shell execution info created 223

in the WinMain function. The program waits until the Simulation Program finishes. This 224

is accomplished by a loop that checks for any Window messages to the “Please Wait” 225

dialog box, handles the messages if there are any available, and then waits until either the 226

Simulation Program finishes or a new Window message is added to the message queue. 227

The only message handled by this loop is the message generated when the user clicks the 228

“Cancel” button on the dialog box. The loop checks if the “Cancel” button has been 229

pressed and if so, the Simulation Program is terminated and the program refreshes to its 230

original execution. After the simulation finishes (if it was not canceled), the time it took 231

to run is displayed by the Input Form, and two new visualizations are created. The default 232

visualization is created from a pre-made output file (“simul/default.dat”) generated by the 233

Simulation Program with the default input values, and the custom visualization is created 234

from the new output file of the Simulation Program (“simul/output.dat”). 235

 The WndProc function also handles messages from the program’s menu by 236

calling the appropriate Input Form functions or opening help documents. It creates dialog 237

boxes for the “Report a Bug” and “Acknowledgements” menu items. These dialogs, 238

along with the “Please Wait” dialog box displayed while the simulation is running and 239

the menu itself, are resources created in ‘resource.rc’. The “Report a Bug” and 240

“Acknowledgements” dialog boxes have separate message handler functions called 241

RepBugDlgProc and AckDlgProc, respectively. Both functions handle the message to 242

 13

remove the dialog box when it is closed. AckDlgProc additionally loads the institution 243

logo (Tennessee Technological University) from “img/TTULogoSm.bmp” when the 244

dialog box is created and launches the default web browser to the project’s website when 245

the URL is clicked. 246

 When the main Program Window is resized, WndProc handles the message and 247

calls the resizeWnd function. This function extends the Input Form to the bottom of the 248

resized window and resizes the OpenGL viewport to the new dimensions of the window 249

minus the space taken up by the Input Form. It also sets the OpenGL orthographic 250

projection, allowing the Visualizations to be drawn in two dimensions instead of three. 251

 The Program Window draws the visualizations in the message loop and controls 252

their animation. The map axes and color bar are always drawn, and both Visualizations 253

are drawn if they have been created. If the Back button is pressed in the animation 254

controls of the Input Form, the frame of both visualizations is decremented. If the 255

Forward button is pressed or the animation delay time has passed, the frame of both 256

Visualizations is incremented. The animation delay time is measured in clock ticks since 257

the program started. If the animation is not paused, the animation delay is retrieved from 258

the Input Form in seconds and converted to the next number of clock ticks to advance the 259

frame. 260

 3.3 Input Form 261

 The Input Form class creates a GUI for the user to enter input values to send to 262

the Simulation Program, start the Simulation Program, and control the animation of the 263

Visualizations. It also writes the parameters to the Simulation Program’s input file. Input 264

Form can load or save the user’s parameters to a user-defined file. 265

 14

 Window creates an Input Form and handles all window messages sent to the Input 266

Form. The Input Form class creates a list of Parameters for all input values needed by the 267

Simulation Program. Input Form’s constructor sets the parent window of the form 268

elements and creates the list of Parameters, giving each Parameter its name and other 269

values. The parent window must be created before the Input Form. The list of Parameters 270

is read from the file “simul/paramInfo.dat”. The first line of this file must always be the 271

number of Parameters in the list. The following line is the column headers for each 272

Parameter’s name, minimum, maximum, and default. This line is ignored. Input Form 273

reads each remaining line and creates a Parameter with the information from the line. The 274

name of the Parameter must be separated from the minimum value by at least one tab. All 275

characters up to the first tab in the line are stored as the Parameter’s name. By using this 276

file to create the list of Parameters, the number and type of stochastic theory concepts 277

manifested by parameters can be changed to allow changes to the Simulation Program. 278

 The createWindows function is called by Window after the Input Form is 279

instantiated. This function displays the list of Parameters in the parent window, each with 280

a name (static), default value (static), and user input value (edit). A “Start” button is 281

created below the list. A box to control the animation of the visualizations is created 282

below the Start button, with three buttons to move back one frame, play/pause, and move 283

forward one frame (Figure 2). A track bar is created to control the speed of the animation. 284

The images for the animation buttons are loaded from the corresponding files in the 285

“img” folder. An empty static field is created to display the simulation generation time 286

after a simulation has been completed. The institution logo (Tennessee Technological 287

University in this case) is loaded from “img/TTULogo.bmp” and displayed on the 288

 15

bottom. When the Input Form is created or when it is reset through the program’s menu, 289

all user input values are set to the default value of the respective Parameter. 290

 Before the Simulation Program is executed, all input values must be checked to 291

make sure they are between the parameters’ minimum and maximum values. This 292

ensures that the Simulation Program does not crash or produce an unrealistic output.dat 293

file. If one or more of the input values are invalid, an error message will appear listing all 294

invalid values and Window will not execute the Simulation Program. The Input Form 295

then writes the user input values to a file which will be read by the Simulation Program 296

(“simul/params.dat”). Once the Simulation Program completes, Window will calculate 297

the time it took to run, and Input Form will display the time in “mm:ss” format. 298

 The Input Form class also has capabilities to load and save the user’s list of input 299

values for later use. These functions open a standard Windows “Open” or “Save As” 300

dialog box, and either set the user input values in the GUI to the values in the file or write 301

the user input values to the file. In the animation controls, Input Form alternates between 302

play and pause when the play/pause button is pressed and changes the image displayed in 303

the button accordingly. Input Form also calculates the time between each frame of the 304

Visualizations based on the position of the animation speed track bar. There are ten 305

positions on the track bar, with the right position representing 0.33 seconds per frame and 306

each additional position to the left adds 0.33 seconds to the time between each frame. 307

Input Form stores the handle to its parent window (HWND). This window is created 308

before the Input Form and cannot be changed after the Input Form is created. 309

 The Input Form class also stores handles to the play and pause images 310

(HGDIOBJ), which are needed when the play/pause button is pressed to alternate images. 311

 16

Lastly, this class stores the number of Parameters (int) and the list of Parameters 312

(Parameter**) for the required input values of the Simulation Program. This array is 313

dynamically allocated in the Input Form constructor and cannot be changed after the 314

Input Form is instantiated. 315

 3.4 Visualization Process 316

 The Visualization class draws all OpenGL elements in the program, including the 317

map axes, the color bar, and the output map of the Simulation Program. It reads the 318

output file of the Simulation Program and draws a map of the simulation at each time 319

step. 320

 The Window class creates two visualizations for the default and custom maps. It 321

also controls the animation of the maps. The output file of the Simulation Program 322

(“simul/output.dat”) is read for the custom visualization, and the default output of the 323

Simulation Program (“simul/default.dat”) is read for the default visualization. It uses the 324

Color class to store the color for each grid in the map. 325

 When a visualization is created, it reads the output file of the Simulation Program 326

and stores the values in a three dimensional array of floats. The first dimension of the 327

array is the time step, which is given as a parameter to the constructor, followed by the 328

row and column of each value. The array is dynamically allocated and is deleted when 329

the visualization is deleted. 330

 The Visualization Process draws the map at the current time step with the draw 331

function. The top left corner of the area to draw the map is given to draw the map in the 332

top or bottom map area. These parameters should always be the predefined constants 333

MAP1_LEFT, MAP1_TOP or MAP2_LEFT, MAP2_TOP. The current time period of 334

 17

the Visualization is displayed in the center of the GL window. To make the gradients 335

smooth, each grid is divided into four triangles. The color for each value in the array is 336

set at the vertex in the center of the grid. Looping through all but the last row and 337

column, the values in the map at (row+1, col), (row, col+1), and (row+1, col+1) form a 338

square. The colors for these four values are averaged, and a fifth vertex is created in the 339

center of the square, where the grid lines intersect. The five vertexes are then connected 340

by triangles. A total of 16 triangles are drawn for all interior grids, connecting them with 341

all 8 adjacent grids. When this loop finishes, a small border (0.05 GL units) still remains 342

undrawn in the map. 343

 Because there are not values outside the map to get four color values, the outer 344

edges cannot be drawn in the same way as the center of the Visualization. To draw the 345

vertical edges, rectangles are drawn connecting each grid with the grid below it. The top 346

two vertices are set to the color of the upper grid, and the bottom two vertexes are set to 347

the color of the lower grid. The horizontal edges are drawn in the same way. This still 348

leaves an undrawn square in each corner with a side length of 0.05 GL units. These 349

squares are filled with the color of adjacent corner grid of the map. 350

 The functions to draw the map axes and the color bar are static and can be called 351

without an instantiated Visualization class. To draw the map axes, the drawAxes function 352

receives the top left corner of the area to draw the axes in the same way as the draw 353

function. The axes are labeled “Default Map” or “Custom Map” depending on the given 354

coordinates. A grid line is drawn every 0.1 OpenGL units, and every four grid lines 355

extends a little farther out of the map and is labeled. Each grid represents 25km on the 356

map. To draw the color bar, a large rectangle is drawn from the top of the top map to the 357

 18

bottom of the bottom map. The rectangle is divided into five smaller rectangles, with the 358

color gradient from red at the top, to yellow, green, cyan, blue, and finally white at the 359

bottom. Each interval is labeled and represents 10 mm/hr. The top red interval is labeled 360

“50+ mm/hr” to show that all values greater than 50 are colored red. 361

 When the draw function needs to determine the color of a value in the map, the 362

getColor function interpolates the color based on the color bar. The color bar of white, 363

blue, cyan, green, yellow, and red allows the RGB value of the color to be determined 364

exactly because each red, green, and blue value is either 0.0 or 1.0 for these colors. For 365

values in the range (0, 10], the blue value is always 1.0, and the red and green values are 366

interpolated from 1.0, if the value is 0.0, to 0.0, if the value is 10.0. The equation “1 – 367

value/10.0” gives this output. The value is divided by 10.0 because the interval between 368

white and blue is 10.0 mm/hr. For values in the range (10, 20], the red value is always 369

0.0, the blue value is always 1.0, and the green value is interpolated from 0.0 to 1.0. The 370

equation “(value – 10.0)/10.0” gives this output. The subtraction is needed to get the 371

percentage the value has passed the previous interval (blue, 10.0 mm/hr). The color for 372

values in the rest of the intervals are determined in the same way, in the range (20, 30] for 373

cyan to green, (30, 40] for green to yellow, (40, 50] for yellow to red. Everything greater 374

than 50.0 is red, and 0.0 is the default color of white. 375

 The main data member of visualization is the three dimensional map array 376

(float***). This array is dynamically allocated to the correct size when the Visualization 377

is created. Visualization also contains the simulation period of the map (int), which is 378

used to read the correct amount of data from the Simulation Program’s output file and to 379

loop the animation. The map and simulation period cannot be changed after the 380

 19

Visualization is created. This class contains the current frame of the animation (int), 381

which is incremented or decremented by the incFrame and decFrame functions. The 382

frame is the time step to display when the draw function is called. 383

 3.5 Visualization Color Scheme 384

 The Color class contains a color value in RGB format. The Visualization class 385

uses Color to store the RGB value for a point in the grid and update the OpenGL color. 386

Color’s default constructor sets its value to white (1.0, 1.0, 1.0). Another constructor is 387

available to set the RGB values when the Color is created (not currently used in the 388

program). The RGB values can be changed after the Color is created by the setRGB 389

function. All color values are restricted to between 0.0 and 1.0 (inclusive) when they are 390

changed by the constructor or setRGB function. Color contains a color’s red, green, and 391

blue values (double). The data members are private and can be retrieved by public “get” 392

functions. 393

 3.6 Configuration Parameters 394

 The Input Form creates a list of Configuration Parameters (hereafter called 395

‘Parameters’). The Parameter class contains information about an input value for the 396

Simulation Program, including its name, minimum value, maximum value, and default 397

value. Parameters do not reference any other entities. A Parameter is given all of its 398

values in its constructor. The values are checked to make sure the maximum is greater 399

than or equal to the minimum and the default is between the minimum and maximum. 400

 Parameters contains the name (char[50]) of the input value, as well as its 401

minimum, maximum, and default values (double). All of these data members are private 402

 20

and can be retrieved by public “get” functions. The data members cannot be changed 403

after the Parameters is created. 404

 405

4.0 CLASSROOM USE OF STEVE 2.0 406

 After clicking on the STEVE.exe icon, the user can key in quantitative values in 407

the input fields on the left-hand side of the GUI. If the values are beyond a realistic range 408

specified in ‘simul/paramInfo.dat’, an error message will appear and the program will not 409

execute. The user can also specify how many time steps the SREM2D code will run (in 410

our case, the data allows a choice between 1 to 2952 timesteps). 411

 Once all the fields are keyed in, the user hits the start button. The GUI transfers 412

the user-specified parameters to SREM2D for execution and generation of ‘output.dat’. 413

The total simulation time is printed when the execution is complete. Once simulation is 414

complete, STEVE visualizes the output.dat (a space-time field of rainfall shown as 415

‘Custom Map’) simultaneously with the ‘default.dat’ (shown as ‘Default Map’). 416

 The simultaneous visualization allows the student user to observe visually the 417

impact in space and time of the quantitative difference in input parameter value between 418

the default setting and the custom (user-specified) setting (see Figure 3). It is essentially 419

this user-friendly and interactive feature of STEVE that we hypothesize as making the 420

subject of stochastic theory more interesting than text-book pedagogy. (Note: In our 421

earlier ensemble of works reported by Schwenk et al. (2008) and Hossain and Huddleston 422

(2007), complete details on specific stochastic theory concepts are provided). User can 423

stop the animation and observe one snapshot at a time for closer inspection. User may 424

also rewind, forward one snap shot at a time and also manipulate the animation speed. In 425

 21

addition to all this, the user can perform numerical analysis of the ‘simul/output.dat’ and 426

‘simul/input.dat’ or ‘simul/default.dat’ to explore the stochastic concepts further. 427

 428

Figure 3. Executing STEVE as per user-specified input and observing the visual nuances 429
between default and custom maps that can connect to a set of stochastic theory concept. 430
 431
 Using the ‘File’ menu of STEVE, user may also save the settings on input 432

parameters. To save the ‘output.dat’ with a particular filename so that user can identify it 433

in future against the input setting and/or perform statistical analysis, the user needs to use 434

the usual file renaming using ‘Explorer’ or ‘My Computer’. 435

 For convenience of the user, there exists a sub-folder named ‘standard’ under 436

‘simul’. In this sub-folder, there are three files: 437

 ‘inputstd.dat’: this file contains the input time series of rainfall fields. The user 438

should treat this as a backup version of the ‘input.dat’ that is in the main ‘simul’ 439

 22

folder. If the ‘input.dat’ file is accidentally deleted, the user should copy this 440

‘inputstd.dat’ file to the ‘simul’ folder and rename it ‘input.dat’. 441

 ‘inputstd_magnified10.dat’: this file contains the ‘input.dat’ with values 442

magnified by a factor of 10. This file can be used to visualize the input.dat in 443

STEVE with magnified rainfall values if there is a need. The user needs to copy 444

this file to ‘simul’ folder and rename it as ‘default.dat’. The visualization then 445

appears on the upper panel. 446

 ‘default_magnified10.dat’: same as ‘input_magnified10.dat’ except that it is the 447

output file generated with default SREM2D parameters with output values 448

magnified by a factor of 10 (make the visualization color scheme prominent). The 449

user needs to copy this file to ‘simul’ folder and rename it ‘default.dat’ 450

(visualization will appear on the upper panel). 451

 452

5.0 USING STEVE 2.0 FOR IMPROVING UNDERSTANDING OF STOCHASTIC 453

THEORY CONCEPTS 454

 As non-exhaustive set of examples, the following stochastic theory concepts can 455

be interacted with in STEVE 2.0 (reader is encouraged to refer to Hossain and 456

Anagnostou, 2006): 457

1) Logistic Regression: Rain Detection Capability and Rain Detection Sensitivity. 458

2) Probability density function: False alarm rain rates. 459

3) First and Second-order moments: Mean and Standard Deviation. 460

4) Geostatistics, random fields and variograms: Correlation length 461

5) Autocorrelation: Temporal Correlation. 462

 23

6) Bernoulli Trials: Probability of No-rain detection. 463

 The user should either increase or decrease each parameter value from the default 464

value and then compare the visualized output with the custom map. Subsequently, the 465

user should try to reconcile the observed differences with the theory or initial 466

understanding of the specific stochastic theory concept. For example, an increase in 467

correlation length can mean that the rainfall structure may look ‘stretched’ more. 468

Similarly, if the probability of no-rain detection is reduced (from 0.95 to 0.55 – Figure 3), 469

this means that 45% Bernoulli trials would be unsuccessful in detecting no-rain and 470

hence, these events would then be subjected to false alarm rain rates (which can also be 471

played with). 472

 It is up to the user how he/she wants to use STEVE based on instruction provided 473

by the instructor. It is recommended that the instructor provides some guidance and 474

suggestions for setting up various hypothesis construction experiments before using 475

STEVE 2.0. Understanding of the significance of each of these stochastic concepts is 476

better appreciated if the general concepts of SREM2D error corruption are understood 477

first. We encourage that instructor first explains the SREM2D concept (or any other 478

stochastic model in general that STEVE can use as the black-box Simulation Program) 479

through an introductory workshop prior to STEVE2.0 usage. 480

 481

6.0 CONCLUSIONS 482

This paper explained the design and implementation of an engineering education 483

software called Stochastic Theory Education through Visualization Environment 484

(S.T.E.V.E) version 2.0. Readers were encouraged to download the freeware software 485

 24

package and source codes available at http://iweb.tntech.edu/saswe/steve.html and 486

examine the contents and source codes. The motivation for such a design and 487

implementation document was to encourage users specifically, software makers, to apply 488

and modify the tool for continual improvement. The software was created using the easily 489

available C++ programming language with the Microsoft Windows Applications 490

Programming Interface (API). OpenGL was used for the visualization display, and the 491

OpenGL Utility Toolkit (GLUT) is used to visualize text inside the OpenGL window. 492

The instructor-specified stochastic theory simulation program was written in Fortran 77, 493

although the simulation program itself is a ‘black-box’ in STEVE 2.0. The application 494

has user-friendly options for modifying input data and parameter specifications as desired 495

by the instructor or student user. STEVE 2.0 has been tested with the Windows XP and 496

Windows Vista operating systems. It is our hope that the open-source nature of STEVE 497

2.0 will prompt software makers to improve such educational tools and make them 498

available freely for the student and instructor community. 499

 500

ACKNOWLEDGEMENTS: The first author gratefully acknowledges the support 501

received from the Engineering Development Friends Endowment of Tennessee 502

Technological University in the form of a grant. Partial support from the NASA New 503

Investigator Program (Hossain) is also acknowledged. 504

505

 25

6. REFERENCES 506

Hossain, F., and E.N. Anagnostou (2006). “A Two-Dimensional Satellite Rainfall Error 507

Model,” IEEE – Transactions on Geosciences and Remote Sensing Vol. 44(6), pp. 508

1511-1522 (doi: 10.1109/TGRS.2005.863866). 509

Hossain , F., and D. Huddleston (2007). “A proposed Computer-assisted Graphics-based 510

instruction scheme for Stochastic Theory in Hydrological Sciences,” Computers 511

in Education Journal Vol. XVII(2), pp. 16-25. 512

Lai, X. and P. Wang (2005). “GeoSVG: A web based interactive plane geometry system 513

for mathematics education,” Proceedings of ICET 2006 – Education and 514

Technology, July 17-19, Alberta, Canada. 2005. (File last retrieved on July 24, 515

2008 from http://www.actapress.com/PaperInfo.aspx?PaperID=27538). 516

Shu-Guang Li and Q. Liu (2003). “Interactive Groundwater (IGW): An innovative digital 517

laboratory for groundwater education and research.” Computer Applications in 518

Engineering Education, Vol. 11(4), pp. 179-202. 519

Schwenk, J., F. Hossain, and D. Huddleston (2008). “A Computer-Aided Visualization 520

Tool for Stochastic Theory Education in Water Resources Engineering” 521

Computer Applications in Engineering Education, (In press). 522

Valocchi, A.J. and C.J. Werth (2004). “Web-based interactive simulation of groundwater 523

pollutant fate and transport.” Computer Applications in Engineering Education, 524

Vol. 12(2), pp. 75-83. 2004. 525

Rivvas, A., T. Gomez-Acebo and J.C. Ramos. (2006). “The application of spreadsheets to 526

the analysis and optimization of systems and processes in the teaching of 527

 26

hydraulic and thermal engineering.” Computer Applications in Engineering 528

Education, Vol. 14(4), pp. 256-268. 529

 530
 531

