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A Practical Guide to a Space-Time Stochastic
Error Model for Simulation of High Resolution
Satellite Rainfall Data

Faisal Hossain, Ling Tang, Emmanouil N. Anagnostou,
and Efthymios I. Nikolopoulos

Abstract Abstract For continual refinement of error models and their promotion
in prototyping satellite-based hydrologic monitoring systems, a practical user guide
that readers can refer to, is useful. In this chapter, we provide our readers with one
such practical guide on a space-time stochastic error model called SREM2D (A Two
Dimensional Satellite Rainfall Error Model) developed by Hossain and Anagnostou
(IEEE Transactions on Remote Sensing and Geosciences, 44(6), pp. 1511–1522,
2006). Our guide first provides an overview of the philosophy behind SREM2D and
emphasizes the need to flexibly interpret the error model as a collection of modifi-
able concepts always under refinement rather than a final tool. Users are encouraged
to verify that the complexity and assumptions of error modeling are compatible with
the intended application. The current limitations on the use of the error model as
well as the various data quality control issues that need to be addressed prior to error
modeling are also highlighted. Our motivation behind the compilation of this prac-
tical guide is that readers will learn to apply SREM2D by recognizing the strengths
and limitations simultaneously and thereby minimize any black-box or unrealistic
applications for surface hydrology.

Keywords Satellite rainfall · Infrared · Passive microwave · Uncertainty

1 Introduction

To the surface hydrologist, rainfall remains one of the most complex hydro-
logic variables exhibiting intermittency across scales of interest. Being a binary
phenomenon (e.g. it is either raining or is completely dry), rainfall is one of
the few natural variables whose lack of continuity in space and time dominates

F. Hossain (B)
Department of Civil and Environmental Engineering, Tennessee Technological University,
Cookeville, TN 38505-0001, USA
e-mail: fhossain@tntech.edu
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U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

SPB-164676 Chapter ID 9 August 4, 2009 Time: 04:02pm Proof 1

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

F. Hossain et al.

as scales become smaller (unlike stream flow or soil moisture). Although, the
space-time structure of rainfall directly affects the response of dynamic terrestrial
hydrologic processes such as runoff generation and soil moisture evolution, this
scale-dependent complexity has remained a challenge to its mathematical modeling
and a topic of much research the last few decades.

Models that simulate the rainfall generation process are aplenty. Using various
discrete pulse-type probability distributions and/or the physics of the atmospheric
process, these models can simulate the evolution of rainfall in the space-time con-
tinuum. The modeling of the rainfall process has been a much studied topic since
the 1970s (see for example, Anagnostou and Krajewski, 1997; Rodriguez-Iturbe andAQ1
Eagelson, 1987; Stewart et al., 1984; Bras and Rodriguez-Iturbe, 1976; Eagleson,AQ2
1972). For a review of currently available rainfall models, the reader is referred to
Waymire and Gupta (1981) and Fowler et al. (2005).

However, error models on rainfall, which are conceptually different from rain-
fall models because they simulate the measurement error of rainfall, are relatively
less common, particularly if the focus is on space-borne platforms (Hossain, 2008).
Satellite rainfall error modeling has a relatively shorter heritage than radar rain-
fall error modeling (see for example, Ciach et al., 2007 and Jordan et al., 2003).
The issue of “error” (hereafter used synonymously with “uncertainty”) arises when
there is more than one source of data observing the same rainfall process, with one
source having typically lower confidence than the other. Satellite rainfall, on account
of being indirect “measurements” of the rainfall process are often linked with such
lower levels of confidence than the more conventional measurement arising from
ground networks such as weather radars and in-situ gages (Huffman, 2005). AsAQ3
satellite rainfall data become more easily available at higher spatial and temporal
resolutions from multiple sources, a natural outcome will be an explosion of its
use in surface hydrologic applications over regions where it is needed most. For
applications that are very critical for society (such as flood/landslide monitoring or
drought management), it is important therefore that users understand the uncertainty
associated with satellite rainfall data prior to building decision support systems.

The purpose of this chapter is to provide readers with a detailed practical guide
on the use of a space-time satellite rainfall error model called SREM2D devel-
oped earlier by authors of this chapter – F. Hossain and E.N. Anagnostou (“A Two
Dimensional Satellite Rainfall Error Model” IEEE Transactions on Remote Sensing
and Geosciences, 44(6), pp. 1511–1522, 2006). In another work by Hossain (2008),
titled Error Models and Error Metrics, a detailed overview on the history of error
quantification of satellite rainfall data and its modeling is provided. Thus, other
competing error models are not the subject of interest in this chapter.

Also, due to increased interest on SREM2D from users of various backgrounds,
this practical guide is considered timely for advancing the application of high
resolution (satellite) precipitation products (HRPPs) in surface hydrology (here-
after, rainfall is used as a shorthand for precipitation). At the time of writing this
manuscript, users from the following organizations and institutions were identified
as having expressed a direct interest or already begun using SREM2D in their anal-
yses: (1) NASA Laboratory of Atmospheres, (2) NASA Data Assimilation Branch,
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(3) University of Oklahoma, (4) Mississippi State University’s GeoResources
Institute, (5) University of Mississippi Geoinformatics Center. Most error models
described in literature are written for researchers engaged in development and
assessment of satellite rainfall data. There is none, to the best of our knowledge,
that aims to guide a user towards its practical use, calibration, limitations and inter-
pretation of error model output. Hence, a motivation behind the compilation of this
practical guide is that readers and users alike will learn to apply SREM2D recogniz-
ing simultaneously the pros and cons and thereby minimize any black-box or invalid
applications for surface hydrology.

The paper is organized as follows. Section Two addresses the question Why
SREM2D? and provides an overview of the philosophy behind SREM2D. Section
Three dwells on the general modeling structure of the SREM2D error model.
Section Four describes the formulation of SREM2D error metrics, followed by
“Data Quality Control/Quality Assessment (QA/QC) and Error Metric Calibration”
in Section Five. This section (Five) explains readers the computation of various
error metrics of SREM2D from the data and the potential limitations that may be
associated with the calibration approach. Section Six describes issues of SREM2D
simulation and reproducibility of error statistics via ensemble generation of
synthetic satellite data. Conclusions and the open issues needing closure regarding
SREM2D are provided in Section Seven.

2 Why SREM2D?

Although existing rainfall error metrics and error models have undoubtedly
advanced the application in terrestrial hydrology (Huffman, 1997; Gebremichael
and Krajewski, 2004; Steiner et al., 2003; Ebert, 2008), some issues continue to
remain open. Firstly, most error models treat error as a uni-dimensional (i.e., a
single quantity) measure without an explicit recognition that rainfall is an inter-
mittent process that can also affect the measurement accuracy. These models use
the power law type relationships for estimating this aggregate error as a function
of spatial and temporal sampling parameters. Such models may be acceptable
for estimating the average error over large areal nd temporal domains (e.g 512 X
512 km2, monthly or daily accumulations). However, there is no clear indication
at this stage about the implication of using such coarse-grained error models
for hydrologic error propagation experiments where the space-time covariance
structure of the estimation error may not be preserved. For example, a satellite
rainfall product with an error standard deviation of X mm/h can be generated from
a multiplicity of distinct space-time patterns of rainfall. Each pattern, however, will
have a different response in surface hydrology at fine space-time scales (see for
example, Lee and Anagnostou, 2004).

Thus, there is a need to transition current error models to a level that recognizes
at a minimum the need for preservation of covariance structure of the measured
rainfall and the associated measurement accuracy as a function of space and time.
With this need comes the recognition for a change in paradigm that single aggregate
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error metrics (such as error variance) are not sufficient metrics for error models that
aim to simulate the hydrologically-relevant features of satellite rainfall uncertainty.
SREM2D is one such error model developed for space-time generation of satellite
rainfall fields in response to the limitations of current error models that tend to
simplify the uncertainty.

3 General Modeling Structure Of SREM2D

SREM2D is designed as a collection of concepts, each having flexibility in mod-
ification or replacement with an alternative concept. The logical thought process
behind the collection of concepts has already been outlined in a step by step manner
by Hossain and Huffman (2008). For the convenience of our readers, we reiterate
in this section the pertinent steps (Fig. 1) “as is” to highlight the general modeling
structure of SREM2D. Hereafter, we use the term “reference” rainfall to refer to
ground validation (GV) rainfall data that is corrupted by the error model to simulate
less confident satellite-like observations of the rainfall process.

Recognizing that it is the intermittency of the rainfall process in space and time
that dictates the variability of a hydrologic process overland, the SREM2D concep-
tualizes that the error metrics in three general dimensions. These are: (1) temporal
dimension (How does the error vary in time?); (2) spatial dimension (How does the
error vary in space?), and (3) retrieval dimension (How “off” is the rainfall esti-
mate from the true value over rainy areas?). A given satellite grid-box can be rainy
or non-rainy. When compared to the corresponding reference rainfall data, a satellite
estimate may fall into one of four possible outcomes:

1) Satellite successfully detects rain (successful rain detection, or “hit”).
2) Satellite fails to detect rain (unsuccessful rain detection, or “miss”).
3) Satellite successfully detects the no-rain case (successful no-rain detection).
4) Satellite fails to detect the no-rain case (unsuccessful no-rain detection, or

“false alarm”).

The grid-boxes that are successfully detected as rainy may exhibit three addi-
tional properties or dimensions listed above (in space, time and scalar difference).
Each of these properties may be considered fully or partially representative of the
three general dimensions outlined earlier. At this stage, it is not clear how adequately
these properties represent a given dimension. For example, the temporal variation
of error probably results from a mixture of the true spatial and temporal correlations
of the rain system in its Lagrangian (system-following) frame of reference, and the
advection speed of that frame of reference. In SREM2D, the temporal dimension
(how does error vary in time?) is modeled with a simple representation – assuming
that only the mean field bias (systematic error) is correlated in time in an Eulerian
(surface-based) frame of reference.

The successful rain or no-rain detection capability may exhibit a strong covari-
ance structure (i.e., the probability of successful detection of a grid-box as rainy or
non-rainy may be a function of the proximity to a successfully detected grid-box).
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Rainfall as an Intermittent Process

NON-RAINY AREAS

How well does satellite data delineate the rainy/non-rainy areas?

HIT?

Probability of Detection
of Rain
(As a function of magnitude of
reference or satellite rainfall)
            (1)

False Alarm
(Probability Distribution
parameters)
            (3)

Probability of Detection
of No-Rain
(Fixed–marginal value)
            (2)

Correlation Length
of Successful Detection
of Rain (4)

Correlation Length
of Successful Detection
of No-Rain (5)

MISS? HIT? MISS?

How does the error vary in space? 

How ‘off ’  is rainfall estimate from true value over rainy areas?

Systematic and Random Errors
in Retrieval
 (6) and (7)

Correlation Length of Retrieval
(8) 

How does the error vary in time?

Temporal Correlation of Systematic Error in Retrieval
(9)

RAINY AREAS

Fig. 1 Generalized framework for building error metrics and error models, (taken from – Hossain
and Huffman(2008), “Investigating Error Metrics for Satellite Rainfall at Hydrologically Relevant
Scales, Journal of Hydrometeorology vol. 9(3), pp. 563–575”)
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For grid-boxes that are detected as non-rainy, satellite rainfall data can be character-
ized by a marginal probability of no-rain. However, for grid-boxes that are detected
as rainy, the probability of successful detection may depend on the magnitude of
the rainfall rate. The functional dependency of probability of detection of rain may
be tagged with reference (GV) or the estimated rain rate. For surface hydrology,
users would likely be interested in the probability of rain detection benchmarked
with respect to ground validation data. On the other hand, according to Hossain and
Huffman (2008), the data producers may find it almost impossible to tag the proba-
bility of detection of the satellite estimates in a likewise manner for the hydrologist
on an operational basis due to lack of global scale GV data and hence, choose to use
satellite estimates instead.

Collecting all these components, and by following the logical modeling steps
outlined in Fig. 1, the SREM2D set of error metrics (e.g. in lieu of a single error
metric concept) is: (1) Probability of rain detection (and as a function of rainfall
magnitude) – PODRAIN; (2) Probability of no-rain detection – PODNORAIN; (3) First
and second order moments of the probability distribution during false alarms; (4)
Correlation lengths for the detection of rain-CL RAIN, and (5) no rain–CL NORAIN; (6)
Conditional systematic retrieval error or mean field bias (when reference rain > 0);
(7) Conditional random retrieval error or error variance; (8) Correlation length for
the retrieval error (conditional, when rain >0.0) – CL RET; and finally, (9) Lag-one
autocorrelation of the mean field bias. In the following section, we dwell on the
mathematical formulation of each of these nine error metrics. For more details, the
reader can refer to Hossain and Huffman (2008) or Hossain and Anagnostou (2006).

4 Formulation of SREM2D Error Metrics

4.1 Probabilities of Detection (Rain and No-Rain)
(Metrics 1 and 2)

Consider first, the following contingency matrix for hits and misses associated with
satellite rainfall estimates:

The probabilities of detection for rain and no-rain are defined as follows,

Probability of Detection for Rain (PODRAIN):
NA

NA + NC
(1)

Probability of Detection for No Rain (PODNORAIN):
ND

NB + ND
(2)

We also define the (successful) rain detection probability, PODRAIN, as a function
of rainfall magnitude of either the reference rainfall or satellite estimate. The func-
tional form is usually identified through calibration with actual data (see Hossain
and Anagnostou, 2006). Based on observations with actual satellite data, SREM2D
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models the dependency of the probability of rain detection in the form of a logistic
regression model as follows:

PODRAIN (RREF) = 1

A + exp ( − BRREF)
(3)

Subscript “REF” refers to reference rainfall (A and B are logistic parameters).
The use of an idealized rain detection efficiency function may have its demerits
when the empirical detection property deviates significantly from the logistic form.
Users are therefore encouraged to verify the form and consider modeling PODRAIN
from an empirical look-up table (discussed in detail in Section Five).

The PODNORAIN, is the unitary probability that satellite retrieval is zero when
reference rainfall is zero, which is also determined on the basis of actual satellite
and reference rainfall data (Eq. 2).

4.2 False Alarm Rain Rate Distribution (Metric 3)

A probability density function (Dfalse) is defined to characterize the probability dis-
tribution of the satellite estimates when there are misses over non-rainy areas. This
function is also identified through calibration on the basis of actual sensor data.
Hossain and Anagnostou (2006) have reported that this Dfalse probability density
function typically tends to appear exponential. Hence, both the moments (first and
second) can be defined using only one parameter (a SREM2D metric) of the distribu-
tion, λ. This can be computed using the chi-squared or maximum likelihood method.
We must however stress that it is up to the user to verify the assumption of exponen-
tial distribution and use the appropriate probability distribution for sampling these
false alarm rain rates.

4.3 Correlation Lengths (Metrics 4, 5 and 8)

To identify the correlation lengths of error (i.e., how does the error vary in space)
a simple exponential type auto-covariance function is assumed in SREM2D (users
may opt for more sophisticated approaches if necessary). The correlation length (the
separation distance at which correlation = 1

e = 0.3678) is thus determined on the
basis of calibration with actual data over a large domain. For identifying the spatial
correlation length of rain detection, CLRAIN (or, no-rain detection – CLNORAIN) from
data, all successfully detected rainy (non-rainy) pixels are assigned a value of 1.0
while the rest has a value of 0.0. The empirical semi-variogram is then computed as
follows:

γ (h) = 1

2n(h)

∑n(h)

i=1
(z(xi) − z(xi + h))2 (4)
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where z(xi) and z(x i +h) are the binary pixel values (0 or 1) at distance xi and
xi +h, respectively and h is the lag in km. n represents the number of data points at a
separation distance of h. The term γ (h) is the semi-variance at separation distance h.
Assuming that the empirical variogram is best represented by an exponential model,
the functional parameters describing the spatial variability can be fitted as follows,

γ (h) = c0 + c(1 − e−h/CL) (5)

where c0 represents the nugget variance, c is the sill variance and CL is the dis-
tance parameter known as “correlation length” (a SREM2D metric). Conversely, the
correlation function is modeled as, C = EXP(–h/CL), where C is the correlation.

For identifying the correlation length for retrieval error (i.e., when both satellite
and reference rainfall simultaneously register HITs), CLRET, a similar set of steps
are adopted as above for rain/no rain detection, with the exception that the binary
values (0–1) are no longer pertinent. Instead, one computes the correlation length in
terms of retrieval error defined as the logarithmic difference between reference and
satellite estimate.

4.4 Conditional Rain Rate Distribution (Metrics 6 and 7)

The conditional (i.e., reference rainfall > threshold unit) non-zero satellite rain rates,
RSAT, are statistically related in SREM2D to corresponding conditional reference
rain rates, RREF, as,

RSAT = RREF .εS (6)

where the satellite retrieval error parameter, εs, is assumed to be log-normally
distributed. This assumption has its pros and cons. The advantage of such an
assumption is that a log transformation [log(RSAT)–log(RREF)] of Eq. 6 allows the
εs to be mapped to a Gaussian N(μ, σ ) deviate, ε (hereafter referred to as “log-
error”), where μ and σ are the mean and standard deviation, respectively. On
the other hand, the assumption of log-normality implies that data on log-error is
homoscedastic (i.e., the variance remains the same regardless of the magnitude
of the log-error). Hence, it is the user’s responsibility to verify the assumption
of log-normality and homoscedasticity and assess if log-normality is sufficient to
model the skewness expected from non-zero and positive rainfall rates. Skewness
of rainfall is known to diminish at longer space-time accumulations (from hourly
to monthly). Thus, for a particular application, such as optimizing satellite rainfall-
based irrigation schedule at weekly timescales, there may not be any need to account
for skewness in the satellite rainfall. Vice-versa, skewness will be important for
assessing the use of half-hourly real-time satellite rainfall data for flash-floods
forecasting.

Another aspect to highlight is the definition of the threshold rainfall rate to
distinguish rainy events from non-rainy (dry) events. This is particularly
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Fig. 2 Impact of reference rainfall threshold on the derivation of the mean and standard devi-
ation of log-error for SREM2D for three high resolution satellite rainfall products (3B41RT,
3B42V6 and KIDD) over Northern Italy. Here, KIDD is a IR-based satellite rainfall product by
Kidd et al. (2003)
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important because of the multiplicative and log-transformed nature of the error
model. A zero threshold can result in unrealistically high Gaussian standard devia-
tion and bias because of exceedingly high multiplicative ratios that are obtained at
near-zero reference rain rates. Figure 2 shows how the <ι>μ</ι> and σ of log-
error varies as a function threshold for three existing satellite rainfall products
remapped at 0.25o and 3 hourly timescales over Northern Italy. The reference GV
data was derived from a dense gauge network. Our general recommendation is that
the threshold be constrained to 0.1 mm/h or be subjectively decided after checking
for reproducibility of SREM2D error statistics (discussed later in Section Six).

4.5 Lag-One Temporal Correlation (Metric 9)

The retrieval error parameter ε is both spatially and temporally auto-correlated
and this space-time structure is accounted for in SREM2D. The spatial aspect
has already been discussed earlier in Section 4.3. For temporal correlation, an
autoregressive function is used to identify the temporal variability of <ι>μ</ι>
(i.e., conditional satellite rainfall bias),with the pertinent metric being the lag-one
correlation. This makes the treatment of temporal dependence of error in SREM2D
somewhat subjective as the lag-one correlation will be dictated by the temporal reso-
lution of data. A more robust treatment may be to incorporate the correlation length
in time (i.e., the e-folding time of the temporal correlogram) in modeling of the
temporal correlation of error. Again, this issue is for the user to verify depending
on how adequately SREM2D captures the full spectrum of error at hydrologically
relevant scales. More details on the temporal aspect is provided in the next section
(Section Five).

5 Data QA/QC and Calibration of Metrics for SREM2D

5.1 Quality Assessment and Quality Control

SREM2D uses as input, a time-series of reference rainfall fields. This time-series
is then corrupted in space and time according to the nine error metrics outlined in
Section Four. The user needs to calibrate these nine SREM2D error metrics for a
specific satellite rainfall product that he/she plans to assess. Collectively, these nine
metrics represent the multi-dimensional error structure of the satellite data product
under investigation. For calibration of SREM2D metrics, a sufficiently long period
of synchronized rainfall fields (from a sufficiently large areal domain) of reference
and satellite sources is required. The definition of “sufficiently long” is subjective.
For example, 5 year of hourly reference and satellite rainfall data over the Upper
Mississippi basin may yield a “climatologic” average SREM2D metrics for a spe-
cific satellite rainfall product that has matured in algorithmic formulation (such as
Global Precipitation Climatology Project product available at 1◦ -Daily resolution).
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On the other hand, 3 month-long hourly data during summer may be more infor-
mative of metrics a user should employ for simulation of satellite observation of
thunder storms and other shorter-duration convective rain systems.

An important aspect of QA/QC during SREM2D calibration is that there should
not be any missing data in space and time and that both sets (satellite and refer-
ence) must be synchronized very accurately. Users should resolve this QA/QC issue
because most real-time HRPPs available today at sub-daily time scales are produced
on a best-effort basis with a non-negligible portion of data often reported missing.
We recommend the following two strategies for replacement of missing data: (1) if
the percentage missing is small (< 5%), then reference rainfall may be substituted
with minimal effect on the computation of error metrics; (2) if percentage of missing
is considerably larger (∼5–15%), persistence of preceding satellite data over miss-
ing periods may be considered. The argument for #2 is that in a real-world scenario,
the user would have to continue using the last available satellite observation over
ungauged regions until the next satellite overpass or data downlink.

A major problem arises when both satellite and reference data are missing in
significant portions. For such cases, we recommend that the period of data not
be included in SREM2D error metric calibration. As an example, Table 1 shows
missing data statistic for one particular data set of Stage IV NEXRAD radar rain-
fall data over the United States spanning six years (2002–2007). The Northwestern
region appears to have a significant amount missing data (mainly east of the Cascade
Mountains) that can result in spurious error calibration of SREM2D if attempted.

Table 1 Missing data statistics for Stage IV NEXRAD data over different regions of the United
States spanning 6 years (2002–2007) at 4 km and 1 hourly scale

ALL Northwest Southwest Midwest Northeast Southeast

% Missing 11 32% 9.1% 0.8% 1.3% 12.7%

Because the primary motivation of an error modeling technique is to understand
how erroneous a satellite rainfall product is compared to a reference GV dataset
both in rainfall and in hydrologic simulation, SREM2D does not account for the
possible effects of errors in the "reference" rainfall estimates. However, users must
also recognize that the SREM2D estimation technique of the nine error metrics will
incorporate the uncertainties arising from both the satellite and reference rainfall.

5.2 Error Metric Calibration

After proper QA/QC of calibration data, the user needs to calibrate the nine metrics
that serves as input to the SREM2D error model. In this section, we show exam-
ples of calibration for four global satellite HRPPs at 0.25o 3 hourly scales over
the United States spanning two regions (Florida and Oklahoma; Fig. 3) and four
seasons in 2004 (Winter, Spring Summer, and Fall). These four satellite products
are: (1) 3B41RT; (2) 3B42RT; (3) CMORPH and (4) PERSIANN. Literature on
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Fig. 3 Two regions (Oklahoma and Florida) in the United States selected for SREM2D calibration
of error metrics for four global satellite rainfall products (shown in boxes)

the first two products (hereafter referred to as 3B41RT and 3B42RT) are available
from Huffman et al. (2007), while readers can refer to details on CMORPH and
PERSIANN from Joyce et al. (2004) and Hong et al. (2005), respectively. The ref-
erence GV data pertained to NEXRAD (Stage III) rainfall product. The regions are
bounded, for Oklahoma, by 32.0oN to 39.0oN and –92.0oW to –102.0oW; and, for
Florida, by 20.0oN to 26.0oN and –84.0oW and –80.0oW (Fig. 3).

Table 2 summarizes the missing data statistic at that native scale as part of
QA/QC of calibration data. All data were then remapped to the consistent scale
of 0.25o and 3 hourly to allow inter-comparisons among products. Figure 4 demon-
strates the PODNORAIN for various products across the two regions and seasons.
The nuances across products and seasons (particularly for CMORPH) are apparent
in this figure. Figure 5 shows the PODRAIN as a function of NEXRAD rain rate. As
mentioned earlier in Section

Table 2 Missing data statistic for four global satellite rainfall products at native scale over the
United States for 2004 (the two regions – Oklahoma and Florida are combined)

Native scale Percentage of missing data

Products
Temporal
(h)

Spatial
(◦)

Winter
(JF)

Spring
(AM)

Summer
(JJA)

Fall
(SON)

3B41RT 1 0.25 0.97 2.18 1.18 1.00
3B42RT 3 0.25 1.46 2.10 1.45 1.00
PERSIANN 1 0.04 2.30 1.43 1.22 1.10
CMORPH 3 0.25 0.00 0.00 0.00 0.00
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Fig. 4 PODNORAIN for CMORPH, 3B41RT, 3B42RT and PERSIANN across four seasons in
2004. Left panels – Oklahoma; Right panels – Florida

Four, the functional form of PODRAIN is almost invariably found to obey the
logistic pattern. Users need to fit appropriate parameter values for A and B of
Equation 3 to model the PODRAIN as a function of NEXRAD rain rate. There are
several non-linear optimization routines that can be used to robustly derive A and B
values. However, we recommend that the user also applies some human judgment
to check for the closeness of the idealized logistic curve with empirical one derived
(Fig. 5) at low rain rates (∼1–5 mm/h).

Figure 6 shows the probability distribution of false alarm rain rates of satellite
products. The distribution appears exponential like. The mean (expected value) of
this distribution comprises another SREM2D metric (1/λ). Care must be applied in
the derivation of the false alarm distribution as it is sensitive to the choice of bin
size. Users can apply more rigorous statistical tests and the maximum likelihood
method to derivemore robust estimates of the false alarm metric. Figure 7 shows
the spatial covariance structure of rain retrieval (conditional), rain detection and
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Fig. 5 PODRAIN as a function of NEXRAD rain rate. Upper panel – Florida for Winter 2004;
Lower panel – Oklahoma for Fall 2004. X-axis represents NEXRAD rain rates at 0.25o 3 hourly
resolution

no-rain detection for Florida (Summer 2004). Assuming that an exponential corre-
lation model is representative, the separation distances where the correlation drops
to 1/e (=0.368) comprise the correlation length (CL) error metrics for SREM2D
for generation of correlated random fields. Certain instances may result in the cor-
relation never (at least over the domain of the study region) dropping to 1/e. For
example, in arid and clear-sky climates, the correlation length CLNORAIN for an
Infra-red satellite rainfall product will probably be associated with large values. For
such cases, we recommend that the user constrain the spatial structure by applying
correlation length values compatible with the domain size of interest. A downside of
large correlation lengths in error modeling, particularly for rain retrieval, is that the
conditional error standard deviation may be under-simulated due to spatial similarity
of the generated random values. This aspect is discussed in more detail in the next
section.



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

SPB-164676 Chapter ID 9 August 4, 2009 Time: 04:02pm Proof 1

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

SREM2D Guide

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
P

ro
b

ab
ili

ty CMORPH

3B41RT

3B42RT

PERSIANN

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6

0 1 2 3 4 5 6

Sensor rainrate (mm/hr)

P
ro

b
ab

ili
ty

CMORPH

3B41RT

3B42RT

PERSIANN

Fig. 6 False alarm rain rate distribution for satellite rainfall products. Upper panel – Florida-
Summer; – Oklahoma-Spring. Sensor rainrate is the satellite rain estimate

6 SREM2D Simulation And Reproducibility Of Error Statistics

6.1 Simulation Issues

As model developers, we initially coded the first SREM2D error model using
Fortran 77. However, we believe that the general modeling structure (Section 3)
is tangible enough for any user to develop his/her own custom-built code. We there-
fore encourage users to rather understand the SREM2D philosophy first, assess if
the complexity of the error modeling is compatible with the intended application
and then apply/modify or simplify the error model accordingly using the preferred
computing platform.
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Fig. 7 Spatial covariance structure of rain retrieval, rain detection (middle panel) and no-rain
detection (upper panel) for Summer 2004 in Florida

An aspect that adds to the computational burden of SREM2D is the need for
generation of correlated Gaussian random fields. First, the spatial structure of rain
and no-rain joint detection probabilities is modeled using Bernoulli trials of the
uniform distribution with a correlated structure that is generated from Gaussian
random fields. These two Gaussian random fields (one each for rain detection and
no-rain detection) are transformed to the uniform distribution random variables via
an error function transformation. Spatially correlated field of Gaussian N(0,1) ran-
dom deviates is generated in 2-D space based on Turning Bands (Mantoglou and
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Wilson, 1982). The N(0,1) spatially correlated random field is then transformed toAQ4
uniform U[0,1] field as follows:

xj = 1

2
+ 1

2
erf (εj/

√
2) (7)

where xj, is a U[0,1] random deviate for pixel j generated from the corresponding
N(0,1) deviate, εj. The erf (εj) is the error function defined by the following integral,

erf(εj) = 2√
π

x∫

0

e−w2
dw (8)

The uniform random fields are then scaled by its standard deviation to yield a
unitary variance (this ensures the maximum covariance of 1.0 at lag 0). Numerical
consistency checks have revealed that correlation length is altered significantly by
this non-linearity only at lags (grid spaces) beyond 10 and should be accordingly
accounted for modeling the join probability of detection if necessary. Execution of
this procedure yields a spatially correlated uniform field of U [0,1] random deviates
that are now amenable for Bernoulli trials for rain and no-rain detection with a priori
spatial structures. A third Gaussian random field is generated next for the simulation
of correlated retrieval error field pertaining to N (μ,σ).

Hossain and Anagnostou (2006) provide the simulation algorithm for SREM2D
that outlines each simulation step for the error model in the form of a programming
flow-chart. We recommend that users refer to that algorithm flow-chart to clarify the
individual process calculations that SREM2D computes in space and time.

6.2 Reproducibility of SREM2D Error Statistics

Before the assessment of satellite rainfall products for decision-making can begin,
users must verify that the ensembles of satellite rainfall data simulated by SREM2D
are adequately realistic. In other words, the reproducibility of error statistics (met-
rics) by SREM2D needs to be verified. Like any other mathematical model,
SREM2D does not perfectly mimic the uncertainty as expected from the calibrated
metrics. Nevertheless, the user must set some minimum standards on reproducibil-
ity based on the intended application. We recommend two particular ways by which
SREM2D can be verified of this “reproducibility” property. These are as follows:

1) Checking the consistency of ensemble of cumulative rainfall hyeotograph
against actual satellite rainfall data.

2) Checking the accuracy of error metrics computed from simulated satellite
rainfall data against actual reference rainfall data.
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The first method checks if the actual cumulative rainfall hyeotograph is
enveloped reasonably realistically by the ensemble of SREM2D generated synthetic
satellite hyetographs. Because actual satellite rainfall data is not used in the gener-
ation of SREM2D synthetic data, this test can considered an independent check.
Users are recommended to perform this test over the whole domain and a few ran-
dom smaller sub-domains within the study region. An additional aspect to check is
to verify if the simulated hyetographs exhibit a pattern of jumps and plateaus simi-
lar to the actual data. The second method computes the nine SREM2D error metrics
from synthetic satellite data against actual reference rainfall data to check the close-
ness of the values with calibrated measures. This check may be done on individual
realizations or over a set of ensembles. The latter is likely to yield more accurate
results due to the larger space-time sample size that minimizes the randomization
effects per each realization.

In the following, we provide an example of the two error reproducibility tests
over an alpine basin in Northern Italy.

6.2.1 Checking the Consistency of Ensemble of Cumulative Hyetograph
Against Actual Satellite Rainfall Data

Figure 8 shows the alpine region of Northern Italy over which SREM2D error
metrics were calibrated for three satellite rainfall products. The three shaded grid
boxes represent the location of actual satellite pixels at 0.25o scale for three satellite
products

3B41RT, 3B42V6 and KIDD. Herein, KIDD represents a high resolution (0.04◦)
Infrared (IR)-based satellite rainfall product produced by Kidd et al. (2003). Six
months of satellite data spanning June–November 2002 were used for calibration
of SREM2D metrics. Reference data comprised gage rainfall from a dense network
represented by the black circles shown in the figure. Table 3 shows the SREM2D
metrics calibrated for the satellite products at the 0.25o 3 hourly scale. A threshold of
0.1 mm/h was assigned to separate the rainy events from non-rainy events. Figure 9
demonstrates the cumulative hyetographs generated from 100 SREM2D realiza-
tions (mean and ±σ) and actual satellite rainfall data for 3B41RT and 3B42V6. We
observe that 3B41RT is relatively more accurately enveloped than 3B42V6. Overall,
the simulation of both products appear reasonably realistic for the domain of interest
in Northern Italy.

6.2.2 Checking Reproducibility of Error Metrics

In Table 4, the reproducibility of the mean and standard deviation of log-error
for retrieval is demonstrated for a few random SREM2D realizations against the
calibrated values (that served as input to the error model) for the KIDD satellite
product. While the PODNORAIN and bias of log-error is reasonably well reproduced
for each selected realization, the standard deviation of log-error is found to be con-
sistently underestimated by margins of 10–15%. A recently-identified limitation of
the SREM2D model is that the generation of correlated random fields with long
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Fig. 8 Alpine region of
Northern Italy. Shaded grey
boxes represent the actual
location of the 0.25o satellite
pixels for 3B41RT and
3B41V6 data used in the
calibration of SREM2D error
metrics. Black circles
represent the location of
tipping bucket gages that
comprised reference rainfall
data

Table 3 SREM2D error metrics calibrated for 3B41 and 3B42 for the region of Northern Italy

Metrics 3B41 3B42 KIDD

A 1.05 1.1 1.1
B 1.85 1.08 1.2
Mean (mu-Gaussian of log-error) 0.026 −0.1102 −0.226
Sigma (std.dev Gaussian of log-error 0.942 0.764 0.733
False Alarm mean rain rate (mm/hr) 0.433 0.760 0.680
Lag-one correlation 0.41 0.13 0.41
POD no-rain 0.81 0.97 0.99
∗CLret km 50 50 50
∗CLrain det km 0 0 0
∗CLno rain det km 75 75 75

correlation lengths for retrieval error tend to conflict with the standard deviation of
retrieval error and result in under-simulation (i.e. underestimation). This underesti-
mation appears to magnify as the domain size increases. We do not know yet how
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Fig. 9 Cumulative rainfall hyetographs over Northern Italy. Blue line represents the mean of 100
SREM2D realizations. Solid black line represents the actual satellite hyeotograph. Upper panel –
3B41RT; Lower panel – 3B42V6

to address this problem at this stage, but it is certainly an aspect that users should
be cognizant of and strive for rectification in future improvements of the SREM2D
model. Users should also perform similar consistency checks for all other SREM2D
metrics and not just of conditional bias and standard deviation.
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Table 4 Reproducibility of some SREM2D error metrics for a few random realizations over
Northern Italy for KIDD (KIDD is the IR-based satellite rainfall product by Kidd et al. 2003)

POD NORAIN Bias (log-error) Std Dev (log error)

Empirical 0.986 0.727 1.19
Realization 1 0.983 0.672 0.98
Realization 2 0.983 0.496 1.04
Realization 3 0.990 0.545 1.05
Realization 4 0.990 0.747 1.01

7 Conclusions

For continual refinement of error models and their promotion in prototyping
satellite-based hydrologic monitoring systems, a practical user guide that readers
can refer to is useful for potential users of HRPPs. In this chapter, we have pro-
vided our readers with one such practical guide on a space-time stochastic error
model called SREM2D (A Two Dimensional Satellite Rainfall Error Model) devel-
oped by Hossain and Anagnostou (IEEE Transactions on Remote Sensing and
Geosciences, 44(6), pp. 1511–1522, 2006). This practical guide overviewed the phi-
losophy behind SREM2D and emphasized the need to flexibly interpret the error
model as a collection of modifiable concepts always under refinement. We stressed
at various stages of the guide the importance of verifying that the complexity
and assumptions of error modeling were compatible with the intended applica-
tion. Our motivation behind the compilation of this practical guide was that readers
should learn to apply SREM2D recognizing the strengths and limitations simulta-
neously and thereby minimize any black-box or unrealistic applications for surface
hydrology. We also hope that developers of other error models will produce simi-
lar “guides” to make the pros and cons of the error modeling philosophy open for
the user.

Like any other model, SREM2D is not without limitations. The requirement of
continuous data (reference and satellite) in space and time may be considered a short
coming for calibration of SREM2D error metrics. For advancing the application of
satellite HRPPs, the associated uncertainty information is critical for users to under-
stand the realistic limits to which these HRPPs can be applied over an ungauged
region. However, this represents a paradox. Satellite rainfall uncertainty estimation
requires reference (ground validation-GV) data. On the other hand, satellite data
will be most useful over ungauged regions in the developing world that are lacking
in GV data. Consequently, we need to ask ourselves several questions for SREM2D.
Can the model parameters/metrics be transferred from one region to another? Can
they be regionalized? At this stage, there is no clear answer, although there is work
on-going by the authors to resolve this paradox and understand how reliable is the
“transfer” of error from a gauged location to an ungauged one.
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On the computational side, the need to generate three independent and corre-
lated random fields increases simulation runtime for SREM2D. The need to convert
Gaussian random fields to uniform random fields by the non-linear error transforma-
tion also results in an unknown change of spatial structure that is not yet completely
constrained at large space lags (> 10). The spatial correlation also has the effect of
imparting negative bias to the standard deviation of retrieval error.

Despite these limitations, SREM2D represents a unique hydrological transition
from current error models because it explicitly recognizes the need for preservation
of covariance structure of rainfall and the associated measurement accuracy as a
function of space and time. It also provides greater versatility in error modeling by
moving away from the single aggregate error metric models to a multi-dimensional
one comprising nine metrics. We believe that subject of space-time error modeling
of high resolution satellite rainfall products can reach closure with the systematic
evolution of the philosophy and concepts embedded in the SREM2D model.
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